Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(5-Chloropentanamido)benzenesulfonamide

Hasan Türkmen, ${ }^{\text {a }}$ Șerife Pınar Yalçın, ${ }^{\text {b,c }}$ Mehmet Akkurt ${ }^{\text {d* }}$ and Mustafa Durgun ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, ${ }^{\text {c }}$ Central Research Lab, Harran University, Osmanbey Campus, 63300 Şanlıurfa, Turkey, and ${ }^{\text {d Department of Physics, Faculty of }}$ Sciences, Erciyes University, 38039 Kayseri, Turkey
Correspondence e-mail: akkurt@erciyes.edu.tr

Received 20 November 2012; accepted 22 November 2012

Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.065 ; w R$ factor $=0.169$; data-to-parameter ratio $=23.5$.

The molecular conformation of the title compound, $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$, is stabilized by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, forming an $S(6)$ ring motif. In the crystal, molecules are linked by two pairs of inversion-related $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating $R_{2}^{2}(8)$ and $R_{2}^{2}(20)$ ring motifs, resulting in chains running along [$0 \overline{1} 1$]. These chains are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds along [100], forming layers parallel to (011). There are also $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the layers, which consolidate the three-dimensional structure.

Related literature

Sulfonamides represent an important class of biologically active compounds. For their action as inhibitors of carbonic anhydrase enzyme, their antibacterial properties in chemotherapy, as antithyroid drugs, and for their antimicrobial properties, see: Maren (1987); Supuran (2008); Turkmen et al. (2005, 2011); Rami et al. (2011). For their antiviral properties, such as HIV protease inhibitors, see: De Clercq (2001) and as inhibitors of cysteine protease enzyme, see: Danial \& Korsmeyer (2004). For related structures, see: Yalçın et al. (2012); Akkurt et al. (2010a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$

$$
\begin{aligned}
& a=8.4872(1) \AA \\
& b=8.7730(2) \AA \\
& c=10.4572(3) \AA
\end{aligned}
$$

α	$=73.711(4)^{\circ}$
β	$=85.281(4)^{\circ}$
γ	$=63.393(3)^{\circ}$
V	$=667.37(3) \AA^{\circ}$
Z	$=2$

Data collection
Rigaku R-AXIS RAPID-S diffractometer
Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\text {min }}=0.901, T_{\text {max }}=0.949$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$S=1.05$
4036 reflections
172 parameters
3 restraints

H atoms treated by a mixture of independent and constrained refinement
Mo $K \alpha$ radiation
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.24 \times 0.15 \times 0.12 \mathrm{~mm}$

20164 measured reflections 4036 independent reflections 2815 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.068$
$\Delta \rho_{\max }=0.42 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the C1-C6 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3$	0.93	2.25	$2.809(4)$	118
$\mathrm{~N} 1-\mathrm{H} 1 N A \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(2)$	$1.99(3)$	$2.865(3)$	$176(3)$
N1-H1NB $\cdots \mathrm{O}^{\text {ii }}$	$0.87(3)$	$2.11(2)$	$2.963(3)$	$166(4)$
N2-H2N $\cdots \mathrm{O}^{\text {iii }}$	$0.88(3)$	$2.17(3)$	$3.021(4)$	$166(3)$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{Cg} 1^{\text {iv }}$	0.97	2.96	$3.771(3)$	142

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y,-z+2$; (iii) $x+1, y, z$; (iv)
$-x+1,-y+1,-z+1$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

The authors thank the Unit of Scientific Research Projects of Harran University, Turkey for a research grant (HUBAK Project Nos. 295 and 1136).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2531).

References

Akkurt, M., Yalçın, Ş. P., Türkmen, H. \& Büyükgüngör, O. (2010a). Acta Cryst. E66, o1559-o1560.
Akkurt, M., Yalçın, Ş. P., Türkmen, H. \& Büyükgüngör, O. (2010b). Acta Cryst. E66, o1596.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Danial, N. N. \& Korsmeyer, S. J. (2004). Cell, 116, 205-219.
De Clercq, E. (2001). Curr. Med. Chem. 8, 1543-1572.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Maren, T. H. (1987). Drug Dev. Res. 10, 255-276.

organic compounds

Rami, M., Innocenti, A., Montero, J. L., Scozzafava, A., Winum, J. Y. \& Supuran, C. T. (2011). Bioorg. Med. Chem. Lett. 21, 5210-5213.
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Supuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168-181.

Turkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. \& Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, $367-$ 372.

Turkmen, H., Zengin, G. \& Buyukkircali, B. (2011). Bioorg. Chem. 39, 114119.

Yalçın, Ş. P., Akkurt, M., Durgun, M., Türkkan, B. \& Türkmen, H. (2012). Acta Cryst. E68, o3430

supporting information

Acta Cryst. (2012). E68, o3475-o3476 [doi:10.1107/S1600536812048118]

4-(5-Chloropentanamido)benzenesulfonamide

Hasan Türkmen, Şerife Pınar Yalçın, Mehmet Akkurt and Mustafa Durgun

S1. Comment

Sulfonamides represent an important class of biologically active compounds, with inhibitors of carbonic anhydrase enzyme, antibacterial properties in chemotherapy, antithyroid drugs, antimicrobial properties, (Maren, 1987; Rami et al., 2011; Supuran, 2008; Turkmen et al., 2005, 2011). Sulfonamides are also antiviral agents, such as as HIV protease inhibitors (De Clercq, 2001), and inhibitors of cysteine protease enzyme (Danial \& Korsmeyer, 2004). The design and development of new sulfanilamide derivatives can help determine any structural requirements for improved biological activity. In this study, we have prepared and determined the crystal structure of the title compound.

In the 5-chloropentanamide moiety of the title compound, Fig. 1, the N2-C7-C8- $\mathrm{C} 9, \mathrm{Cl} 1-\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$ and O 3 -C7-C8-C9 torsion angles are 165.7 (2), 63.2 (3) and -16.5 (3) ${ }^{\circ}$, respectively. The bond lengths and bond angles are within the normal range and are comparable to those reported previously for the isomer 4-(3-chloro-2,2-dimethyl-propanoylamino)-benzenesulfonamide (Yalçın et al., 2012) and other related compounds (Akkurt et al., 2010a,b).
A C-H $\cdots \mathrm{O}$ hydrogen bond stabilizes the molecular conformation of the title molecule, forming a $\mathrm{S}(6)$ ring motif (Bernstein et al., 1995; Table 1). In the crystal, neighbouring molecules are linked by two pairs of intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table $1 \&$ Fig. 2), forming inversion dimers with $R^{2}{ }_{2}(8)$ and $R^{2}{ }_{2}(20)$ ring motifs, into chains running along [0-11]. These chains are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds along the [100] direction, forming layers parallel to the (011) plane. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between these layers further help in stabilizing the supramolecular structure (Table 1).

S2. Experimental

The title compound was prepared by a nucleophilic acyl substitution reaction of sulfanilamide with 5-chloropentanoylchloride. To a solution of $3.00 \mathrm{~g}(17.42 \mathrm{mmol})$ of sulfanilamide in 50.0 ml of THF, $4.41 \mathrm{ml}(34.84 \mathrm{mmol})$ of NEM [Nethylmaleimide] was added. A solution of $4.47 \mathrm{ml}(34.84 \mathrm{mmol})$ of 5-chloropentanoylchloride in 20 ml of THF was added with stirring. A white precipitate of NEM. HCl salt was immediately observed. The reaction mixture was stirred at room temperature for 24 h , the progress of which was monitored by TLC (dichloromethane/methanol $6 / 1 \mathrm{v} / \mathrm{v}$). The precipitate was filtered out and the filtrate collected was evaporated in vacuo to leave a residue. The residue was dissolved in ethyl acetate. The organic extract was washed with $3 M$ hydrochloric acid, then with saturated sodium bicarbonate solution and finally with brine. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated by evaporation in vacuo to give a residue. Recrystallization (ethanol) afforded $3.80 \mathrm{~g}(75 \%)$ the title compound as a white solid [M.p. 458-461 K]. Crystals suitable for X-ray diffraction were grown by slow evaporation of a solution in ethanol/chloroform/dichloromethane $(4 / 3 / 3 v / v)$.

S3. Refinement

The H atoms on the NH and NH_{2} groups were located from a difference Fourier map and refined with distance restraints of $\mathrm{N}-\mathrm{H}=0.88(1) \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The C-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$ for CH and $\mathrm{CH}_{2} \mathrm{H}$ atoms, respectively, and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A partial view along the a axis of the crystal packing of the title compound, showing the inversion dimers formed by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

4-(5-Chloropentanamido)benzenesulfonamide

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=290.77$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.4872$ (1) \AA
$b=8.7730(2) \AA$
$c=10.4572(3) \AA$
$\alpha=73.711$ (4) $^{\circ}$
$\beta=85.281(4)^{\circ}$

$$
\begin{aligned}
& \gamma=63.393(3)^{\circ} \\
& V=667.37(3) \AA^{3} \\
& Z=2 \\
& F(000)=304 \\
& D_{\mathrm{x}}=1.447 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3036 \text { reflections } \\
& \theta=2.7-30.5^{\circ} \\
& \mu=0.44 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=294 \mathrm{~K}$

Needle, pale yellow

Data collection

Rigaku R-AXIS RAPID-S
diffractometer
Radiation source: Sealed Tube
Graphite Monochromator monochromator
Detector resolution: 10.0000 pixels mm^{-1}
dtprofit.ref scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.901, T_{\text {max }}=0.949$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.169$
$S=1.05$
4036 reflections
172 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
$0.24 \times 0.15 \times 0.12 \mathrm{~mm}$

20164 measured reflections
4036 independent reflections
2815 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-12 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 14$

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0677 P)^{2}+0.2759 P\right]$
> \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.42$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.35$ e $^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating - R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.72069(11)$	$0.61911(12)$	$-0.09175(8)$	$0.0692(3)$
S1	$-0.03920(8)$	$0.03480(8)$	$0.77585(6)$	$0.0419(2)$
O1	$0.0449(2)$	$-0.1257(2)$	$0.88113(18)$	$0.0500(6)$
O2	$-0.1417(3)$	$0.0370(3)$	$0.6723(2)$	$0.0572(7)$
O3	$0.3519(2)$	$0.4839(2)$	$0.35111(19)$	$0.0552(6)$
N1	$-0.1676(3)$	$0.1842(3)$	$0.8443(2)$	$0.0535(8)$
N2	$0.5163(3)$	$0.2301(3)$	$0.5050(2)$	$0.0416(6)$
C1	$0.1271(3)$	$0.0902(3)$	$0.6970(2)$	$0.0398(7)$
C2	$0.2959(3)$	$0.0145(3)$	$0.7555(2)$	$0.0426(7)$
C3	$0.4213(3)$	$0.0629(3)$	$0.6908(2)$	$0.0434(7)$
C4	$0.3823(3)$	$0.1871(3)$	$0.5670(2)$	$0.0385(7)$
C5	$0.2142(4)$	$0.2581(4)$	$0.5068(3)$	$0.0586(9)$
C6	$0.0901(4)$	$0.2088(4)$	$0.5723(3)$	$0.0611(10)$

C7	$0.4969(3)$	$0.3716(3)$	$0.4010(2)$	$0.0389(7)$
C8	$0.6648(3)$	$0.3843(3)$	$0.3549(3)$	$0.0424(7)$
C9	$0.6398(3)$	$0.5164(4)$	$0.2196(3)$	$0.0479(8)$
C10	$0.8041(4)$	$0.5387(4)$	$0.1751(3)$	$0.0481(8)$
C11	$0.7774(5)$	$0.6762(4)$	$0.0441(3)$	$0.0614(11)$
H1NA	$-0.226(4)$	$0.288(2)$	$0.788(3)$	0.0830^{*}
H2	0.32410	-0.06880	0.83840	0.0510^{*}
H1NB	$-0.123(4)$	$0.179(5)$	$0.918(2)$	0.0830^{*}
H2N	$0.623(2)$	$0.165(4)$	$0.542(3)$	0.0830^{*}
H3	0.53400	0.01160	0.73060	0.0520^{*}
H5	0.18640	0.33860	0.42260	0.0700^{*}
H6	-0.02150	0.25670	0.53150	0.0730^{*}
H8A	0.75400	0.26840	0.35040	0.0510^{*}
H8B	0.70720	0.41920	0.41990	0.0510^{*}
H9A	0.60360	0.47760	0.15390	0.0570^{*}
H9B	0.54550	0.63050	0.22290	0.0570^{*}
H10A	0.84370	0.57130	0.24300	0.0580^{*}
H10B	0.89650	0.42580	0.16730	0.0580^{*}
H11A	0.88480	0.69000	0.02530	0.0740^{*}
H11B	0.68420	0.78900	0.05110	0.0740^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0689(5)$	$0.0792(6)$	$0.0525(4)$	$-0.0331(4)$	$0.0030(4)$	$-0.0072(4)$
S1	$0.0379(3)$	$0.0438(3)$	$0.0432(3)$	$-0.0228(3)$	$-0.0011(2)$	$-0.0018(2)$
O1	$0.0490(10)$	$0.0413(9)$	$0.0534(10)$	$-0.0225(8)$	$-0.0011(8)$	$0.0015(8)$
O2	$0.0533(11)$	$0.0741(13)$	$0.0549(11)$	$-0.0404(10)$	$-0.0057(9)$	$-0.0101(10)$
O3	$0.0387(10)$	$0.0531(11)$	$0.0557(11)$	$-0.0175(9)$	$-0.0005(8)$	$0.0077(9)$
N1	$0.0487(14)$	$0.0476(13)$	$0.0476(13)$	$-0.0144(11)$	$0.0006(11)$	$-0.0003(10)$
N2	$0.0343(10)$	$0.0437(11)$	$0.0411(11)$	$-0.0180(9)$	$-0.0022(8)$	$-0.0009(9)$
C1	$0.0373(12)$	$0.0411(12)$	$0.0416(12)$	$-0.0213(10)$	$-0.0008(10)$	$-0.0047(10)$
C2	$0.0409(13)$	$0.0424(12)$	$0.0399(12)$	$-0.0211(11)$	$-0.0056(10)$	$0.0023(10)$
C3	$0.0342(12)$	$0.0422(12)$	$0.0455(13)$	$-0.0153(10)$	$-0.0078(10)$	$0.0000(10)$
C4	$0.0357(12)$	$0.0432(12)$	$0.0378(11)$	$-0.0203(10)$	$0.0003(9)$	$-0.0076(10)$
C5	$0.0488(15)$	$0.0720(18)$	$0.0456(14)$	$-0.0362(14)$	$-0.0149(12)$	$0.0185(13)$
C6	$0.0435(15)$	$0.077(2)$	$0.0528(15)$	$-0.0348(15)$	$-0.0160(12)$	$0.0159(14)$
C7	$0.0376(12)$	$0.0420(12)$	$0.0365(11)$	$-0.0177(10)$	$0.0035(10)$	$-0.0101(10)$
C8	$0.0365(12)$	$0.0432(12)$	$0.0464(13)$	$-0.0186(10)$	$0.0051(10)$	$-0.0100(10)$
C9	$0.0426(14)$	$0.0565(15)$	$0.0474(14)$	$-0.0287(12)$	$0.0048(11)$	$-0.0076(12)$
C10	$0.0458(14)$	$0.0527(15)$	$0.0517(14)$	$-0.0292(12)$	$0.0095(12)$	$-0.0126(12)$
C11	$0.0676(19)$	$0.0628(18)$	$0.0634(18)$	$-0.0410(16)$	$0.0158(15)$	$-0.0143(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 11$	$1.797(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.508(4)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.4365(18)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.516(4)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.435(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.512(5)$

S1-N1	1.593 (2)
S1-C1	1.763 (3)
O3-C7	1.220 (3)
N2-C4	1.408 (4)
N2-C7	1.356 (3)
N1-H1NA	0.87 (2)
N1-H1NB	0.87 (3)
N2-H2N	0.88 (3)
C1-C2	1.390 (4)
C1-C6	1.377 (4)
C2-C3	1.377 (4)
C3-C4	1.389 (3)
C4-C5	1.397 (4)
C5-C6	1.374 (5)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	118.85 (13)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	106.87 (11)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	107.57 (11)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	107.06 (14)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	106.58 (13)
N1-S1-C1	109.75 (13)
C4-N2-C7	127.3 (2)
S1-N1-H1NB	114 (3)
H1NA-N1-H1NB	119 (3)
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{NA}$	114.0 (18)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	115.5 (19)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	116.9 (18)
S1-C1-C6	119.1 (2)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	121.99 (17)
C2-C1-C6	118.9 (3)
C1-C2-C3	120.0 (2)
C2-C3-C4	121.1 (2)
C3-C4-C5	118.6 (3)
N2-C4-C5	122.8 (2)
N2-C4-C3	118.6 (2)
C4-C5-C6	119.8 (3)
C1-C6-C5	121.5 (3)
O3-C7-C8	122.4 (2)
N2-C7-C8	115.8 (2)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 2$	121.8 (3)
C7-C8-C9	112.6 (2)
C8-C9-C10	113.4 (2)
C9-C10-C11	113.6 (3)
C11-C11-C10	112.5 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	-15.8 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	-144.3 (2)
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	100.2 (2)

$\mathrm{C} 10-\mathrm{C} 11$	$1.504(4)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
C5—H5	0.9300
C6-H6	0.9300
C8-H8A	0.9700
C8-H8B	0.9700
C9-H9A	0.9700
C9—H9B	0.9700
C10-H10A	0.9700
C10-H10B	0.9700
C11-H11A	0.9700
C11-H11B	0.9700

120.00 120.00 120.00

119.00

120.00

120.00
119.00
119.00
109.00
109.00
109.00
109.00
108.00
109.00
109.00
109.00
109.00
108.00
109.00
109.00
109.00
109.00
108.00
109.00
109.00
109.00
109.00
108.00
2.2 (4)
0.0 (4)
-179.4 (2)

$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$162.6(2)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$34.2(3)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-81.5(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-164.6(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$18.3(4)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 3$	$2.2(4)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$180.0(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.42(18)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-2.2(4)$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2.2(4)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$2.1(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.1(5)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-16.5(3)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$165.7(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$176.7(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-177.1(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 11$	$-63.2(3)$

C2-C1-C6-C5 -2.2 (4)
-2.2 (4)
179.2 (3)
2.1 (4)
0.1 (5)
-16.5 (3)
165.7 (2)
176.7 (2)
-177.1 (3)
-63.2 (3)

Hydrogen-bond geometry ($A,{ }^{o}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 3$	0.93	2.25	$2.809(4)$	118
$\mathrm{~N} 1 — \mathrm{H} 1 N A \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(2)$	$1.99(3)$	$2.865(3)$	$176(3)$
$\mathrm{N} 1 — \mathrm{H} 1 N B \cdots \mathrm{O}^{\mathrm{ii}}$	$0.87(3)$	$2.11(2)$	$2.963(3)$	$166(4)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.88(3)$	$2.17(3)$	$3.021(4)$	$166(3)$
$\mathrm{C} 10 — \mathrm{H} 10 A \cdots C g 1^{\mathrm{iv}}$	0.97	2.96	$3.771(3)$	142

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y,-z+2$; (iii) $x+1, y, z$; (iv) $-x+1,-y+1,-z+1$.

