# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Dimethyl 2,6-dimethyl-4-{3-[4-(methylsulfanyl)phenyl]-1*H*-pyrazol-4-yl}-1,4dihydropyridine-3,5-dicarboxylate monohydrate

### Arun M. Islor,<sup>a</sup> A. M. Vijesh,<sup>b</sup> Thomas Gerber,<sup>c</sup> Eric Hosten<sup>c</sup> and Richard Betz<sup>c</sup>\*

<sup>a</sup>National Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, <sup>b</sup>GITAM University, Department of Engineering Chemistry, GIT, Rushikonda, Visakhapatnam, A.P. 530 045, India, and <sup>c</sup>Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa

Correspondence e-mail: richard.betz@webmail.co.za

Received 16 October 2012; accepted 2 November 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.002 Å; disorder in main residue; *R* factor = 0.040; *wR* factor = 0.111; data-to-parameter ratio = 16.9.

In the title compound,  $C_{21}H_{23}N_3O_4S\cdot H_2O$ , the methylsulfanyl group is disordered over two sets of sites with site-occupancy factors of 0.631 (11) and 0.369 (11). The dihydropyridine ring adopts an  $E_4$  conformation. In the crystal, classical  $O-H\cdots N$ ,  $O-H\cdots O$  and  $N-H\cdots O$  hydrogen bonds, as well as  $C-H\cdots O$  and  $C-H\cdots S$  contacts, connect the molecules into a three-dimensional network.

### **Related literature**

For general information about the pharmacological importance of 1,4-dihydropyridine-based drugs, see: Janis & Triggle (1983); Boecker & Guengerich (1986); Gordeev *et al.* (1996); Buhler & Kiowski (1987); Vo *et al.* (1995). For puckering analysis of cyclic motifs, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995).



### **Experimental**

#### Crystal data

C<sub>21</sub>H<sub>23</sub>N<sub>3</sub>O<sub>4</sub>S·H<sub>2</sub>O  $M_r = 431.50$ Monoclinic,  $P2_1/c$  a = 10.5542 (2) Å b = 14.7260 (2) Å c = 14.5377 (2) Å  $\beta = 110.106$  (1)°

### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008)  $T_{\rm min} = 0.950, T_{\rm max} = 0.963$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$  $wR(F^2) = 0.111$ S = 1.035267 reflections 312 parameters

# Table 1Hydrogen-bond geometry (Å, °).

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                         |                                                          |                                                          |                                                                       |                                                       |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$  | $D - H \cdots A$                                                                                                                                                        | D-H                                                      | $H \cdots A$                                             | $D \cdots A$                                                          | $D - \mathbf{H} \cdot \cdot \cdot A$                  |
|                                                       | $\begin{array}{l} 08 - H8A \cdots N22^{i} \\ 08 - H8B \cdots 04^{ii} \\ N21 - H21 \cdots 02^{iii} \\ N31 - H31A \cdots 08^{iv} \\ C23 - H23 \cdots S1A^{v} \end{array}$ | 0.83 (3)<br>0.84 (3)<br>0.884 (19)<br>0.908 (19)<br>0.95 | 2.09 (3)<br>2.09 (3)<br>1.985 (19)<br>1.965 (19)<br>2.79 | 2.8982 (18)<br>2.8989 (19)<br>2.8505 (15)<br>2.8561 (18)<br>3.637 (3) | 167 (2)<br>164 (2)<br>165.9 (17)<br>166.6 (17)<br>149 |

Symmetry codes: (i) -x + 2,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) x,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ ; (iii) x,  $-y + \frac{3}{2}$ ,  $z - \frac{1}{2}$ ; (iv) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (v) -x + 2,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

AMI thanks the Board for Research in Nuclear Sciences, Government of India, for a Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2110).

### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.
- Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3-S10.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.
- Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775-785.



V = 2121.77 (6) Å<sup>3</sup>

Mo  $K\alpha$  radiation  $\mu = 0.19 \text{ mm}^{-1}$ 

 $0.27 \times 0.23 \times 0.20 \text{ mm}$ 

20236 measured reflections

5267 independent reflections

4311 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

Z = 4

T = 200 K

 $R_{\rm int} = 0.019$ 

refinement  $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$ 

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). *Acta Cryst.* D65, 148–155. Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.

# supporting information

Acta Cryst. (2012). E68, o3302-o3303 [doi:10.1107/S1600536812045333]

# Dimethyl 2,6-dimethyl-4-{3-[4-(methylsulfanyl)phenyl]-1*H*-pyrazol-4-yl}-1,4-dihydropyridine-3,5-dicarboxylate monohydrate

## Arun M. Islor, A. M. Vijesh, Thomas Gerber, Eric Hosten and Richard Betz

## S1. Comment

In recent years, considerable attention has been paid to the synthesis of 1,4-dihydropyridines owing to their significant biological activity. 1,4-Dihydropyridine-containing drugs (1,4-DHPs), such as nifedipine, nicardipine, amlodipine, felodipine and others have been found to be useful as calcium channel blockers (Janis & Triggle, 1983; Boecker & Guengerich, 1986; Gordeev *et al.*, 1996) and are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski, 1987). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo *et al.*, 1995). In continuation of our ongoing interest in pharmaceutically active compounds, the title compound was synthesized to study its crystal structure.

The compound is the hydrate of a mixed pyrazole-1,4-dihydropyridine compound. The thiomethyl group is disordered over two positions with site occupancy factors of 0.631 (11) and 0.369 (11). According to a puckering analysis (Cremer & Pople, 1975), the dihydropyridine ring adopts an  $E_4$  conformation with the flap atom on C31 ( $E_{C31}$ ). The least-squares planes defined by the carbon atoms of the phenyl group and the intracyclic atoms of the pyrazole ring enclose an angle of 48.42 (8) °. At the same time, the aforementioned planes intersect with the least-squares plane defined by the atoms of the 1,4-dihydropyridine ring at angles of 45.18 (7) ° and 86.12 (7) °, respectively.

In the crystal, classical hydrogen bonds of the O–H···N, O–H···O and N–H..O type can be observed that are supported by all nitrogen- and oxygen-bound hydrogen atoms. The bifurcated C H···O contact may influence the eclipsed ester substituent conformation with respect to this group. Furthermore, an intermolecular C–H···S contact is present falling short by more than 0.2 Å of the sum of van-der-Waals radii of the corresponding atoms. These contacts connect the entities in the crystal structure to a three-dimensional network. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for these contacts is  $S(5)S(5)DDDC^{1}_{1}(8)C^{1}_{1}(9)$  on the unary level. The  $C^{1}_{1}(9)$  descriptor detailing the intermolecular C–H···S contacts is shown in Figure 2. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 5.2965 (8) Å and is apparent between the pyrazole and the phenyl moiety in two neighbouring molecules.

## **S2. Experimental**

3-(4-methylsulfanyl-phenyl)-1*H*-pyrazole-4-carbaldehyde (0.2 g, 0.9 mmol), methylacetoacetate (0.21 g, 1.8 mmol) and ammonium acetate (0.07 g, 0.9 mmol) in methanol (20 mL) were heated under reflux in an oil bath for 8 h. After completion of the reaction, the reaction mixture was concentrated and poured onto crushed ice. The precipitate was filtered and washed with water. The resulting solid was recrystallized from hot methanol, yield: 0.32 g (84%).

### **S3. Refinement**

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to  $1.2U_{eq}(C)$ . The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008), with U(H) set to  $1.5U_{eq}(C)$ . All nitrogen- and oxygen-bound H atoms were located on a difference Fourier map and refined freely.



### Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). For clarity, only the major component of the split model is depicted.



## Figure 2

Intermolecular contacts, viewed along [-1 0 0]. For clarity, only the major component of the split model and only the C– H···S contacts necessitating a  $C^{1}_{1}(9)$  descriptor are depicted. Symmetry operators: <sup>i</sup> 2 - *x*, -1/2 + *y*, 1/2 - *z*; <sup>ii</sup> 2 - *x*, 1/2 + *y*, 1/2 - *z*;

# Dimethyl 2,6-dimethyl-4-{3-[4-(methylsulfanyl)phenyl]-1*H*-pyrazol-4- yl}-1,4-dihydropyridine-3,5-dicarboxylate monohydrate

| Crystal data                    |                                |
|---------------------------------|--------------------------------|
| $C_{21}H_{23}N_3O_4S\cdot H_2O$ | <i>b</i> = 14.7260 (2) Å       |
| $M_r = 431.50$                  | c = 14.5377 (2) Å              |
| Monoclinic, $P2_1/c$            | $\beta = 110.106 (1)^{\circ}$  |
| Hall symbol: -P 2ybc            | V = 2121.77 (6) Å <sup>3</sup> |
| a = 10.5542 (2)  Å              | Z=4                            |

F(000) = 912  $D_x = 1.351 \text{ Mg m}^{-3}$ Melting point = 467–469 K Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9343 reflections

Data collection

| Bruker APEXII CCD                        | 20236 measured reflections                                          |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 5267 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 4311 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.019$                                               |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ |
| Absorption correction: multi-scan        | $h = -14 \rightarrow 13$                                            |
| (SADABS; Bruker, 2008)                   | $k = -14 \rightarrow 19$                                            |
| $T_{\min} = 0.950, T_{\max} = 0.963$     | $l = -13 \rightarrow 19$                                            |
|                                          |                                                                     |

 $\theta = 2.5 - 28.2^{\circ}$ 

 $\mu = 0.19 \text{ mm}^{-1}$ 

Block, colourless

 $0.27 \times 0.23 \times 0.20 \text{ mm}$ 

T = 200 K

Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.040$ Hydrogen site location: inferred from  $wR(F^2) = 0.111$ neighbouring sites *S* = 1.03 H atoms treated by a mixture of independent 5267 reflections and constrained refinement 312 parameters  $w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.7436P]$ 0 restraints where  $P = (F_o^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant  $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$ direct methods  $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|--------------|--------------|-----------------------------|-----------|
| 01   | 0.93564 (10) | 0.59820 (7)  | 0.43428 (7)  | 0.0310(2)                   |           |
| O2   | 0.78574 (10) | 0.70794 (7)  | 0.42595 (7)  | 0.0347 (2)                  |           |
| 03   | 0.87427 (11) | 0.35098 (7)  | 0.22830 (8)  | 0.0376 (3)                  |           |
| O4   | 0.69528 (12) | 0.32275 (8)  | 0.09516 (8)  | 0.0422 (3)                  |           |
| 08   | 0.73981 (13) | 0.12824 (12) | 0.41554 (11) | 0.0621 (4)                  |           |
| H8A  | 0.820 (3)    | 0.1239 (17)  | 0.4195 (18)  | 0.073 (7)*                  |           |
| H8B  | 0.743 (3)    | 0.1385 (17)  | 0.473 (2)    | 0.075 (8)*                  |           |
| N21  | 0.88151 (11) | 0.65657 (8)  | 0.07373 (8)  | 0.0278 (2)                  |           |
| H21  | 0.8649 (18)  | 0.6971 (13)  | 0.0262 (13)  | 0.041 (5)*                  |           |
| N22  | 0.99846 (12) | 0.60935 (8)  | 0.10597 (8)  | 0.0294 (3)                  |           |
| N31  | 0.51897 (12) | 0.55198 (8)  | 0.18783 (9)  | 0.0286 (2)                  |           |
| H31A | 0.431 (2)    | 0.5681 (12)  | 0.1579 (13)  | 0.043 (5)*                  |           |
| C2   | 0.81451 (13) | 0.63803 (8)  | 0.39268 (9)  | 0.0231 (2)                  |           |
| C3   | 1.02617 (15) | 0.64046 (11) | 0.52148 (10) | 0.0346 (3)                  |           |
| H3A  | 0.9833       | 0.6430       | 0.5715       | 0.052*                      |           |
| H3B  | 1.0472       | 0.7022       | 0.5061       | 0.052*                      |           |
| H3C  | 1.1096       | 0.6050       | 0.5463       | 0.052*                      |           |
| C4   | 0.75074 (14) | 0.37067 (9)  | 0.16581 (10) | 0.0270 (3)                  |           |
| C5   | 0.9362 (2)   | 0.27053 (11) | 0.20646 (14) | 0.0543 (5)                  |           |
|      |              |              |              |                             |           |

| H5A | 1.0260       | 0.2627       | 0.2559       | 0.081*      |            |
|-----|--------------|--------------|--------------|-------------|------------|
| H5B | 0.9444       | 0.2766       | 0.1416       | 0.081*      |            |
| H5C | 0.8803       | 0.2175       | 0.2070       | 0.081*      |            |
| C6  | 0.51172 (15) | 0.66544 (11) | 0.30489 (12) | 0.0373 (3)  |            |
| H6A | 0.5579       | 0.6767       | 0.3749       | 0.056*      |            |
| H6B | 0.4234       | 0.6380       | 0.2948       | 0.056*      |            |
| H6C | 0.4995       | 0.7230       | 0.2690       | 0.056*      |            |
| C7  | 0.45802 (15) | 0.42238 (10) | 0.07938 (11) | 0.0347 (3)  |            |
| H7A | 0.4535       | 0.3609       | 0.1038       | 0.052*      |            |
| H7B | 0.4796       | 0.4191       | 0.0191       | 0.052*      |            |
| H7C | 0.3707       | 0.4526       | 0.0658       | 0.052*      |            |
| C11 | 1.10148 (13) | 0.49866 (9)  | 0.23494 (10) | 0.0267 (3)  |            |
| C12 | 1.14884 (14) | 0.49982 (10) | 0.33673 (11) | 0.0336 (3)  |            |
| H12 | 1.1077       | 0.5389       | 0.3702       | 0.040*      |            |
| C13 | 1.25535 (15) | 0.44469 (11) | 0.39020 (12) | 0.0384 (3)  |            |
| H13 | 1.2866       | 0.4466       | 0.4597       | 0.046*      |            |
| C14 | 1.31631 (14) | 0.38692 (10) | 0.34276 (12) | 0.0360 (3)  |            |
| C15 | 1.26844 (18) | 0.38458 (12) | 0.24128 (13) | 0.0446 (4)  |            |
| H15 | 1.3083       | 0.3444       | 0.2079       | 0.054*      |            |
| C16 | 1.16273 (17) | 0.44037 (11) | 0.18802 (12) | 0.0398 (4)  |            |
| H16 | 1.1319       | 0.4386       | 0.1185       | 0.048*      |            |
| C21 | 0.98781 (13) | 0.55804 (8)  | 0.17910 (9)  | 0.0238 (3)  |            |
| C22 | 0.86336 (12) | 0.57278 (8)  | 0.19351 (9)  | 0.0205 (2)  |            |
| C23 | 0.79950 (13) | 0.63695 (8)  | 0.12396 (9)  | 0.0239 (3)  |            |
| H23 | 0.7131       | 0.6626       | 0.1135       | 0.029*      |            |
| C31 | 0.79937 (12) | 0.52258 (8)  | 0.25760 (8)  | 0.0200 (2)  |            |
| H31 | 0.8713       | 0.4887       | 0.3095       | 0.024*      |            |
| C32 | 0.72985 (12) | 0.58775 (8)  | 0.30658 (9)  | 0.0217 (2)  |            |
| C33 | 0.59493 (13) | 0.60214 (9)  | 0.26803 (9)  | 0.0253 (3)  |            |
| C34 | 0.56572 (13) | 0.47545 (9)  | 0.15537 (9)  | 0.0256 (3)  |            |
| C35 | 0.69821 (13) | 0.45444 (8)  | 0.19347 (9)  | 0.0228 (2)  |            |
| S1A | 1.4500 (2)   | 0.31690 (16) | 0.41722 (17) | 0.0465 (5)  | 0.631 (11) |
| C1A | 1.5934 (3)   | 0.3614 (3)   | 0.3947 (5)   | 0.0589 (14) | 0.631 (11) |
| H1A | 1.6736       | 0.3261       | 0.4315       | 0.088*      | 0.631 (11) |
| H1B | 1.6066       | 0.4250       | 0.4156       | 0.088*      | 0.631 (11) |
| H1C | 1.5791       | 0.3575       | 0.3245       | 0.088*      | 0.631 (11) |
| S1B | 1.4470 (4)   | 0.3094 (3)   | 0.4019 (4)   | 0.0648 (12) | 0.369 (11) |
| C1B | 1.5788 (7)   | 0.3823 (5)   | 0.4539 (10)  | 0.069 (3)   | 0.369 (11) |
| H1D | 1.6579       | 0.3478       | 0.4939       | 0.104*      | 0.369 (11) |
| H1E | 1.5536       | 0.4262       | 0.4953       | 0.104*      | 0.369 (11) |
| H1F | 1.6002       | 0.4147       | 0.4022       | 0.104*      | 0.369 (11) |
|     |              |              |              |             |            |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|------------|-------------|-------------|
| 01 | 0.0267 (5) | 0.0338 (5) | 0.0252 (5) | 0.0035 (4) | -0.0004 (4) | -0.0091 (4) |
| 02 | 0.0364 (5) | 0.0316 (5) | 0.0311 (5) | 0.0039 (4) | 0.0051 (4)  | -0.0119 (4) |
| 03 | 0.0451 (6) | 0.0263 (5) | 0.0333 (5) | 0.0110 (4) | 0.0031 (4)  | -0.0057 (4) |

| 04  | 0.0466 (6)  | 0.0377 (6)  | 0.0384 (6)  | -0.0048 (5)  | 0.0098 (5)   | -0.0183 (5)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 08  | 0.0280 (6)  | 0.1059 (13) | 0.0516 (8)  | -0.0074 (7)  | 0.0129 (6)   | -0.0297 (8)  |
| N21 | 0.0281 (6)  | 0.0282 (6)  | 0.0250 (5)  | 0.0005 (4)   | 0.0065 (4)   | 0.0076 (5)   |
| N22 | 0.0279 (6)  | 0.0324 (6)  | 0.0292 (6)  | 0.0028 (5)   | 0.0115 (5)   | 0.0055 (5)   |
| N31 | 0.0204 (5)  | 0.0331 (6)  | 0.0287 (6)  | -0.0013 (4)  | 0.0039 (4)   | -0.0032 (5)  |
| C2  | 0.0254 (6)  | 0.0240 (6)  | 0.0200 (6)  | -0.0012 (5)  | 0.0080 (5)   | -0.0011 (5)  |
| C3  | 0.0311 (7)  | 0.0393 (8)  | 0.0249 (7)  | -0.0018 (6)  | -0.0013 (5)  | -0.0074 (6)  |
| C4  | 0.0353 (7)  | 0.0219 (6)  | 0.0248 (6)  | -0.0045 (5)  | 0.0114 (5)   | -0.0010 (5)  |
| C5  | 0.0691 (12) | 0.0330 (8)  | 0.0528 (10) | 0.0237 (8)   | 0.0107 (9)   | -0.0065 (8)  |
| C6  | 0.0290 (7)  | 0.0438 (8)  | 0.0393 (8)  | 0.0073 (6)   | 0.0121 (6)   | -0.0071 (7)  |
| C7  | 0.0308 (7)  | 0.0377 (7)  | 0.0314 (7)  | -0.0130 (6)  | 0.0052 (6)   | -0.0059 (6)  |
| C11 | 0.0242 (6)  | 0.0268 (6)  | 0.0304 (7)  | 0.0024 (5)   | 0.0113 (5)   | 0.0036 (5)   |
| C12 | 0.0297 (7)  | 0.0388 (8)  | 0.0308 (7)  | 0.0075 (6)   | 0.0084 (6)   | -0.0013 (6)  |
| C13 | 0.0308 (7)  | 0.0469 (9)  | 0.0330 (8)  | 0.0058 (6)   | 0.0052 (6)   | 0.0053 (7)   |
| C14 | 0.0257 (7)  | 0.0336 (7)  | 0.0481 (9)  | 0.0059 (6)   | 0.0121 (6)   | 0.0123 (6)   |
| C15 | 0.0476 (9)  | 0.0418 (9)  | 0.0508 (10) | 0.0198 (7)   | 0.0250 (8)   | 0.0076 (7)   |
| C16 | 0.0461 (9)  | 0.0429 (8)  | 0.0336 (8)  | 0.0150 (7)   | 0.0180 (7)   | 0.0053 (7)   |
| C21 | 0.0246 (6)  | 0.0237 (6)  | 0.0230 (6)  | 0.0007 (5)   | 0.0082 (5)   | 0.0002 (5)   |
| C22 | 0.0210 (5)  | 0.0189 (5)  | 0.0198 (5)  | -0.0022 (4)  | 0.0046 (4)   | -0.0025 (4)  |
| C23 | 0.0220 (6)  | 0.0225 (6)  | 0.0245 (6)  | -0.0023 (5)  | 0.0045 (5)   | -0.0003 (5)  |
| C31 | 0.0212 (5)  | 0.0189 (5)  | 0.0185 (5)  | -0.0008 (4)  | 0.0049 (4)   | -0.0012 (4)  |
| C32 | 0.0237 (6)  | 0.0213 (5)  | 0.0199 (6)  | -0.0006 (4)  | 0.0070 (5)   | -0.0016 (5)  |
| C33 | 0.0260 (6)  | 0.0264 (6)  | 0.0240 (6)  | -0.0009 (5)  | 0.0090 (5)   | -0.0009 (5)  |
| C34 | 0.0275 (6)  | 0.0256 (6)  | 0.0226 (6)  | -0.0071 (5)  | 0.0071 (5)   | -0.0006 (5)  |
| C35 | 0.0278 (6)  | 0.0208 (6)  | 0.0195 (5)  | -0.0053 (5)  | 0.0078 (5)   | -0.0019 (5)  |
| S1A | 0.0298 (7)  | 0.0559 (11) | 0.0562 (8)  | 0.0169 (7)   | 0.0179 (5)   | 0.0368 (7)   |
| C1A | 0.0275 (14) | 0.051 (2)   | 0.094 (3)   | -0.0008 (13) | 0.0159 (17)  | 0.017 (2)    |
| S1B | 0.0287 (12) | 0.0245 (10) | 0.121 (3)   | 0.0001 (8)   | -0.0002 (13) | -0.0005 (14) |
| C1B | 0.033 (3)   | 0.053 (4)   | 0.101 (8)   | -0.003 (2)   | -0.003 (3)   | 0.013 (4)    |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| 01—C2    | 1.3464 (16) | C11—C16 | 1.387 (2)   |
|----------|-------------|---------|-------------|
| O1—C3    | 1.4402 (16) | C11—C12 | 1.390 (2)   |
| O2—C2    | 1.2193 (16) | C11—C21 | 1.4810 (17) |
| O3—C4    | 1.3397 (17) | C12—C13 | 1.388 (2)   |
| O3—C5    | 1.4403 (18) | C12—H12 | 0.9500      |
| O4—C4    | 1.2175 (16) | C13—C14 | 1.385 (2)   |
| O8—H8A   | 0.83 (3)    | C13—H13 | 0.9500      |
| O8—H8B   | 0.84 (3)    | C14—C15 | 1.386 (2)   |
| N21—C23  | 1.3417 (17) | C14—S1B | 1.770 (4)   |
| N21—N22  | 1.3524 (16) | C14—S1A | 1.782 (3)   |
| N21—H21  | 0.884 (19)  | C15—C16 | 1.388 (2)   |
| N22—C21  | 1.3402 (17) | C15—H15 | 0.9500      |
| N31—C34  | 1.3770 (18) | C16—H16 | 0.9500      |
| N31—C33  | 1.3802 (17) | C21—C22 | 1.4161 (17) |
| N31—H31A | 0.908 (19)  | C22—C23 | 1.3788 (17) |
| C2—C32   | 1.4644 (17) | C22—C31 | 1.5177 (16) |
|          |             |         |             |

| С3—НЗА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | С23—Н23                    | 0.9500                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|--------------------------|
| С3—Н3В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | C31—C32                    | 1.5250 (16)              |
| С3—НЗС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | C31—C35                    | 1.5270 (16)              |
| C4—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,4642 (18)             | C31—H31                    | 1.0000                   |
| C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | $C_{32}$ $C_{33}$          | 1 3557 (18)              |
| C5 H5P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | $C_{32} = C_{33}$          | 1.3557(18)<br>1.3511(18) |
| C5I5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9800                  | $C_{34}$                   | 1.3311(10)<br>1.780(4)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800                  | SIA—CIA                    | 1.780 (4)                |
| C6-C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5004 (19)             | CIA—HIA                    | 0.9800                   |
| С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | CIA—HIB                    | 0.9800                   |
| С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | C1A—H1C                    | 0.9800                   |
| С6—Н6С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | S1B—C1B                    | 1.713 (8)                |
| C7—C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5034 (17)             | C1B—H1D                    | 0.9800                   |
| С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | C1B—H1E                    | 0.9800                   |
| С7—Н7В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  | C1B—H1F                    | 0.9800                   |
| С7—Н7С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9800                  |                            |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            |                          |
| C2—O1—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.57 (10)             | C12—C13—H13                | 119.8                    |
| C4—O3—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.99 (12)             | C13—C14—C15                | 118.92 (13)              |
| H8A—O8—H8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105 (2)                 | C13 - C14 - S1B            | 1249(2)                  |
| $C_{23}$ N21 N22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11254(11)               | C15 - C14 - S1B            | 12 (1) (2)               |
| C23 N21 H21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112.34(11)<br>125.4(12) | $C_{13}$ $C_{14}$ $S_{1A}$ | 117.34(15)               |
| N22 N21 H21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.4(12)               | C15 C14 S1A                | 117.37(15)               |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | 122.0(12)               | C14 - C14 - S1A            | 123.72(13)               |
| $C_2I = N_2 Z = N_2 I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.44 (11)             |                            | 120.55 (15)              |
| C34—N31—C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.70 (11)             | C14—C15—H15                | 119.7                    |
| C34—N31—H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.4 (12)              | C16—C15—H15                | 119.7                    |
| C33—N31—H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.7 (12)              | C11—C16—C15                | 120.89 (15)              |
| O2—C2—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.14 (11)             | C11—C16—H16                | 119.6                    |
| O2—C2—C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.16 (12)             | C15—C16—H16                | 119.6                    |
| O1—C2—C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.70 (10)             | N22—C21—C22                | 111.46 (11)              |
| O1—C3—H3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                   | N22—C21—C11                | 119.65 (11)              |
| O1—C3—H3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                   | C22—C21—C11                | 128.85 (11)              |
| НЗА—СЗ—НЗВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C23—C22—C21                | 103.95 (11)              |
| O1—C3—H3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                   | C23—C22—C31                | 125.14 (11)              |
| НЗА—СЗ—НЗС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C21—C22—C31                | 130.33 (11)              |
| H3B-C3-H3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | N21—C23—C22                | 107.61 (11)              |
| 04-C4-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121 34 (13)             | N21—C23—H23                | 126.2                    |
| 04-C4-C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.04(13)              | $C_{22}$ $C_{23}$ $H_{23}$ | 126.2                    |
| $O_{1}^{2} = C_{1}^{2} = C_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127.04(13)              | $C_{22} = C_{23} = 1123$   | 120.2                    |
| 03 - 04 - 033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 5                   | $C_{22} = C_{31} = C_{32}$ | 111.34(10)               |
| O3—C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                   | $C_{22} = C_{31} = C_{35}$ | 108.10 (9)               |
| 03—C5—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                   | $C_{32} = C_{31} = C_{35}$ | 110.55 (10)              |
| H5A—C5—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | С22—С31—Н31                | 108.9                    |
| O3—C5—H5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                   | C32—C31—H31                | 108.9                    |
| H5A—C5—H5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C35—C31—H31                | 108.9                    |
| H5B—C5—H5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C33—C32—C2                 | 121.32 (11)              |
| С33—С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C33—C32—C31                | 120.73 (11)              |
| С33—С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C2—C32—C31                 | 117.86 (10)              |
| H6A—C6—H6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C32—C33—N31                | 119.22 (12)              |
| С33—С6—Н6С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                   | C32—C33—C6                 | 127.59 (12)              |

| H6A—C6—H6C                                           | 109.5                    | N31—C33—C6                                | 113.13 (12)  |
|------------------------------------------------------|--------------------------|-------------------------------------------|--------------|
| H6B—C6—H6C                                           | 109 5                    | C35—C34—N31                               | 119 29 (11)  |
| $C_{34}$ $C_{7}$ $H_{7A}$                            | 109.5                    | $C_{35}$ $C_{34}$ $C_{7}$                 | 126.64(12)   |
| $C_{24}$ $C_{7}$ $U_{7}$ $U_{7}$                     | 109.5                    | $C_{33} = C_{34} = C_{7}$                 | 120.04(12)   |
| C34—C/—H/B                                           | 109.5                    | N31—C34—C/                                | 114.07 (12)  |
| H7A—C7—H7B                                           | 109.5                    | C34—C35—C4                                | 121.10 (11)  |
| С34—С7—Н7С                                           | 109.5                    | C34—C35—C31                               | 120.51 (11)  |
| H7A—C7—H7C                                           | 109.5                    | C4—C35—C31                                | 118.04 (11)  |
| H7B—C7—H7C                                           | 109.5                    | C1A—S1A—C14                               | 102.77 (15)  |
| C16—C11—C12                                          | 118.26 (13)              | C1B—S1B—C14                               | 100.9 (3)    |
| C16—C11—C21                                          | 121.51 (12)              | S1B—C1B—H1D                               | 109.5        |
| $C_{12}$ $C_{11}$ $C_{21}$                           | 120.23(12)               | SIB_CIB_HIF                               | 109.5        |
| $C_{12}$ $C_{12}$ $C_{11}$                           | 120.23(12)<br>120.08(14) |                                           | 109.5        |
|                                                      | 120.98 (14)              |                                           | 109.3        |
| С13—С12—Н12                                          | 119.5                    | SIB—CIB—HIF                               | 109.5        |
| C11—C12—H12                                          | 119.5                    | H1D—C1B—H1F                               | 109.5        |
| C14—C13—C12                                          | 120.39 (14)              | H1E—C1B—H1F                               | 109.5        |
| C14—C13—H13                                          | 119.8                    |                                           |              |
|                                                      |                          |                                           |              |
| C23—N21—N22—C21                                      | 0.26 (15)                | Q2—C2—C32—C33                             | -16.9(2)     |
| $C_{3} = 0_{1} = C_{2} = 0_{2}$                      | 2 32 (19)                | $01 - C^2 - C^{32} - C^{33}$              | 163.70(12)   |
| $C_3  O_1  C_2  C_3^2$                               | -17828(11)               | $01 \ 02 \ 032 \ 033$                     | 159.70(12)   |
| $C_{5} = 0_{1} = 0_{2} = 0_{3}$                      | 1/0.20(11)               | 02 - 02 - 032 - 031                       | -10.04(16)   |
| $C_{5} = 0_{3} = C_{4} = 0_{4}$                      | 0.1(2)                   | 01 - 02 - 032 - 031                       | -19.94(10)   |
| C5-03-C4-C35                                         | -1/8.85(14)              |                                           | 97.79(13)    |
| C16—C11—C12—C13                                      | 0.5 (2)                  | C35-C31-C32-C33                           | -22.52 (16)  |
| C21—C11—C12—C13                                      | -179.93 (13)             | C22—C31—C32—C2                            | -78.60 (13)  |
| C11—C12—C13—C14                                      | -0.3 (2)                 | C35—C31—C32—C2                            | 161.10 (10)  |
| C12—C13—C14—C15                                      | -0.5 (2)                 | C2—C32—C33—N31                            | -178.89 (11) |
| C12—C13—C14—S1B                                      | -176.74 (19)             | C31—C32—C33—N31                           | 4.85 (19)    |
| C12-C13-C14-S1A                                      | -178.72 (14)             | C2—C32—C33—C6                             | -1.8(2)      |
| C13—C14—C15—C16                                      | 1.1 (3)                  | C31—C32—C33—C6                            | -178.10(13)  |
| S1B-C14-C15-C16                                      | 177.66 (19)              | C34—N31—C33—C32                           | 13.4 (2)     |
| S1A - C14 - C15 - C16                                | 179 19 (15)              | $C_{34}$ N31 $-C_{33}$ $-C_{6}$           | -164.05(13)  |
| $C_{12}$ $C_{11}$ $C_{16}$ $C_{15}$                  | (10)                     | $C_{33}$ N31 $C_{34}$ $C_{35}$            | -102(2)      |
| $C_{12} - C_{11} - C_{10} - C_{15}$                  | 170.48(14)               | $C_{22} N_{21} C_{24} C_{7}$              | 10.2(2)      |
|                                                      | -1/9.48(14)              | $C_{33}$ N31 $C_{34}$ C25 C4              | 108.98 (12)  |
| C14—C15—C16—C11                                      | -0.9(3)                  | N31—C34—C35—C4                            | 1/5.98 (11)  |
| N21—N22—C21—C22                                      | -0.05 (15)               | C7—C34—C35—C4                             | -3.1(2)      |
| N21—N22—C21—C11                                      | -177.88 (11)             | N31—C34—C35—C31                           | -10.96 (18)  |
| C16—C11—C21—N22                                      | -49.61 (19)              | C7—C34—C35—C31                            | 169.94 (12)  |
| C12-C11-C21-N22                                      | 130.85 (14)              | O4—C4—C35—C34                             | 16.9 (2)     |
| C16—C11—C21—C22                                      | 132.99 (15)              | O3—C4—C35—C34                             | -164.25 (12) |
| C12—C11—C21—C22                                      | -46.5(2)                 | O4—C4—C35—C31                             | -156.34 (14) |
| N22-C21-C22-C23                                      | -0.16(14)                | 03 - C4 - C35 - C31                       | 22.52 (16)   |
| $C_{11} = C_{21} = C_{22} = C_{23}$                  | 177 41 (13)              | $C^{22}$ — $C^{31}$ — $C^{35}$ — $C^{34}$ | -9668(13)    |
| N22 - C21 - C22 - C23                                | 171 27 (12)              | $C_{32}$ $C_{31}$ $C_{35}$ $C_{34}$       | 25 66 (16)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -112(2)                  | $C_{22} C_{31} C_{35} C_{4}$              | 76 50 (12)   |
| 11 - 021 - 022 - 031                                 | 11.2(2)<br>0.27(15)      | $C_{22} = C_{31} = C_{33} = C_{4}$        | 161.07 (11)  |
| 1N22 - 1N21 - 0.23 - 0.22                            | -0.37(13)                | $C_{32} = C_{31} = C_{33} = C_{4}$        | -101.07 (11) |
| C21—C22—C23—N21                                      | 0.30 (13)                | CI3—CI4—SIA—CIA                           | -112.7 (3)   |
| C31—C22—C23—N21                                      | -171.71 (11)             | C15—C14—S1A—C1A                           | 69.2 (4)     |
| C23—C22—C31—C32                                      | -49.64 (15)              | S1B—C14—S1A—C1A                           | 79.4 (13)    |

| C21—C22—C31—C32 | 140.55 (13) | C13—C14—S1B—C1B | -70.6 (7)  |
|-----------------|-------------|-----------------|------------|
| C23—C22—C31—C35 | 72.09 (14)  | C15-C14-S1B-C1B | 113.1 (7)  |
| C21—C22—C31—C35 | -97.72 (14) | S1A-C14-S1B-C1B | -57.5 (13) |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | <i>D</i> —Н | H···A      | D····A      | D—H···A    |
|------------------------------------|-------------|------------|-------------|------------|
| O8—H8A····N22 <sup>i</sup>         | 0.83 (3)    | 2.09 (3)   | 2.8982 (18) | 167 (2)    |
| O8—H8 <i>B</i> …O4 <sup>ii</sup>   | 0.84 (3)    | 2.09 (3)   | 2.8989 (19) | 164 (2)    |
| N21—H21···O2 <sup>iii</sup>        | 0.884 (19)  | 1.985 (19) | 2.8505 (15) | 165.9 (17) |
| N31—H31A····O8 <sup>iv</sup>       | 0.908 (19)  | 1.965 (19) | 2.8561 (18) | 166.6 (17) |
| C23—H23···S1 <i>A</i> <sup>v</sup> | 0.95        | 2.79       | 3.637 (3)   | 149        |
| C31—H31…O1                         | 1.00        | 2.35       | 2.7141 (14) | 101        |
| C31—H31···O3                       | 1.00        | 2.35       | 2.7246 (15) | 101        |

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) x, -y+1/2, z+1/2; (iii) x, -y+3/2, z-1/2; (iv) -x+1, y+1/2, -z+1/2; (v) -x+2, y+1/2, -z+1/2.