Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# catena-Poly[[aquabis[N-(pyridin-3-yl)isonicotinamide- $\kappa N^1$ ]copper(II)]- $\mu$ fumarato- $\kappa^2 O^1$ : $O^4$ ]

#### Sultan H. Qiblawi and Robert L. LaDuca\*

Lyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825 USA Correspondence e-mail: laduca@msu.edu

Received 13 November 2012; accepted 15 November 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.004 Å; *R* factor = 0.036; *wR* factor = 0.083; data-to-parameter ratio = 11.9.

In the title compound,  $[Cu(C_4H_2O_4)(C_{11}H_9N_3O_2(H_2O)]_n,$ Cu<sup>II</sup> ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridylisonicotinamide (3-pina) ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form  $[Cu(fumarate)(3-pina)_2(H_2O)]_n$  coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supramolecular layers parallel to (100) by  $O-H \cdots O$  hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N- $H \cdots O(=C)$  hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak  $C-H\cdots N$  and  $C-H\cdots O$ hydrogen bonds, affording a three-dimensional network.

#### **Related literature**

For the preparation of 3-pyridylisonicotinamide, see: Gardner *et al.* (1954). For the preparation of other dicarboxylate coordination polymers containing 3-pyridylisonicotinamide, see: Kumar (2009).



 $M_r = 594.04$ 

#### **Experimental**

Crystal data [Cu(C<sub>4</sub>H<sub>2</sub>O<sub>4</sub>)(C<sub>11</sub>H<sub>9</sub>N<sub>3</sub>O)<sub>2</sub>(H<sub>2</sub>O)] Monoclinic, C2/c a = 29.854 (4) Å b = 5.3535 (7) Å c = 17.353 (2) Å  $\beta = 118.686$  (2)° V = 2433.0 (6) Å<sup>3</sup>

#### Data collection

| Bruker APEXII CCD                      | 9406 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 2240 independent reflections           |
| Absorption correction: multi-scan      | 1758 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)              | $R_{\rm int} = 0.053$                  |
| $T_{\min} = 0.794, \ T_{\max} = 0.919$ |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.036$ | H atoms treated by a mixture of                          |
|---------------------------------|----------------------------------------------------------|
| $wR(F^2) = 0.083$               | independent and constrained                              |
| S = 1.04                        | refinement                                               |
| 2240 reflections                | $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$  |
| 188 parameters                  | $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$ |
| 5 restraints                    |                                                          |

Z = 4

Mo  $K\alpha$  radiation

 $0.25 \times 0.13 \times 0.09 \text{ mm}$ 

 $\mu = 0.96 \text{ mm}^{-1}$ 

T = 173 K

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O3-H3O\cdotsO1^{i}$                 | 0.84 (1) | 1.83 (1)                | 2.660 (2)    | 169 (3)                              |
| $N2-H2N\cdots O2^{i}$                | 0.88 (2) | 2.33 (2)                | 3.153 (3)    | 155 (3)                              |
| $C2-H2\cdots O4^{ii}$                | 0.95     | 2.48                    | 3.360 (4)    | 153                                  |
| $C7 - H7 \cdot \cdot \cdot O1^{iii}$ | 0.95     | 2.48                    | 3.430 (4)    | 178                                  |
| $C9 - H9 \cdot \cdot \cdot N1^{iv}$  | 0.95     | 2.39                    | 3.263 (4)    | 153                                  |
| $C12-H12\cdots O1^{v}$               | 0.95     | 2.43                    | 3.374 (4)    | 171                                  |

Symmetry codes: (i) x, y + 1, z; (ii)  $-x + \frac{1}{2}, -y + \frac{5}{2}, -z + 1$ ; (iii)  $-x, y + 1, -z + \frac{1}{2}$ ; (iv)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (v) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Crystal Maker* (Palmer, 2007); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5556).

#### References

Bruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.

- Gardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753-757.
- Kumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767-1771.
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.



# supporting information

Acta Cryst. (2012). E68, m1514 [doi:10.1107/S1600536812047101]

# *catena*-Poly[[aquabis[*N*-(pyridin-3-yl)isonicotinamide- $\kappa N^1$ ]copper(II)]- $\mu$ -fumarato- $\kappa^2 O^1: O^4$ ]

# Sultan H. Qiblawi and Robert L. LaDuca

### S1. Comment

In comparison to divalent metal coordination polymers containing rigid rod dipyridine ligands such as 4,4'-bipyridine, related materials containing the kinked dipodal ligand 3-pyridylisonicotinamide (3-pina) are much less common (Kumar, 2009). The title compound was obtained as blue crystals through the hydrothermal reaction of copper nitrate, fumaric acid, and 3-pina.

The asymmetric unit of the title compound contains a divalent copper atom and an aqua ligand on a crystallographic twofold rotation axis, a 3-pina ligand, and one half of a fumarate ligand whose centroid rests on a crystallographic inversion centre. The copper atom is square pyramidally coordinated (Fig. 1), with the basal plane containing *trans* isonicotinamide pyridyl N atom donors from two 3-pina ligands and *trans* O atom donors from monodentate carboxylate groups belonging to two fumarate ligands. The aqua ligand is located in the apical position.

The Cu atoms are linked by exobidentate, bis(monodentate) fumarate ligands to form  $[Cu(fumarate)(3-pina)_2(H_2O)]_n$ coordination polymer chains that are oriented parallel to  $[0\ 0\ 1]$  (Fig. 2). Each individual chain is anchored to two others *via* O—H···O pairwise hydrogen bonding (Table 1) between aqua ligands and unligated fumarate O atoms, thereby constructing supramolecular two-dimensional layers arranged parallel to the *bc* crystal planes (Fig. 3). The stability of the layer motifs is enhanced by N—H···O hydrogen bonding between amide groups of adjacent 3-pina ligands (Fig. 4). In turn the layers stack along  $[1\ 0\ 0]$  in an *AAA* pattern *via* C—H···N interactions mediated by unligated 3-pyridyl N atoms belonging to the pendant 3-pina ligands (Fig. 5), thus forming the three-dimensional structure of the title compound which is also stabilized by weak C—H···O interactions.

#### **S2. Experimental**

Copper(II) nitrate hydrate and fumaric acid were obtained commercially. 3-Pyridylisonicotinamide (3-pina) was prepared *via* a published procedure (Gardner *et al.*, 1954). A mixture of copper nitrate hydrate (86 mg, 0.37 mmol), fumaric acid (42 mg, 0.36 mmol), 3-pina (74 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 24 h. Blue needles of the title compound were obtained.

#### S3. Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with  $U_{iso} = 1.2U_{eq}(C)$ . The H atom within the amide group of the 3-pina ligand was found in a difference Fourier map, restrained with N—H = 0.90 (2) Å and refined with  $U_{iso} = 1.2U_{eq}(N)$ . The H atoms within the aqua ligand were found in a difference Fourier map, restrained with O—H = 0.85 (2) Å and refined with  $U_{iso} = 1.2U_{eq}(O)$ .



## Figure 1

The coordination environment of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, red O, light blue N, black C, pink H. Symmetry code: (i) -*x*, *y*, -z + 1/2



## Figure 2

A single  $[Cu(fumarate)(3-pina)_2(H_2O)]_n$  coordination polymer chain.



# Figure 3

Supramolecular layer of  $[Cu(fumarate)(3-pina)_2(H_2O)]_n$  coordination polymer chains. O—H…O hydrogen bonding is shown as dashed lines.



# Figure 4

Side view of the supramolecular layer of  $[Cu(fumarate)(3-pina)_2(H_2O)]_n$  coordination polymer chains. N—H···O hydrogen bonding between 3-pina amide groups is shown as dashed lines.





Stacking of supramolecular layers within the title compound.

#### catena-Poly[[aquabis[N-(pyridin-3-yl)isonicotinamide- $\kappa N^1$ ]copper(II)]- $\mu$ -fumarato- $\kappa^2 O^1$ :O<sup>4</sup>]

#### Crystal data

[Cu(C<sub>4</sub>H<sub>2</sub>O<sub>4</sub>)(C<sub>11</sub>H<sub>9</sub>N<sub>3</sub>O)<sub>2</sub>(H<sub>2</sub>O)]  $M_r = 594.04$ Monoclinic, C2/c Hall symbol: -C 2yc a = 29.854 (4) Å b = 5.3535 (7) Å c = 17.353 (2) Å  $\beta = 118.686$  (2)° V = 2433.0 (6) Å<sup>3</sup> Z = 4

#### Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega - \varphi$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.794, T_{\max} = 0.919$  F(000) = 1220  $D_x = 1.622 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3329 reflections  $\theta = 2.7-25.3^{\circ}$   $\mu = 0.96 \text{ mm}^{-1}$  T = 173 KNeedle, blue  $0.25 \times 0.13 \times 0.09 \text{ mm}$ 

9406 measured reflections 2240 independent reflections 1758 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.053$  $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.4^{\circ}$  $h = -35 \rightarrow 35$  $k = -6 \rightarrow 6$  $l = -20 \rightarrow 20$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.083$                               | neighbouring sites                                         |
| S = 1.04                                        | H atoms treated by a mixture of independent                |
| 2240 reflections                                | and constrained refinement                                 |
| 188 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 4.2344P]$          |
| 5 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| direct methods                                  | $\Delta  ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$      |
|                                                 | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|-------------|--------------|-----------------------------|--|
| Cul | 0.0000       | 0.98462 (9) | 0.2500       | 0.01332 (15)                |  |
| 01  | -0.01260 (9) | 0.5988 (4)  | 0.10232 (13) | 0.0329 (6)                  |  |
| O2  | 0.23784 (7)  | 0.6328 (4)  | 0.58520 (13) | 0.0277 (5)                  |  |
| 03  | 0.0000       | 1.3863 (5)  | 0.2500       | 0.0288 (7)                  |  |
| H3O | -0.0035 (12) | 1.471 (4)   | 0.2067 (12)  | 0.035*                      |  |
| O4  | 0.01923 (7)  | 0.9749 (3)  | 0.15746 (11) | 0.0170 (4)                  |  |
| N1  | 0.34390 (10) | 0.8621 (5)  | 0.83508 (17) | 0.0384 (7)                  |  |
| N2  | 0.24546 (9)  | 1.0496 (5)  | 0.61401 (16) | 0.0232 (6)                  |  |
| H2N | 0.2343 (11)  | 1.199 (4)   | 0.5910 (18)  | 0.028*                      |  |
| N3  | 0.07405 (8)  | 0.9573 (4)  | 0.34350 (14) | 0.0159 (5)                  |  |
| C1  | 0.37744 (12) | 1.0459 (6)  | 0.8530 (2)   | 0.0344 (8)                  |  |
| H1  | 0.4076       | 1.0448      | 0.9083       | 0.041*                      |  |
| C2  | 0.37059 (12) | 1.2372 (6)  | 0.7956 (2)   | 0.0339 (8)                  |  |
| H2  | 0.3955       | 1.3652      | 0.8108       | 0.041*                      |  |
| C3  | 0.32648 (12) | 1.2391 (6)  | 0.7149 (2)   | 0.0295 (8)                  |  |
| H3  | 0.3203       | 1.3698      | 0.6739       | 0.035*                      |  |
| C4  | 0.30186 (11) | 0.8643 (6)  | 0.75726 (19) | 0.0292 (7)                  |  |
| H4  | 0.2777       | 0.7335      | 0.7438       | 0.035*                      |  |
| C5  | 0.29173 (10) | 1.0479 (5)  | 0.69522 (18) | 0.0201 (6)                  |  |
| C6  | 0.16993 (10) | 0.8946 (5)  | 0.48796 (18) | 0.0187 (6)                  |  |
| C7  | 0.09141 (10) | 1.1150 (5)  | 0.41137 (18) | 0.0199 (6)                  |  |
| H7  | 0.0702       | 1.2498      | 0.4094       | 0.024*                      |  |
| C8  | 0.15215 (10) | 0.7307 (5)  | 0.41788 (18) | 0.0195 (6)                  |  |
| H8  | 0.1725       | 0.5933      | 0.4188       | 0.023*                      |  |

| С9  | 0.13897 (10) | 1.0906 (5) | 0.48445 (18) | 0.0214 (7) |  |
|-----|--------------|------------|--------------|------------|--|
| H9  | 0.1502       | 1.2068     | 0.5315       | 0.026*     |  |
| C10 | 0.10459 (10) | 0.7686 (5) | 0.34665 (18) | 0.0193 (6) |  |
| H10 | 0.0930       | 0.6575     | 0.2981       | 0.023*     |  |
| C11 | 0.00282 (10) | 0.8103 (5) | 0.09670 (18) | 0.0180 (6) |  |
| C12 | 0.00079 (10) | 0.8823 (5) | 0.01221 (17) | 0.0169 (6) |  |
| H12 | 0.0006       | 0.7540     | -0.0257      | 0.020*     |  |
| C13 | 0.22077 (10) | 0.8447 (5) | 0.56670 (18) | 0.0205 (6) |  |
|     |              |            |              |            |  |

| Atomic displacement parameters (2 | $(A^2)$ |
|-----------------------------------|---------|
|-----------------------------------|---------|

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| Cu1 | 0.0147 (2)  | 0.0154 (3)  | 0.0090 (2)  | 0.000        | 0.00500 (19) | 0.000           |
| 01  | 0.0667 (16) | 0.0171 (11) | 0.0272 (12) | -0.0040 (11) | 0.0324 (12)  | -0.0003 (9)     |
| O2  | 0.0219 (11) | 0.0249 (12) | 0.0250 (12) | 0.0040 (9)   | 0.0022 (9)   | 0.0016 (10)     |
| O3  | 0.058 (2)   | 0.0146 (16) | 0.0144 (16) | 0.000        | 0.0181 (16)  | 0.000           |
| O4  | 0.0193 (10) | 0.0222 (11) | 0.0111 (9)  | -0.0034 (8)  | 0.0086 (8)   | -0.0021 (9)     |
| N1  | 0.0373 (16) | 0.0429 (18) | 0.0212 (15) | -0.0081 (14) | 0.0030 (13)  | 0.0075 (13)     |
| N2  | 0.0191 (13) | 0.0230 (15) | 0.0187 (13) | 0.0024 (11)  | 0.0020 (11)  | 0.0017 (11)     |
| N3  | 0.0172 (12) | 0.0188 (13) | 0.0120 (11) | -0.0005 (10) | 0.0073 (10)  | -0.0011 (10)    |
| C1  | 0.0261 (17) | 0.043 (2)   | 0.0208 (16) | -0.0033 (15) | 0.0005 (14)  | -0.0006 (15)    |
| C2  | 0.0243 (17) | 0.035 (2)   | 0.0302 (19) | -0.0102 (14) | 0.0033 (15)  | -0.0011 (15)    |
| C3  | 0.0307 (18) | 0.0241 (18) | 0.0255 (18) | -0.0030 (14) | 0.0068 (15)  | 0.0037 (14)     |
| C4  | 0.0262 (17) | 0.0343 (19) | 0.0206 (16) | -0.0115 (15) | 0.0060 (14)  | 0.0012 (14)     |
| C5  | 0.0144 (14) | 0.0256 (17) | 0.0171 (15) | 0.0011 (12)  | 0.0050 (12)  | -0.0024 (12)    |
| C6  | 0.0153 (14) | 0.0218 (15) | 0.0169 (15) | 0.0008 (12)  | 0.0060 (12)  | 0.0019 (12)     |
| C7  | 0.0193 (15) | 0.0225 (16) | 0.0172 (15) | 0.0030 (12)  | 0.0082 (12)  | -0.0008 (13)    |
| C8  | 0.0159 (14) | 0.0199 (16) | 0.0214 (16) | 0.0017 (12)  | 0.0080 (13)  | -0.0020 (12)    |
| C9  | 0.0195 (15) | 0.0234 (16) | 0.0156 (15) | -0.0008 (12) | 0.0040 (12)  | -0.0076 (12)    |
| C10 | 0.0223 (15) | 0.0201 (16) | 0.0158 (15) | -0.0008 (12) | 0.0094 (13)  | -0.0035 (12)    |
| C11 | 0.0209 (15) | 0.0160 (15) | 0.0168 (15) | 0.0057 (12)  | 0.0088 (12)  | 0.0027 (12)     |
| C12 | 0.0215 (14) | 0.0157 (13) | 0.0154 (15) | -0.0008 (12) | 0.0103 (12)  | -0.0035 (12)    |
| C13 | 0.0161 (14) | 0.0241 (17) | 0.0176 (15) | 0.0023 (13)  | 0.0051 (12)  | 0.0020 (13)     |

# Geometric parameters (Å, °)

| Cu1—O4 <sup>i</sup> | 1.9485 (17) | C2—C3  | 1.388 (4) |
|---------------------|-------------|--------|-----------|
| Cu1—O4              | 1.9485 (17) | C2—H2  | 0.9500    |
| Cu1—N3              | 2.024 (2)   | C3—C5  | 1.379 (4) |
| Cu1—N3 <sup>i</sup> | 2.024 (2)   | С3—Н3  | 0.9500    |
| Cu1—O3              | 2.151 (3)   | C4—C5  | 1.380 (4) |
| 01—C11              | 1.244 (3)   | C4—H4  | 0.9500    |
| O2—C13              | 1.222 (3)   | C6—C9  | 1.380 (4) |
| O3—H3O <sup>i</sup> | 0.839 (11)  | C6—C8  | 1.382 (4) |
| O3—H3O              | 0.839 (11)  | C6—C13 | 1.500 (4) |
| O4—C11              | 1.278 (3)   | С7—С9  | 1.383 (4) |
| N1—C1               | 1.330 (4)   | С7—Н7  | 0.9500    |
| N1—C4               | 1.331 (4)   | C8—C10 | 1.378 (4) |
|                     |             |        |           |

# supporting information

| N2—C13                                   | 1.356 (4)    | С8—Н8                      | 0.9500     |
|------------------------------------------|--------------|----------------------------|------------|
| N2—C5                                    | 1.423 (3)    | С9—Н9                      | 0.9500     |
| N2—H2N                                   | 0.883 (17)   | C10—H10                    | 0.9500     |
| N3—C7                                    | 1.335 (3)    | C11—C12                    | 1.489 (4)  |
| N3—C10                                   | 1.344 (3)    | C12—C12 <sup>ii</sup>      | 1.323 (5)  |
| C1—C2                                    | 1.374 (4)    | С12—Н12                    | 0.9500     |
| C1—H1                                    | 0.9500       |                            |            |
|                                          |              |                            |            |
| O4 <sup>i</sup> —Cu1—O4                  | 176.95 (12)  | N1—C4—C5                   | 123.0 (3)  |
| O4 <sup>i</sup> —Cu1—N3                  | 88.74 (8)    | N1—C4—H4                   | 118.5      |
| O4—Cu1—N3                                | 91.04 (8)    | C5—C4—H4                   | 118.5      |
| $O4^{i}$ —Cu1—N $3^{i}$                  | 91.04 (8)    | C3—C5—C4                   | 118.6 (3)  |
| O4—Cu1—N3 <sup>i</sup>                   | 88.74 (8)    | C3—C5—N2                   | 119.8 (3)  |
| N3—Cu1—N3 <sup>i</sup>                   | 171.71 (13)  | C4—C5—N2                   | 121.5 (3)  |
| O4 <sup>i</sup> —Cu1—O3                  | 91.52 (6)    | C9—C6—C8                   | 118.5 (2)  |
| O4—Cu1—O3                                | 91.52 (6)    | C9—C6—C13                  | 122.6 (3)  |
| N3—Cu1—O3                                | 94.15 (6)    | C8—C6—C13                  | 118.8 (2)  |
| N3 <sup>i</sup> —Cu1—O3                  | 94.15 (6)    | N3—C7—C9                   | 122.8 (3)  |
| H3O <sup>i</sup> —O3—Cu1                 | 122.6 (17)   | N3—C7—H7                   | 118.6      |
| H3O <sup>i</sup> —O3—H3O                 | 115 (3)      | С9—С7—Н7                   | 118.6      |
| Cu1—O3—H3O                               | 122.6 (17)   | C10—C8—C6                  | 119.4 (3)  |
| C11—O4—Cu1                               | 123.39 (17)  | С10—С8—Н8                  | 120.3      |
| C1—N1—C4                                 | 117.9 (3)    | C6—C8—H8                   | 120.3      |
| C13—N2—C5                                | 125.5 (2)    | C6—C9—C7                   | 118.9 (3)  |
| C13—N2—H2N                               | 119 (2)      | С6—С9—Н9                   | 120.5      |
| C5—N2—H2N                                | 115 (2)      | С7—С9—Н9                   | 120.5      |
| C7—N3—C10                                | 118.1 (2)    | N3—C10—C8                  | 122.3 (3)  |
| C7—N3—Cu1                                | 118.25 (18)  | N3—C10—H10                 | 118.9      |
| C10—N3—Cu1                               | 123.06 (18)  | C8—C10—H10                 | 118.9      |
| N1—C1—C2                                 | 123.3 (3)    | O1—C11—O4                  | 125.0 (3)  |
| N1—C1—H1                                 | 118.4        | O1—C11—C12                 | 118.1 (2)  |
| C2—C1—H1                                 | 118.4        | O4—C11—C12                 | 116.9 (2)  |
| C1—C2—C3                                 | 118.4 (3)    | C12 <sup>ii</sup> —C12—C11 | 122.7 (3)  |
| С1—С2—Н2                                 | 120.8        | C12 <sup>ii</sup> —C12—H12 | 118.6      |
| С3—С2—Н2                                 | 120.8        | C11—C12—H12                | 118.6      |
| C5—C3—C2                                 | 118.8 (3)    | O2—C13—N2                  | 123.7 (3)  |
| С5—С3—Н3                                 | 120.6        | O2—C13—C6                  | 121.1 (3)  |
| С2—С3—Н3                                 | 120.6        | N2—C13—C6                  | 115.2 (2)  |
|                                          |              |                            |            |
| O4 <sup>i</sup> —Cu1—O3—H3O <sup>i</sup> | 22 (3)       | C13—N2—C5—C4               | -36.8 (4)  |
| O4—Cu1—O3—H3O <sup>i</sup>               | -158 (3)     | C10—N3—C7—C9               | -0.6 (4)   |
| N3—Cu1—O3—H3O <sup>i</sup>               | -66 (3)      | Cu1—N3—C7—C9               | 170.8 (2)  |
| N3 <sup>i</sup> —Cu1—O3—H3O <sup>i</sup> | 114 (3)      | C9—C6—C8—C10               | 0.6 (4)    |
| N3—Cu1—O4—C11                            | 121.8 (2)    | C13—C6—C8—C10              | 177.4 (3)  |
| N3 <sup>i</sup> —Cu1—O4—C11              | -49.9 (2)    | C8—C6—C9—C7                | 0.3 (4)    |
| O3—Cu1—O4—C11                            | -143.99 (19) | C13—C6—C9—C7               | -176.4 (3) |
| O4 <sup>i</sup> —Cu1—N3—C7               | -50.8 (2)    | N3—C7—C9—C6                | -0.3 (4)   |
| O4—Cu1—N3—C7                             | 132.2 (2)    | C7—N3—C10—C8               | 1.5 (4)    |

| $\begin{array}{c} O3-Cu1-N3-C7\\ O4^{i}-Cu1-N3-C10\\ O4-Cu1-N3-C10\\ O3-Cu1-N3-C10\\ C4-N1-C1-C2\\ N1-C1-C2-C3\\ C1-C2-C3-C5\\ C1-N1-C4-C5\\ C2-C3-C5-C4\\ C2-C3-C5-N2\\ N1-C4-C5-C3\\ N1-C4-C5-N2\\ \end{array}$ | $\begin{array}{c} 40.6 (2) \\ 120.2 (2) \\ -56.8 (2) \\ -148.4 (2) \\ 0.4 (5) \\ 0.1 (5) \\ -0.8 (5) \\ -0.1 (5) \\ 1.0 (5) \\ 178.0 (3) \\ -0.6 (5) \\ -177.6 (3) \end{array}$ | Cu1—N3—C10—C8<br>C6—C8—C10—N3<br>Cu1—O4—C11—O1<br>Cu1—O4—C11—C12<br>O1—C11—C12—C12 <sup>ii</sup><br>O4—C11—C12—C12 <sup>ii</sup><br>C5—N2—C13—O2<br>C5—N2—C13—O2<br>C8—C6—C13—O2<br>C9—C6—C13—N2<br>C8—C6—C13—N2 | $\begin{array}{c} -169.4 (2) \\ -1.5 (4) \\ -24.5 (4) \\ 153.62 (18) \\ 156.4 (3) \\ -21.9 (5) \\ -6.2 (4) \\ 174.0 (2) \\ 150.1 (3) \\ -26.5 (4) \\ -30.1 (4) \\ 153.3 (3) \end{array}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N1—C4—C5—N2<br>C13—N2—C5—C3                                                                                                                                                                                       | -177.6 (3)<br>146.3 (3)                                                                                                                                                         | C8—C6—C13—N2                                                                                                                                                                                                     | 153.3 (3)                                                                                                                                                                                |

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x, -y+2, -z.

# Hydrogen-bond geometry (Å, °)

| D—H      | H…A                                                                 | D···A                                                                                | D—H…A                                                                                                                                   |
|----------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 0.84 (1) | 1.83 (1)                                                            | 2.660 (2)                                                                            | 169 (3)                                                                                                                                 |
| 0.88 (2) | 2.33 (2)                                                            | 3.153 (3)                                                                            | 155 (3)                                                                                                                                 |
| 0.95     | 2.48                                                                | 3.360 (4)                                                                            | 153                                                                                                                                     |
| 0.95     | 2.48                                                                | 3.430 (4)                                                                            | 178                                                                                                                                     |
| 0.95     | 2.39                                                                | 3.263 (4)                                                                            | 153                                                                                                                                     |
| 0.95     | 2.43                                                                | 3.374 (4)                                                                            | 171                                                                                                                                     |
|          | <i>D</i> —H<br>0.84 (1)<br>0.88 (2)<br>0.95<br>0.95<br>0.95<br>0.95 | $D$ —H $H \cdots A$ 0.84 (1)1.83 (1)0.88 (2)2.33 (2)0.952.480.952.480.952.390.952.43 | D—HH···A $D$ ···A0.84 (1)1.83 (1)2.660 (2)0.88 (2)2.33 (2)3.153 (3)0.952.483.360 (4)0.952.483.430 (4)0.952.393.263 (4)0.952.433.374 (4) |

Symmetry codes: (iii) x, y+1, z; (iv) -x+1/2, -y+5/2, -z+1; (v) -x, y+1, -z+1/2; (vi) -x+1/2, y+1/2, -z+3/2; (vii) -x, -y+1, -z.