Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Morpholine-4-carboxamidinium ethyl carbonate

Ioannis Tiritiris

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany

Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

Received 12 November 2012; accepted 14 November 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.112; data-to-parameter ratio = 17.0.

The asymmetric unit of the title salt, $C_5H_{12}N_3O^+ \cdot C_3H_5O_3^-$, contains two carboxamidinium and two ethyl carbonate ions. In the crystal, the C–N bond lengths in the central CN₃ units of the cations range between 1.324 (2) and 1.352 (2) Å, indicating partial double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonalplanar geometry and the positive charges are delocalized in the CN₃ planes. The morpholine rings are in chair conformations. The C–O bond lengths in both ethyl carbonate ions are characteristic for delocalized double bonds [1.243 (2)– 1.251 (2) Å] and typical single bonds [1.368 (2) and 1.375 (2) Å]. In the crystal, N–H···O hydrogen bonds between cations and anions generate a two-dimensional network in the *ac* plane.

Related literature

For the synthesis and crystal structures of guanidinium hydrogen carbonates, see: Tiritiris *et al.* (2011). For the crystal structure of 4-morpholinecarboxamidine, see: Tiritiris (2012*a*). For the crystal structure of piperidine-1-carboxamidinium ethyl carbonate, see: Tiritiris (2012*b*).

Experimental

Crystal data C₅H₁₂N₃O⁺·C₃H₅O₃⁻

 $M_r = 219.25$

Monoclinic, $P2_1/n$ a = 10.2163 (5) Å b = 20.8874 (9) Å c = 10.4616 (5) Å $\beta = 109.505$ (2)° V = 2104.31 (17) Å³

Data collection

Bruker–Nonius KappaCCD diffractometer 9902 measured reflections

Refinement $P[F^2 + 2\pi(F^2)]$

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.112$ S = 1.005199 reflections 305 parameters Z = 8Mo K α radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.25 \times 0.15 \text{ mm}$

5199 independent reflections 2981 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.055$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H11 \cdots O4^{i} \\ N1 - H12 \cdots O3^{ii} \\ N2 - H21 \cdots O6 \\ N2 - H22 \cdots O4^{ii} \\ N4 - H41 \cdots O6^{ii} \\ N4 - H41 \cdots O7^{i} \\ N5 - H51 \cdots O7^{ii} \\ N5 - H52 \cdots O3^{iii} \end{array}$	0.84 (2) 0.89 (2) 0.85 (2) 0.92 (2) 0.86 (2) 0.93 (2) 0.90 (2) 0.90 (2)	2.12 (2) 1.91 (2) 1.97 (2) 1.95 (2) 1.97 (2) 2.00 (2) 1.99 (2) 1.94 (2)	2.944 (1) 2.795 (1) 2.807 (1) 2.851 (1) 2.817 (1) 2.889 (1) 2.879 (1) 2.776 (1)	$\begin{array}{c} 168 \ (1) \\ 174 \ (1) \\ 168 \ (1) \\ 164 \ (1) \\ 167 \ (1) \\ 159 \ (1) \\ 172 \ (1) \\ 154 \ (1) \end{array}$

Symmetry codes: (i) x, y, z - 1; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x + 1, y, z.

Data collection: *COLLECT* (Hooft, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2441).

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, D-53002 Bonn, Germany.
- Hooft, R. W. W. (2004). *COLLECT*. Bruker-Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Tiritiris, I. (2012*a*). Acta Cryst. E**68**, 03118.
- Tiritiris, I. (2012*b*). Acta Cryst. E**68**, 03310.
- Tiritiris, I., Mezger, J., Stoyanov, E. V. & Kantlehner, W. (2011). Z. Naturforsch. Teil B, 66, 407–418.

supporting information

Acta Cryst. (2012). E68, o3431 [doi:10.1107/S1600536812046922]

Morpholine-4-carboxamidinium ethyl carbonate

Ioannis Tiritiris

S1. Comment

The reaction of several guanidines with CO₂ in undried aprotic solvents are well described in the literature (Tiritiris et al., 2011). Here, the corresponding guanidinium hydrogen carbonate salts were obtained and their crystal structures could be determined. By reacting carboxamidines with CO_2 we first used aprotic solvents and due to their water content, sparingly soluble and non crystalline hydrogen carbonate salts were also formed. By using alcohols as solvents for the reaction, we obtained a few crystalline alkyl carbonate salts. One of them is the here presented title compound. According to the structure analysis, the asymmetric unit contains two carboxamidinium and two ethyl carbonate ions. The C-N bonds of the CN₃ units are ranging from 1.324 (2) to 1.352 (2) Å, showing partial double-bond character. The N–C1–N and N–C6– N angles are indicating a nearly ideal trigonal-planar surrounding of the carbon centres by the nitrogen atoms. The positive charges are completely delocalized on the CN₃ planes (Fig. 1). The structural parameters of the morpholine rings in the here presented title compound agree very well with the data obtained from the X-ray analysis of the starting compound 4-morpholinecarboxamidine (Tiritiris, 2012a). The morpholine rings adopt a chair conformation. The C–O bond lengths in both ethyl carbonate ions indicate evenly distributed double bonds [1.243 (2)–1.251 (2) Å] and typical single bonds [1.368 (2) and 1.375 (2) Å]. The data fit with the C–O bond lengths and angles of the anion in piperidine-1carboxamidinium ethyl carbonate (Tiritiris, 2012b). In the crystal structure, strong N—H…O hydrogen bonds between hydrogen atoms of carboxamidinium ions and oxygen atoms of neighboring ethyl carbonate ions are observed, generating an infinite two-dimensional network $[d(H \cdots O) = 1.91 (2) - 2.12 (2) Å]$ (Tab. 1) with base vectors $[0 \ 0 \ 1]$ and $[1 \ 0 \ 0]$ (Fig. 2). In contrast to the crystal structure of 4-morpholinecarboxamidine (Tiritiris, 2012a), the oxygen atoms of the morpholine rings are not involved in the N-H…O hydrogen bonding system.

S2. Experimental

The title compound was prepared by bubbling excess CO₂ gas into an ethanolic solution of 2.0 g (15.5 mmol) 4morpholinecarboxamidine (Tiritiris, 2012*a*). The resulting colorless precipitate was recrystallized from a small amount of ethanol and single crystals suitable for X-ray analysis were obtained. Yield: 3.05 g (90%). ¹H NMR (500 MHz, D₂O/DSS): $\delta = 1.17-1.20$ [t, 3 H, -CH₃], 3.49–3.52 [m, 4 H, -CH₂], 3.64–3.68 [q, 2 H, -CH₂], 3.80–3.83 [m, 4 H, -CH₂]. Because of the H/D exchange, the hydrogen atoms of the -NH₂ groups were not observed. ¹³C NMR (125 MHz, D₂O/DSS): $\delta = 16.8$ (-CH₃), 45.2 (-CH₂), 57.4 (-CH₂), 65.4 (-CH₂), 156.6 (N₃C⁺), 160.3 (C=O).

S3. Refinement

The N-bound H atoms were located in a difference Fourier map and were refined freely [N-H = 0.84 (2)-0.93 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density, with U(H) set to 1.5 $U_{eq}(C)$ and d(C-H) = 0.98 Å. The H atoms of the methylene groups were placed in calculated positions with d(C-H) = 0.99 Å. They were included in the refinement in the riding model

Figure 1

The structure of the title compound with displacement ellipsoids at the 50% probability level.

Figure 2

N–H…O hydrogen bonds generating a two-dimensional network in the (*ac*) plane. The hydrogen bonds are indicated by dashed lines.

Morpholine-4-carboxamidinium ethyl carbonate

Crystal data

C₅H₁₂N₃O⁺·C₃H₅O₃⁻ $M_r = 219.25$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.2163 (5) Å b = 20.8874 (9) Å c = 10.4616 (5) Å $\beta = 109.505$ (2)° V = 2104.31 (17) Å³ Z = 8

Data collection

Bruker–Nonius KappaCCD diffractometer Radiation source: sealed tube Graphite monochromator φ scans, and ω scans 9902 measured reflections 5199 independent reflections F(000) = 944 $D_x = 1.384 \text{ Mg m}^{-3}$ Melting point: 413 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5142 reflections $\theta = 0.4-28.3^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.30 \times 0.25 \times 0.15 \text{ mm}$

2981 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 2.3^\circ$ $h = -13 \rightarrow 13$ $k = -27 \rightarrow 27$ $l = -13 \rightarrow 13$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.112$	H atoms treated by a mixture of independent
S = 1.00	and constrained refinement
5199 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$
305 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.14782 (18)	0.19683 (9)	0.08078 (17)	0.0138 (4)
N1	0.14407 (18)	0.21777 (9)	-0.03987 (16)	0.0186 (4)
H11	0.082 (2)	0.2060 (11)	-0.111 (2)	0.027 (6)*
H12	0.209 (2)	0.2468 (11)	-0.039 (2)	0.028 (6)*
N2	0.24717 (16)	0.21987 (9)	0.18879 (16)	0.0168 (4)
H21	0.2567 (18)	0.2083 (9)	0.269 (2)	0.013 (5)*
H22	0.308 (2)	0.2486 (11)	0.171 (2)	0.032 (6)*
N3	0.05782 (14)	0.15198 (8)	0.09382 (13)	0.0138 (3)
C2	0.04415 (18)	0.14053 (10)	0.22786 (16)	0.0174 (4)
H2A	-0.0106	0.1755	0.2491	0.021*
H2B	0.1374	0.1404	0.2982	0.021*
C3	-0.02671 (19)	0.07728 (10)	0.22976 (17)	0.0239 (5)
H3A	0.0343	0.0421	0.2203	0.029*
H3B	-0.0410	0.0721	0.3182	0.029*
01	-0.15763 (13)	0.07261 (7)	0.12343 (12)	0.0227 (3)
C4	-0.13597 (19)	0.07748 (10)	-0.00376 (17)	0.0194 (4)
H4A	-0.2261	0.0727	-0.0777	0.023*
H4B	-0.0746	0.0422	-0.0120	0.023*
C5	-0.07145 (18)	0.14066 (9)	-0.01951 (17)	0.0168 (4)
H5A	-0.0515	0.1408	-0.1058	0.020*
H5B	-0.1379	0.1757	-0.0233	0.020*
C6	0.61678 (17)	0.19115 (9)	0.08546 (16)	0.0122 (4)
N4	0.60204 (17)	0.21566 (9)	-0.03589 (15)	0.0161 (4)
H41	0.656 (2)	0.2472 (11)	-0.038 (2)	0.026 (6)*
H42	0.533 (2)	0.2013 (12)	-0.113 (2)	0.041 (7)*

NI5	0.71420(10)	0.21529 (9)	0.102(9.(15))	0.0144(4)
N5	0.71439 (10)	0.21558 (8)	0.19268 (15)	0.0144 (4)
H51	0.7/3(2)	0.2459 (11)	0.185 (2)	0.023 (6)*
H52	0.745 (2)	0.1933 (11)	0.2/1(2)	0.035 (6)*
N6	0.53305 (14)	0.14360 (7)	0.10007 (13)	0.0134 (3)
C7	0.56842 (19)	0.11205 (10)	0.23299 (16)	0.0176 (4)
H7A	0.5906	0.1449	0.3053	0.021*
H7B	0.6517	0.0850	0.2480	0.021*
C8	0.4493 (2)	0.07110 (10)	0.24096 (17)	0.0189 (4)
H8A	0.4791	0.0472	0.3277	0.023*
H8B	0.3709	0.0991	0.2401	0.023*
02	0.40359 (13)	0.02701 (6)	0.13163 (11)	0.0198 (3)
C9	0.35206 (18)	0.06230 (10)	0.00799 (17)	0.0182 (4)
H9A	0.2758	0.0907	0.0117	0.022*
H9B	0.3137	0.0321	-0.0684	0.022*
C10	0.46389 (18)	0.10203 (9)	-0.01694 (17)	0.0169 (4)
H10A	0.5335	0.0734	-0.0341	0.020*
H10B	0.4226	0.1288	-0.0986	0.020*
C11	-0.07231 (18)	0.16716 (9)	0.57058 (16)	0.0133 (4)
03	-0.16622 (12)	0.18499 (7)	0.46539 (11)	0.0196 (3)
O4	-0.04966 (12)	0.18664 (6)	0.68830 (11)	0.0179 (3)
05	0.01060 (12)	0.11991 (7)	0.54704 (11)	0.0181 (3)
C12	0.12224 (18)	0.09664 (10)	0.66226 (17)	0.0188 (4)
H12A	0.0849	0.0761	0.7281	0.023*
H12B	0.1836	0.1324	0.7081	0.023*
C13	0.20159 (19)	0.04887 (10)	0.60972 (18)	0.0224 (5)
H13A	0.2355	0.0695	0.5427	0.034*
H13B	0.1405	0.0131	0.5671	0.034*
H13C	0.2806	0.0328	0.6851	0.034*
C14	0.40406 (17)	0.17608 (9)	0.57044 (16)	0.0130 (4)
O6	0.31041 (12)	0.19554 (6)	0.46676 (11)	0.0180 (3)
07	0.42103 (13)	0.19133 (6)	0.69029 (11)	0.0183 (3)
08	0.49287 (12)	0.13310 (6)	0.54411 (11)	0.0166 (3)
C15	0.60379 (18)	0.10913 (10)	0.65905 (17)	0.0179 (4)
H15A	0.5655	0.0877	0.7232	0.021*
H15B	0.6641	0.1448	0.7070	0.021*
C16	0.68612 (19)	0.06219 (10)	0.60715 (18)	0.0199 (4)
H16A	0.6270	0.0257	0.5651	0.030*
H16B	0.7659	0.0470	0.6828	0.030*
H16C	0.7190	0.0833	0.5398	0.030*
	-		-	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0137 (9)	0.0140 (11)	0.0127 (9)	0.0045 (8)	0.0031 (7)	0.0005 (7)
N1	0.0180 (9)	0.0236 (10)	0.0114 (8)	-0.0068 (8)	0.0011 (7)	0.0008 (7)
N2	0.0189 (9)	0.0223 (10)	0.0080 (8)	-0.0050(7)	0.0031 (7)	0.0016 (7)
N3	0.0118 (7)	0.0192 (9)	0.0088 (7)	-0.0017 (7)	0.0012 (6)	-0.0003 (6)
C2	0.0178 (9)	0.0251 (12)	0.0085 (8)	-0.0042 (8)	0.0033 (7)	-0.0007 (8)

supporting information

C3	0.0261 (11)	0.0301 (13)	0.0102 (9)	-0.0091 (9)	-0.0011 (8)	0.0013 (8)
01	0.0251 (7)	0.0279 (9)	0.0138 (6)	-0.0121 (6)	0.0048 (5)	-0.0029 (6)
C4	0.0217 (10)	0.0216 (12)	0.0130 (9)	-0.0007 (9)	0.0032 (8)	-0.0024 (8)
C5	0.0148 (9)	0.0201 (11)	0.0115 (8)	-0.0027 (8)	-0.0007 (7)	0.0001 (8)
C6	0.0143 (9)	0.0123 (10)	0.0107 (9)	0.0040 (8)	0.0051 (7)	-0.0004 (7)
N4	0.0166 (8)	0.0182 (10)	0.0107 (8)	-0.0043 (8)	0.0009 (7)	0.0016 (7)
N5	0.0164 (8)	0.0145 (10)	0.0103 (8)	-0.0029 (7)	0.0018 (6)	0.0000 (6)
N6	0.0158 (8)	0.0148 (9)	0.0083 (7)	-0.0017 (7)	0.0023 (6)	-0.0007 (6)
C7	0.0218 (10)	0.0185 (11)	0.0105 (9)	-0.0053 (8)	0.0027 (7)	0.0016 (7)
C8	0.0268 (10)	0.0179 (12)	0.0125 (9)	-0.0045 (9)	0.0074 (8)	-0.0022 (8)
O2	0.0281 (7)	0.0145 (8)	0.0147 (6)	-0.0057 (6)	0.0043 (5)	-0.0011 (5)
C9	0.0187 (10)	0.0187 (12)	0.0137 (9)	-0.0021 (8)	0.0006 (7)	0.0008 (8)
C10	0.0200 (10)	0.0167 (11)	0.0117 (8)	-0.0022 (8)	0.0025 (7)	-0.0013 (7)
C11	0.0130 (9)	0.0173 (11)	0.0095 (9)	-0.0009 (8)	0.0037 (7)	0.0013 (7)
03	0.0191 (7)	0.0258 (9)	0.0101 (6)	0.0043 (6)	-0.0001 (5)	0.0003 (5)
04	0.0183 (7)	0.0231 (8)	0.0102 (6)	0.0030 (6)	0.0020 (5)	-0.0016 (5)
05	0.0175 (7)	0.0238 (8)	0.0108 (6)	0.0056 (6)	0.0016 (5)	-0.0002 (5)
C12	0.0167 (10)	0.0226 (12)	0.0138 (9)	0.0045 (8)	0.0007 (7)	0.0022 (8)
C13	0.0234 (10)	0.0219 (12)	0.0211 (10)	0.0027 (9)	0.0064 (8)	0.0014 (8)
C14	0.0131 (9)	0.0131 (11)	0.0116 (9)	-0.0027 (8)	0.0027 (7)	0.0001 (7)
06	0.0179 (7)	0.0231 (8)	0.0101 (6)	0.0050 (6)	0.0010 (5)	0.0010 (5)
O7	0.0208 (7)	0.0215 (8)	0.0096 (6)	0.0050 (6)	0.0010 (5)	-0.0021 (5)
08	0.0163 (7)	0.0211 (8)	0.0103 (6)	0.0056 (6)	0.0014 (5)	0.0005 (5)
C15	0.0177 (9)	0.0214 (12)	0.0113 (9)	0.0057 (8)	0.0005 (7)	0.0012 (8)
C16	0.0171 (10)	0.0218 (12)	0.0198 (10)	0.0037 (8)	0.0047 (8)	0.0023 (8)

Geometric parameters (Å, °)

C1—N1	1.324 (2)	C7—H7A	0.9900	
C1—N2	1.331 (2)	С7—Н7В	0.9900	
C1—N3	1.351 (2)	C8—O2	1.420 (2)	
N1—H11	0.84 (2)	C8—H8A	0.9900	
N1—H12	0.89 (2)	C8—H8B	0.9900	
N2—H21	0.85 (2)	O2—C9	1.428 (2)	
N2—H22	0.92 (2)	C9—C10	1.504 (3)	
N3—C5	1.470 (2)	С9—Н9А	0.9900	
N3—C2	1.474 (2)	С9—Н9В	0.9900	
C2—C3	1.510 (3)	C10—H10A	0.9900	
C2—H2A	0.9900	C10—H10B	0.9900	
C2—H2B	0.9900	C11—O4	1.243 (2)	
C3—O1	1.429 (2)	C11—O3	1.251 (2)	
С3—НЗА	0.9900	C11—O5	1.375 (2)	
С3—Н3В	0.9900	O5—C12	1.439 (2)	
01—C4	1.424 (2)	C12—C13	1.501 (3)	
C4—C5	1.508 (3)	C12—H12A	0.9900	
C4—H4A	0.9900	C12—H12B	0.9900	
C4—H4B	0.9900	C13—H13A	0.9800	
С5—Н5А	0.9900	C13—H13B	0.9800	

	0.0000	C12 U12C	0.0000
C3—H3B	0.9900		0.9800
C6—N5	1.327 (2)	C14—O7	1.248 (2)
C6—N4	1.330 (2)	C14—O6	1.2507 (19)
C6—N6	1.352 (2)	C14—O8	1.368 (2)
N4—H41	0.86 (2)	O8—C15	1.4390 (19)
N4—H42	0.93 (2)	C15—C16	1.506 (3)
N5—H51	0.90(2)	С15—Н15А	0.9900
N5—H52	0.90(2)	C15—H15B	0 9900
N6 C7	1.471(2)	C16 H16A	0.9900
NGC10	1.471(2)		0.9800
	1.4/4(2)		0.9800
C/—C8	1.512 (3)	C10—H10C	0.9800
	117 44 (10)		100 5
NI-CI-N2	11/.44 (18)	С8—С/—Н/В	109.5
N1—C1—N3	121.41 (16)	H7A—C7—H7B	108.0
N2—C1—N3	121.10 (16)	O2—C8—C7	112.11 (14)
C1—N1—H11	121.6 (14)	O2—C8—H8A	109.2
C1—N1—H12	115.2 (13)	C7—C8—H8A	109.2
H11—N1—H12	123.1 (19)	O2—C8—H8B	109.2
C1—N2—H21	122.7 (13)	C7—C8—H8B	109.2
C1—N2—H22	116.0 (13)	H8A—C8—H8B	107.9
H21_N2_H22	121 3 (17)	$C_{8} = 0^{2} = C_{9}$	108 51 (14)
C1 N3 C5	110.25(14)	$O_2 = O_2 = O_3$	100.31(11) 111.74(14)
C1 N2 C2	119.25(14)	$O_2 = C_2 = C_1 O_2$	111.74(14)
CI = N3 = C2	119.30 (14)	02—С9—Н9А	109.3
C5—N3—C2	113.33 (13)	C10—C9—H9A	109.3
N3—C2—C3	110.65 (14)	O2—C9—H9B	109.3
N3—C2—H2A	109.5	С10—С9—Н9В	109.3
C3—C2—H2A	109.5	H9A—C9—H9B	107.9
N3—C2—H2B	109.5	N6—C10—C9	111.24 (14)
C3—C2—H2B	109.5	N6	109.4
H2A—C2—H2B	108.1	C9—C10—H10A	109.4
01 - C3 - C2	112,19 (15)	N6—C10—H10B	109.4
01 - C3 - H3A	109.2	C9-C10-H10B	109.4
$C_2 C_3 H_3 \Lambda$	109.2	HIOA CIO HIOB	109.1
$C_2 = C_3 = H_2 R$	109.2		100.0 107.49(17)
	109.2	04-01-05	127.48 (17)
С2—С3—Н3В	109.2	04-011-05	119.35 (15)
H3A—C3—H3B	107.9	03-01-05	113.17 (14)
C4—O1—C3	109.00 (13)	C11—O5—C12	117.10 (13)
O1—C4—C5	112.00 (15)	O5—C12—C13	106.96 (14)
O1—C4—H4A	109.2	O5—C12—H12A	110.3
C5—C4—H4A	109.2	C13—C12—H12A	110.3
O1—C4—H4B	109.2	O5—C12—H12B	110.3
C5—C4—H4B	109.2	C13—C12—H12B	110.3
H4A—C4—H4B	107.9	H12A—C12—H12B	108.6
N3-C5-C4	111 13 (14)	C12—C13—H13A	109 5
$N_3 C_5 H_5 \Lambda$	100 /	C_{12} C_{13} $H_{13}P$	109.5
C_{4} C_{5} H_{5} M_{5}	100.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$\Box = \Box =$	109.4	$\Pi JA - C I J - \Pi I J D$	109.3
	109.4		109.5
U4-U3-H3B	109.4	H13A	109.5

H5A—C5—H5B	108.0	H13B—C13—H13C	109.5
N5—C6—N4	118.27 (17)	O7—C14—O6	126.70 (17)
N5—C6—N6	120.64 (15)	O7—C14—O8	119.38 (14)
N4—C6—N6	121.08 (16)	O6—C14—O8	113.91 (14)
C6—N4—H41	116.3 (13)	C14—O8—C15	116.75 (12)
C6—N4—H42	121.0 (14)	O8—C15—C16	107.70 (14)
H41—N4—H42	122.5 (19)	O8—C15—H15A	110.2
C6—N5—H51	121.8 (13)	C16—C15—H15A	110.2
C6—N5—H52	120.7 (14)	O8—C15—H15B	110.2
H51—N5—H52	114.0 (18)	C16—C15—H15B	110.2
C6—N6—C7	118.09 (13)	H15A—C15—H15B	108.5
C6—N6—C10	118.98 (14)	C15—C16—H16A	109.5
C7—N6—C10	114.80 (15)	C15—C16—H16B	109.5
N6—C7—C8	110.93 (14)	H16A—C16—H16B	109.5
N6—C7—H7A	109.5	C15—C16—H16C	109.5
С8—С7—Н7А	109.5	H16A—C16—H16C	109.5
N6—C7—H7B	109.5	H16B—C16—H16C	109.5
N1—C1—N3—C5	-19.3 (3)	N4—C6—N6—C10	23.7 (2)
N2-C1-N3-C5	163.26 (16)	C6—N6—C7—C8	167.46 (16)
N1—C1—N3—C2	-166.30 (17)	C10—N6—C7—C8	-44.1 (2)
N2-C1-N3-C2	16.3 (3)	N6—C7—C8—O2	53.4 (2)
C1—N3—C2—C3	-163.24 (16)	С7—С8—О2—С9	-62.83 (19)
C5—N3—C2—C3	47.9 (2)	C8—O2—C9—C10	62.98 (19)
N3—C2—C3—O1	-54.7 (2)	C6—N6—C10—C9	-167.27 (15)
C2—C3—O1—C4	61.1 (2)	C7—N6—C10—C9	44.6 (2)
C3—O1—C4—C5	-60.9 (2)	O2—C9—C10—N6	-53.8 (2)
C1—N3—C5—C4	163.03 (16)	O4—C11—O5—C12	-1.3 (2)
C2—N3—C5—C4	-48.1 (2)	O3—C11—O5—C12	179.62 (15)
O1-C4-C5-N3	54.7 (2)	C11—O5—C12—C13	-176.69 (15)
N5-C6-N6-C7	-10.5 (2)	O7—C14—O8—C15	-1.3 (2)
N4—C6—N6—C7	170.74 (16)	O6-C14-O8-C15	179.56 (15)
N5-C6-N6-C10	-157.57 (16)	C14—O8—C15—C16	179.01 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
N1—H11····O4 ⁱ	0.84 (2)	2.12 (2)	2.944 (1)	168 (1)	
N1—H12···O3 ⁱⁱ	0.89 (2)	1.91 (2)	2.795 (1)	174 (1)	
N2—H21…O6	0.85 (2)	1.97 (2)	2.807(1)	168 (1)	
N2—H22····O4 ⁱⁱ	0.92 (2)	1.95 (2)	2.851 (1)	164 (1)	
N4—H41···O6 ⁱⁱ	0.86 (2)	1.97 (2)	2.817(1)	167 (1)	
N4— $H42$ ···O7 ⁱ	0.93 (2)	2.00 (2)	2.889(1)	159 (1)	
N5—H51…O7 ⁱⁱ	0.90 (2)	1.99 (2)	2.879(1)	172 (1)	
N5—H52···O3 ⁱⁱⁱ	0.90 (2)	1.94 (2)	2.776 (1)	154 (1)	

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) *x*+1/2, -*y*+1/2, *z*-1/2; (iii) *x*+1, *y*, *z*.