organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Diamino-4-chloropyrimidinebenzoic acid (1/1)

Kaliyaperumal Thanigaimani, Nuridayanti Che Khalib, Suhana Arshad and Ibrahim Abdul Razak*‡

School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: arazaki@usm.my

Received 12 November 2012; accepted 20 November 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.101; data-to-parameter ratio = 11.5.

The benzoic acid molecule of the title compound, $C_4H_5ClN_4 \cdot C_7H_6O_2$, is approximately planar, with a dihedral angle of 1.28 (9)° between the carboxy group and the benzene ring. In the crystal, two acid and two base molecules are linked through N-H···O and O-H···N hydrogen bonds, forming a centrosymmetric 2 + 2 unit with $R_2^2(8)$ and $R_4^2(8)$ motifs. These units are further linked through a pair of N-H···N hydrogen bonds into a tape structure along [120]. The crystal structure also features weak π - π [centroid-centroid distance = 3.5984 (11) Å] and C-H··· π interactions.

Related literature

For the biological activity of pyrimidine and aminopyrimidine derivatives, see: Hunt *et al.* (1980); Baker & Santi (1965). For related structures, see: Schwalbe & Williams (1982); Hu *et al.* (2002); Chinnakali *et al.* (1999); Skovsgaard & Bond (2009). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

 Crystal data

 $C_4H_5ClN_4\cdot C_7H_6O_2$ Monoclinic, $P2_1/c$
 $M_r = 266.69$ a = 8.7817 (17) Å

‡ Thomson Reuters ResearcherID: A-5599-2009.

b = 5.7032 (12) Å c = 24.026 (4) Å $\beta = 95.493 (4)^{\circ}$ $V = 1197.8 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.895, T_{max} = 0.951$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.101$ S = 1.092097 reflections 183 parameters 1 restraint

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

_g1	1S	the	centroid	OI	the	C5-C10	ring.	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1 <i>O</i> 1···N2	0.87 (2)	1.74 (2)	2.5976 (18)	168 (3)
$N4 - H2N4 \cdots O2$	0.88(2)	2.03 (2)	2.894 (2)	171.2 (18)
$N4 - H1N4 \cdot \cdot \cdot O2^{i}$	0.88(2)	2.07 (2)	2.902 (2)	158.2 (19)
$N3 - H1N3 \cdot \cdot \cdot N1^{ii}$	0.85(2)	2.18 (2)	3.020 (2)	171 (2)
$C9-H9A\cdots Cg1^{iii}$	0.95	2.99	3.6557 (19)	128
	<i>(</i> 1)			

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 2, -z + 1; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Fundamental Research Grant Scheme (FRGS) No. 203/ PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5218).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Hu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005– 01007.

Mo $K\alpha$ radiation

 $0.36 \times 0.30 \times 0.16 \text{ mm}$

7539 measured reflections

2097 independent reflections

1891 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.32 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int}=0.052$

refinement $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.

Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Skovsgaard, S. & Bond, A. D. (2009). *CrystEngComm*, **11**, 444–453. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

supporting information

Acta Cryst. (2012). E68, o3442-o3443 [doi:10.1107/S160053681204768X]

2,6-Diamino-4-chloropyrimidine-benzoic acid (1/1)

Kaliyaperumal Thanigaimani, Nuridayanti Che Khalib, Suhana Arshad and Ibrahim Abdul Razak

S1. Comment

Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt *et al.*, 1980; Baker & Santi, 1965). The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Hu *et al.*, 2002) and co-crystal structures (Chinnakali *et al.*, 1999; Skovsgaard & Bond, 2009) have ben reported. In the present study, hydrogen-bonding patterns in the 2,6-diamino-4-chloropyrimidine–benzoic acid (1/1) co-crystal are investigated.

The asymmetric unit (Fig. 1) contains one 2,6-diamino-4-chloropyrimidine molecule and one benzoic acid molecule. The 2,6-diamino-4-chloropyrimidine molecule is essentially planar, with a maximum deviation of 0.009 (2) Å for atom C4. The carboxyl group of the benzoic acid molecule is twisted slightly from the ring with a dihedral angle between C5–C10 ring and O1/O2/C10/C11 plane being 1.28 (9)°. The bond lengths (Allen *et al.*, 1987) and angles are normal.

In the crystal packing (Fig. 2), the 2,6-diamino-4-chloropyrimidine molecules interact with the carboxylic group of the respective benzoic acid molecules through N4—H2N4…O2 and O1—H1O1…N2 hydrogen bonds, forming a cyclic hydrogen-bonded motif of $R_2^2(8)$ (Bernstein *et al.*, 1995). These motifs are centrosymmetrically paired *via* N4—H1N4…O2ⁱ hydrogen bonds, resulting in a DADA array (Where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) of quadruple hydrogen bonds (symmetry code in Table 1); this can be represented by the graph-set notations of $R_2^2(8)$ and $R_4^2(8)$. The quadruple hydrogen-bonding motifs are further extended through a couple of N3—H1N3…N1ⁱⁱ hydrogen bonds (symmetry code in Table 1), leading to the formation of hydrogen-bonded supramolecular tape. The crystal structure is further stabilized by π - π interactions between the pyrimidine (*Cg2*; N1/N2/C1–C4) rings [*Cg2…Cg2* = 3.5984 (11) Å; -*x*, 1 - *y*, 1 - *z*] and C—H… π interactions (Table 1) involving the centroid of the C5–C10 (centroid *Cg1*) ring.

S2. Experimental

A hot methanol solutions (20 ml) of 2,6-diamino-4-chloropyrimidine (36 mg, Aldrich) and benzoic acid (30 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

S3. Refinement

O- and N-bound H Atoms were located in a difference Fourier maps and refined freely [O—H = 0.866 (10) Å and N—H = 0.79 (2)–0.88 (2) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonds.

Figure 2

The crystal packing of the title compound. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

2,6-Diamino-4-chloropyrimidine-benzoic acid (1/1)

Crystal data

C₄H₅ClN₄·C₇H₆O₂ $M_r = 266.69$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.7817 (17) Å b = 5.7032 (12) Å c = 24.026 (4) Å $\beta = 95.493 (4)^{\circ}$ $V = 1197.8 (4) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.895, \ T_{\max} = 0.951$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
2097 reflections	and constrained refinement
183 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0471P)^2 + 0.4196P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

F(000) = 552

 $\theta = 3.0-30.0^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$

Block, colourless

 $0.36 \times 0.30 \times 0.16$ mm

7539 measured reflections 2097 independent reflections 1891 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

T = 100 K

 $R_{\rm int} = 0.052$

 $h = -10 \rightarrow 10$ $k = -6 \rightarrow 6$ $l = -28 \rightarrow 28$

 $D_{\rm x} = 1.479 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5646 reflections

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	-0.05557 (4)	0.64565 (9)	0.367228 (16)	0.03348 (18)
01	0.43197 (13)	0.5175 (2)	0.61239 (5)	0.0312 (3)

O2	0.52962 (16)	0.1720 (2)	0.59015 (5)	0.0372 (3)
N1	0.07033 (15)	0.7543 (3)	0.46563 (5)	0.0274 (4)
N2	0.27154 (14)	0.5362 (3)	0.51588 (5)	0.0266 (4)
N3	0.16941 (19)	0.8669 (3)	0.55310 (6)	0.0313 (4)
N4	0.37676 (16)	0.2112 (3)	0.47835 (7)	0.0325 (4)
C1	0.07703 (17)	0.5991 (3)	0.42471 (7)	0.0272 (4)
C2	0.17389 (17)	0.4136 (4)	0.42399 (7)	0.0287 (4)
H2A	0.1734	0.3108	0.3929	0.034*
C3	0.27541 (17)	0.3846 (3)	0.47284 (7)	0.0272 (4)
C4	0.17144 (17)	0.7163 (3)	0.51057 (6)	0.0265 (4)
C5	0.71603 (19)	0.1587 (3)	0.69200 (7)	0.0264 (4)
H5A	0.7220	0.0302	0.6672	0.032*
C6	0.80722 (19)	0.1626 (3)	0.74236 (7)	0.0276 (4)
H6A	0.8760	0.0372	0.7519	0.033*
C7	0.79790 (17)	0.3497 (3)	0.77877 (7)	0.0251 (4)
H7A	0.8608	0.3526	0.8132	0.030*
C8	0.69723 (17)	0.5321 (3)	0.76507 (7)	0.0258 (4)
H8A	0.6908	0.6594	0.7902	0.031*
C9	0.60544 (17)	0.5293 (3)	0.71455 (7)	0.0241 (4)
H9A	0.5361	0.6542	0.7052	0.029*
C10	0.61545 (17)	0.3430 (3)	0.67768 (6)	0.0214 (4)
C11	0.52134 (18)	0.3366 (3)	0.62273 (7)	0.0249 (4)
H2N3	0.233 (3)	0.851 (4)	0.5785 (10)	0.039 (6)*
H2N4	0.432 (2)	0.196 (4)	0.5105 (10)	0.045 (6)*
H1N4	0.388 (2)	0.113 (4)	0.4508 (9)	0.033 (5)*
H1N3	0.109 (2)	0.983 (4)	0.5499 (9)	0.037 (6)*
H1O1	0.386 (3)	0.508 (7)	0.5789 (7)	0.113 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0286 (3)	0.0508 (4)	0.0183 (2)	-0.00328 (18)	-0.01233 (16)	0.00310 (18)
01	0.0260 (6)	0.0437 (8)	0.0220 (6)	0.0042 (6)	-0.0080 (5)	0.0035 (6)
O2	0.0521 (8)	0.0321 (8)	0.0240 (6)	-0.0019 (6)	-0.0147 (6)	-0.0010 (6)
N1	0.0230 (6)	0.0382 (9)	0.0190 (7)	-0.0093 (6)	-0.0076 (5)	0.0077 (7)
N2	0.0203 (6)	0.0395 (9)	0.0183 (7)	-0.0085 (6)	-0.0059 (5)	0.0068 (6)
N3	0.0318 (8)	0.0370 (10)	0.0217 (8)	-0.0044 (7)	-0.0144 (6)	0.0040 (7)
N4	0.0262 (7)	0.0503 (11)	0.0195 (7)	-0.0020 (7)	-0.0058 (6)	0.0009 (7)
C1	0.0202 (7)	0.0439 (11)	0.0159 (8)	-0.0113 (7)	-0.0071 (6)	0.0080 (7)
C2	0.0218 (8)	0.0457 (12)	0.0177 (8)	-0.0074 (8)	-0.0032 (6)	0.0029 (8)
C3	0.0178 (7)	0.0447 (12)	0.0181 (8)	-0.0098 (7)	-0.0029 (6)	0.0071 (7)
C4	0.0214 (7)	0.0387 (11)	0.0178 (8)	-0.0124 (7)	-0.0062 (6)	0.0083 (7)
C5	0.0325 (9)	0.0257 (10)	0.0201 (8)	0.0009 (7)	-0.0015 (7)	-0.0003 (7)
C6	0.0283 (8)	0.0292 (10)	0.0244 (8)	0.0070 (7)	-0.0030 (7)	0.0050 (7)
C7	0.0220 (8)	0.0322 (10)	0.0196 (8)	-0.0019 (7)	-0.0053 (6)	0.0024 (7)
C8	0.0249 (8)	0.0268 (10)	0.0244 (8)	-0.0006 (7)	-0.0038 (6)	-0.0034 (7)
C9	0.0199 (7)	0.0248 (10)	0.0267 (8)	0.0005 (7)	-0.0027 (6)	0.0028 (7)
C10	0.0192 (7)	0.0263 (9)	0.0181 (8)	-0.0046 (6)	-0.0014 (6)	0.0039 (6)

C11 0	0243 (8)	0 0291 (10)	0 0205 (8)	-0.0063 (7)	-0.0023(6)	0 0043 (7)		
	0213(0)	0.0291 (10)	0.0203 (0)	0.0003 (7)	0.0023 (0)	0.0015 (7)		
Geometric p	Geometric parameters (Å, °)							
Cl1—C1		1.739:	5 (15)	C2—C3		1.414 (2)		
01—C11		1.306	(2)	C2—H2A		0.9500		
01—H101		0.866	(10)	C5—C6		1.386 (2)		
O2—C11		1.229	(2)	C5—C10		1.395 (2)		
N1C1		1.328	(2)	C5—H5A		0.9500		
N1-C4		1.348	(2)	C6—C7		1.387 (3)		
N2C4		1.350	(2)	С6—Н6А		0.9500		
N2—C3		1.351	(2)	С7—С8		1.384 (2)		
N3—C4		1.336	(2)	C7—H7A		0.9500		
N3—H2N3		0.79 (2	2)	С8—С9		1.392 (2)		
N3—H1N3		0.85 (2	2)	C8—H8A		0.9500		
N4—C3		1.328	(3)	C9—C10		1.391 (2)		
N4—H2N4		0.88 (2	2)	С9—Н9А		0.9500		
N4—H1N4		0.88 (2	2)	C10-C11		1.490 (2)		
C1—C2		1.358	(3)					
C11—01—	H1O1	110 (2	2)	C6—C5—C10		120.18 (16)		
C1—N1—C	24	114.40	0 (16)	С6—С5—Н5А		119.9		
C4—N2—C	23	118.60	0 (14)	С10—С5—Н5А		119.9		
C4—N3—H	I2N3	117.1	(16)	C5—C6—C7		119.92 (16)		
C4—N3—H	HIN3	119.2	(15)	С5—С6—Н6А		120.0		
H2N3—N3-	-H1N3	123 (2	2)	С7—С6—Н6А		120.0		
C3—N4—H	I2N4	118.1	(15)	C8—C7—C6		120.20 (15)		
C3—N4—H	I1N4	121.4	(13)	С8—С7—Н7А		119.9		
H2N4—N4-	—H1N4	121 (2	2)	С6—С7—Н7А		119.9		
N1-C1-C	22	126.90	0 (15)	C7—C8—C9		120.15 (16)		
N1-C1-C	211	114.35	5 (13)	С7—С8—Н8А		119.9		
C2—C1—C	211	118.76	5 (14)	С9—С8—Н8А		119.9		
C1—C2—C	23	115.25	5 (17)	C10—C9—C8		119.83 (15)		
С1—С2—Н	[2A	122.4		С10—С9—Н9А		120.1		
С3—С2—Н	[2A	122.4	- /	С8—С9—Н9А		120.1		
N4—C3—N	12	117.76	5 (15)	C9—C10—C5		119.71 (15)		
N4—C3—C	2	122.23	3 (17)	C9—C10—C11		121.29 (15)		
N2-C3-C	2	120.0	1 (17)	C5—C10—C11		118.99 (15)		
N3—C4—N	1	116.94	4 (17)	02—C11—O1		123.62 (15)		
N3—C4—N	12	118.24	4 (15)	O2—C11—C10		121.44 (16)		
N1—C4—N	12	124.8	l (16)	O1—C11—C10		114.94 (15)		
C4—N1—C	C1—C2	-0.5 (2)	C10—C5—C6—C	C 7	0.3 (3)		
C4—N1—C	C1—C11	179.02	2 (11)	C5—C6—C7—C8	8	0.3 (3)		
N1-C1-C	С2—С3	1.1 (3))	C6—C7—C8—C9	9	-0.4 (2)		
Cl1—C1—C	С2—С3	-178.4	45 (11)	С7—С8—С9—С	10	-0.2 (2)		
C4—N2—C	C3—N4	178.65	5 (15)	C8—C9—C10—C	C5	0.9 (2)		
C4—N2—C	С3—С2	-1.2 (2)	C8—C9—C10—C	C11	-178.71 (14)		

supporting information

supporting information

C1—C2—C3—N4	179.98 (15)	C6—C5—C10—C9	-0.9 (2)
C1—C2—C3—N2	-0.1 (2)	C6-C5-C10-C11	178.67 (15)
C1—N1—C4—N3	-179.82 (14)	C9—C10—C11—O2	-179.79 (15)
C1—N1—C4—N2	-1.0 (2)	C5-C10-C11-O2	0.6 (2)
C3—N2—C4—N3	-179.31 (15)	C9—C10—C11—O1	0.5 (2)
C3—N2—C4—N1	1.9 (2)	C5-C10-C11-O1	-179.08 (14)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>0</i> 1…N2	0.87 (2)	1.74 (2)	2.5976 (18)	168 (3)
N4—H2 <i>N</i> 4····O2	0.88 (2)	2.03 (2)	2.894 (2)	171.2 (18)
N4— $H1N4$ ···O2 ⁱ	0.88 (2)	2.07 (2)	2.902 (2)	158.2 (19)
N3—H1 <i>N</i> 3····N1 ⁱⁱ	0.85 (2)	2.18 (2)	3.020 (2)	171 (2)
C9—H9 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.95	2.99	3.6557 (19)	128

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, y+1/2, -z+3/2.