22440 measured reflections

 $R_{\rm int} = 0.030$

5775 independent reflections

3774 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-({1-[2-(4-bromophenyl)-2-oxoethyl]-1H-1,2,3-triazol-4-yl}methoxy)-8-(trifluoromethyl)quinoline-3-carboxylate

Arun M. Islor,^a B. Garudachari,^a K. N. Shivananda,^b Thomas Gerber,^c Eric Hosten^c and Richard Betz^c*

^aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, ^bTechnion Israel Institute of Technology, Schulich Faculty of Chemistry, Haifa, 32000, Israel, and ^cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa

Correspondence e-mail: richard.betz@webmail.co.za

Received 26 October 2012: accepted 9 November 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.141; data-to-parameter ratio = 17.7.

The title compound, C24H18BrF3N4O4, is a 1,2,3-triazole derivative featuring, among others, a quinoline-derived substituent. In the crystal, C-H···O, C-H···N and C-H...F contacts connect the molecules into a three-dimensional network. The shortest centroid-centroid distance between two aromatic systems is 3.896 (2) Å and is found between the two different six-membered rings of the quinoline scaffold in neighbouring molecules.

Related literature

For background to the industrial importance of heterocyclic compounds, see: Isloor et al. (2009); Vijesh et al. (2011); Ruanwasa et al. (2010). For pharmacological properties of quinoline-derived compounds, see: Chen et al. (2004); Kaur et al. (2010); Bekhit et al. (2004). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental

Crystal data

$C_{24}H_{18}BrF_3N_4O_4$	$V = 2342.08 (16) \text{ Å}^3$
$M_r = 563.33$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 5.2809 (2) Å	$\mu = 1.82 \text{ mm}^{-1}$
b = 24.5131 (10) Å	$T = 200 \ { m K}$
c = 18.3517 (7) Å	$0.58 \times 0.16 \times 0.07 \text{ mm}$
$\beta = 99.643 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.417, \ T_{\max} = 0.889$

Refinement

$P[F^2 > 2\sigma(F^2)] = 0.051$	326 parameters
K[T > 20(T)] = 0.001	520 parameters
$wR(F^2) = 0.141$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
5775 reflections	$\Delta \rho_{\rm min} = -0.93 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots N2^{i}$	0.99	2.62	3.339 (4)	129
$C3-H3 \cdot \cdot \cdot N3^{i}$	0.95	2.65	3.288 (4)	125
$C2-H2B\cdots F2^{ii}$	0.99	2.45	3.308 (3)	144
$C5-H5A\cdots O3^{iii}$	0.99	2.37	3.258 (4)	149
$C26-H26\cdots O1^{iv}$	0.95	2.57	3.354 (5)	140
Symmetry codes: (i	x - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	(ii) $x = 1 = y$	± 1 $z = 1$; (iii)	$r \pm 1$ v_{τ} (iv)

х -1, y, z; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2};$ (iii) x + 1, y, z; (iv) (1) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010): data reduction: SAINT: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2409).

References

- Bekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249-255.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.

Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). *Eur. J. Med. Chem.* **45**, 3245–3264.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). *Synth. Met.* **160**, 819–824.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.

supporting information

Acta Cryst. (2012). E68, o3387-o3388 [doi:10.1107/S1600536812046417]

Ethyl 4-({1-[2-(4-bromophenyl)-2-oxoethyl]-1*H*-1,2,3-triazol-4-yl}methoxy)-8-(trifluoromethyl)quinoline-3-carboxylate

Arun M. Islor, B. Garudachari, K. N. Shivananda, Thomas Gerber, Eric Hosten and Richard Betz

S1. Comment

Heterocyclic compounds have a wide range of applications in a vast variety of different fields such as pharmacy, agrochemistry and even in optoelectronics (Isloor *et al.*, 2009; Vijesh *et al.*, 2011; Ruanwasa *et al.*, 2010). Quinoline and its derivatives are well known nitrogen-containing heterocyclic compounds and play an important role in medicinal and pesticide chemistry by exhibiting a wide range of activities such as antibacterial, antifungal, antibiotic, anticancer, anticonvulsant, anti-tuberculosis and anti-inflammatory properties (Chen *et al.*, 2004; Kaur *et al.*, 2010; Bekhit *et al.* 2004). Keeping in mind the biological importance of quinoline-derived compounds, the title compound was synthesized to study its crystal structure.

The least-squares plane defined by the non-hydrogen atoms of the 1,2,3-triazole core encloses angles of 27.2 (2) ° and 48.4 (2) ° with the least-squares planes defined by the intracyclic atoms of the quinoline scaffold as well as the phenyl group, respectively. The latter two mentioned planes intersect at an angle of 41.5 (1) °. The quinoline scaffold is almost planar (r.m.s. of all fitted non-hydrogen atoms = 0.0176 Å) with C35 deviating most from this common plane by 0.028 (3) Å (Fig. 1).

In the crystal, intermolecular C-H···O, C-H···F and C-H···N contacts can be detected whose range falls by at least 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. The C-H. N contacts – whose angles fall markedly below a linear arrangement for the donor atom, hydrogen atom as well as the acceptor atom - likely are to be seen as a result of the more pronounced C-H···O contacts described below (see below). They are supported by one of the hydrogen atoms on one of the methylene groups directly bonded to the 1,2,3-triazole core as well as the latter one's intracyclic CH group and have the two two-coordinate nitrogen atoms as acceptors. These contacts form two homodromic chains connecting the molecules to chains along the crystallographic a axis. Along these chains, one set of C-H···O contacts between the second methylene group bonded to the 1,2,3-triazole core as well as the double bonded oxygen atom of the ester group can be found. The second set of C-H···O contacts is apparent between one of the hydrogen atoms on the bromophenyl group in *ortho* position to the keto group as donor and the keto group in a neighbouring molecule as acceptor. The intermolecular C-H…F contact is supported by the second hydrogen atom of the methylene group that is already part of the C-H···N contact system. In addition, an intramolecular C-H···F contact can be hold responsible for the small $F-C-C-C_H$ dihedral angle that was measured at 0.6 (4) ° only. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, these contacts connect the molecules to a three-dimensional network. According to a graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C-H···N contacts is $C^{1}(4)C^{1}(4)$ on the unary level while the C-H···O contacts require a $C_{1}^{1}(7)R_{2}^{2}(10)$ descriptor on the same level. The descriptor for the C-H. F contacts is $S(5)C_{1}^{1}(13)$. The shortest intercentroid distance between two aromatic systems was measured at 3.896 (2) Å and is found between the two different

six-membered rings of the quinoline scaffold in neighbouring molecules.

The packing of the title compound in the crystal structure is shown in Figure 3.

S2. Experimental

To a stirred solution of 2-bromo-1-(4-bromophenyl)ethanone (0.50 g, 0.0017 mol), sodium azide (0.117 g, 0.0018 mol) in aqueous PEG 400 (5 ml, v:v = 1:1), ethyl 4-oxo-1-(prop-2-yn-1-yl)-8- (trifluoromethyl)-1,4-dihydroquinoline-3-carboxyl-ate (0.58 g, 0.0018 mol), sodium ascorbate (0.356 g, 0.0018 mol) and 10 mol % of copper iodide were added. The heterogeneous mixture was stirred vigorously overnight. Completion of the reaction was monitored by TLC. The product was extracted in ethyl acetate and concentrated. The crude product was purified by column chromatography using petrol ether and ethyl acetate as the eluent, yield: 0.53 g (52.47%). Single crystals suitable for the X-ray diffraction study were obtained by slow evaporation of a solution of the compound in ethyl acetate at room temperature.

S3. Refinement

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008)), with $U_{iso}(H)$ set to $1.5U_{eq}(C)$.

Figure 1

Molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at the 50% probability level.

Figure 2

Intermolecular contacts, viewed along $[0\ 0\ -1]$. For reasons of clarity, only a selection of contacts is shown. Symmetry operators: ⁱ x - 1, y, z; ⁱⁱ x + 1, y, z.

Figure 3

Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at the 50% probability level).

Ethyl 4-({1-[2-(4-bromophenyl)-2-oxoethyl]-1*H*-1,2,3-triazol- 4-yl}methoxy)-8-(trifluoromethyl)quinoline-3-carboxylate

Crystal data	
$C_{24}H_{18}BrF_3N_4O_4$	$\beta = 99.643 (1)^{\circ}$
$M_r = 563.33$	$V = 2342.08 (16) Å^3$
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 1136
a = 5.2809 (2) Å	$D_{\rm x} = 1.598 {\rm ~Mg} {\rm ~m}^{-3}$
b = 24.5131 (10) Å	Melting point = 380–378 K
c = 18.3517 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6880 reflections $\theta = 2.4-27.9^{\circ}$ $\mu = 1.82 \text{ mm}^{-1}$

Data collection

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 2.6613P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\min} = -0.93 \text{ e} \text{ Å}^{-3}$

T = 200 K

 $R_{\rm int} = 0.030$

 $k = -32 \longrightarrow 32$ $l = -24 \longrightarrow 24$

Platelet, colourless

 $0.58 \times 0.16 \times 0.07 \text{ mm}$

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ $h = -6 \rightarrow 7$

22440 measured reflections 5775 independent reflections 3774 reflections with $I > 2\sigma(I)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	-0.68782 (8)	0.629887 (16)	0.22421 (3)	0.0859 (2)
F1	1.3784 (4)	0.00897 (8)	0.56325 (11)	0.0659 (6)
F2	1.3161 (4)	0.05001 (7)	0.66156 (9)	0.0494 (4)
F3	1.0047 (4)	0.00785 (7)	0.59406 (11)	0.0550 (5)
O1	0.2309 (7)	0.48213 (13)	0.44653 (15)	0.0921 (11)
O2	0.6398 (4)	0.25396 (8)	0.50057 (11)	0.0477 (5)
O3	0.3332 (5)	0.27788 (10)	0.60507 (14)	0.0658 (7)
O4	0.3675 (5)	0.22131 (9)	0.70058 (13)	0.0549 (6)
N1	0.4456 (5)	0.39894 (10)	0.38120 (14)	0.0440 (6)
N2	0.6711 (6)	0.39092 (14)	0.3594 (2)	0.0709 (10)
N3	0.8024 (6)	0.35804 (14)	0.4081 (2)	0.0763 (11)
N4	0.8633 (5)	0.11738 (9)	0.63266 (12)	0.0349 (5)
C1	0.1559 (7)	0.47765 (13)	0.38096 (18)	0.0505 (8)
C2	0.2540 (6)	0.43291 (12)	0.33647 (16)	0.0433 (7)
H2A	0.1080	0.4098	0.3139	0.052*
H2B	0.3301	0.4495	0.2959	0.052*
C3	0.4308 (6)	0.37070 (12)	0.44310 (17)	0.0442 (7)
Н3	0.2901	0.3692	0.4692	0.053*
C4	0.6589 (6)	0.34487 (12)	0.46013 (18)	0.0450 (7)
C5	0.7543 (6)	0.30655 (12)	0.52164 (19)	0.0500 (8)
H5A	0.9440	0.3040	0.5290	0.060*
H5B	0.7028	0.3193	0.5682	0.060*

C6	0.7165 (6)	0.21159 (11)	0.54721 (15)	0.0370 (6)
C7	0.6172 (5)	0.20139 (10)	0.61068 (15)	0.0353 (6)
C8	0.7001 (6)	0.15307 (11)	0.65100 (15)	0.0366 (6)
H8	0.6314	0.1462	0.6948	0.044*
C9	0.4265 (6)	0.23796 (12)	0.63684 (17)	0.0417 (7)
C10	0.1823 (7)	0.25434 (14)	0.73111 (19)	0.0539 (8)
H10A	0.0194	0.2565	0.6956	0.065*
H10B	0.2496	0.2918	0.7410	0.065*
C11	0.1379 (11)	0.2287 (2)	0.7998 (2)	0.0903 (16)
H11A	0.0886	0.1905	0.7903	0.135*
H11B	-0.0002	0.2481	0.8186	0.135*
H11C	0.2956	0.2305	0.8365	0.135*
C12	1.2086 (6)	0.03989 (12)	0.59112 (16)	0.0423 (7)
C21	-0.0461 (6)	0.51471 (12)	0.34071 (16)	0.0440 (7)
C22	-0.1286 (6)	0.51169 (13)	0.26558 (16)	0.0451 (7)
H22	-0.0565	0.4853	0.2372	0.054*
C23	-0.3155 (7)	0.54683 (13)	0.23120 (18)	0.0513 (8)
H23	-0.3684	0.5453	0.1791	0.062*
C24	-0.4236 (6)	0.58361 (12)	0.2723 (2)	0.0508 (8)
C25	-0.3501 (10)	0.58660 (17)	0.3464 (2)	0.0862 (15)
H25	-0.4291	0.6121	0.3745	0.103*
C26	-0.1584 (10)	0.55214 (17)	0.3812 (2)	0.0844 (15)
H26	-0.1045	0.5544	0.4332	0.101*
C31	0.8958 (5)	0.17471 (10)	0.52570 (14)	0.0347 (6)
C32	0.9629 (5)	0.12778 (10)	0.56984 (14)	0.0311 (5)
C33	1.1420 (5)	0.09074 (11)	0.54750 (14)	0.0341 (6)
C34	1.2501 (6)	0.10091 (12)	0.48611 (15)	0.0410 (7)
H34	1.3688	0.0756	0.4718	0.049*
C35	1.1872 (7)	0.14842 (13)	0.44408 (16)	0.0470 (7)
H35	1.2669	0.1554	0.4023	0.056*
C36	1.0133 (6)	0.18436 (12)	0.46280 (16)	0.0446 (7)
H36	0.9701	0.2161	0.4337	0.054*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0515 (3)	0.0564 (2)	0.1386 (5)	0.01219 (17)	-0.0170 (2)	0.0347 (2)
F1	0.0879 (16)	0.0592 (12)	0.0565 (12)	0.0408 (11)	0.0290 (11)	0.0074 (9)
F2	0.0566 (12)	0.0539 (10)	0.0370 (9)	0.0161 (9)	0.0060 (8)	0.0067 (8)
F3	0.0720 (13)	0.0296 (8)	0.0640 (12)	-0.0009 (8)	0.0132 (10)	0.0037 (8)
01	0.128 (3)	0.088 (2)	0.0487 (15)	0.061 (2)	-0.0188 (16)	-0.0027 (14)
O2	0.0599 (14)	0.0324 (10)	0.0452 (11)	0.0068 (9)	-0.0078 (10)	0.0091 (8)
O3	0.0578 (16)	0.0620 (15)	0.0772 (17)	0.0317 (13)	0.0103 (13)	0.0126 (13)
O4	0.0633 (16)	0.0503 (13)	0.0544 (14)	0.0210 (11)	0.0191 (11)	-0.0004 (10)
N1	0.0368 (14)	0.0421 (13)	0.0554 (15)	0.0115 (11)	0.0148 (12)	0.0196 (11)
N2	0.0441 (18)	0.080 (2)	0.097 (2)	0.0258 (15)	0.0346 (17)	0.0470 (19)
N3	0.0405 (18)	0.084 (2)	0.109 (3)	0.0245 (16)	0.0274 (18)	0.054 (2)
N4	0.0402 (14)	0.0305 (11)	0.0347 (12)	0.0042 (10)	0.0082 (10)	0.0039 (9)

C1	0.058 (2)	0.0491 (17)	0.0420 (17)	0.0170 (15)	0.0000 (15)	0.0087 (14)
C2	0.0420 (17)	0.0461 (16)	0.0434 (16)	0.0148 (13)	0.0117 (13)	0.0167 (13)
C3	0.0329 (16)	0.0486 (17)	0.0517 (18)	0.0087 (13)	0.0091 (13)	0.0211 (14)
C4	0.0335 (16)	0.0364 (14)	0.063 (2)	0.0054 (12)	0.0030 (14)	0.0159 (14)
C5	0.0422 (18)	0.0360 (15)	0.066 (2)	0.0021 (13)	-0.0089 (15)	0.0136 (14)
C6	0.0428 (16)	0.0296 (13)	0.0345 (14)	0.0034 (11)	-0.0057 (12)	0.0043 (10)
C7	0.0338 (15)	0.0299 (13)	0.0397 (15)	0.0049 (11)	-0.0016 (12)	-0.0018 (11)
C8	0.0402 (16)	0.0346 (13)	0.0354 (14)	0.0045 (12)	0.0079 (12)	0.0028 (11)
C9	0.0343 (16)	0.0373 (14)	0.0500 (18)	0.0035 (12)	-0.0032 (13)	-0.0038 (12)
C10	0.046 (2)	0.0561 (19)	0.059 (2)	0.0090 (15)	0.0088 (15)	-0.0173 (16)
C11	0.123 (4)	0.093 (3)	0.063 (3)	0.038 (3)	0.041 (3)	-0.002 (2)
C12	0.0488 (19)	0.0375 (15)	0.0416 (16)	0.0141 (13)	0.0103 (13)	0.0011 (12)
C21	0.0514 (19)	0.0389 (15)	0.0404 (16)	0.0131 (13)	0.0038 (13)	0.0070 (12)
C22	0.0502 (19)	0.0439 (16)	0.0394 (16)	0.0094 (14)	0.0028 (13)	0.0052 (12)
C23	0.056 (2)	0.0464 (17)	0.0446 (17)	-0.0030 (15)	-0.0119 (14)	0.0093 (14)
C24	0.0431 (18)	0.0360 (15)	0.070 (2)	0.0113 (13)	-0.0011 (15)	0.0160 (15)
C25	0.116 (4)	0.070 (3)	0.070 (3)	0.061 (3)	0.009 (3)	0.001 (2)
C26	0.132 (4)	0.076 (3)	0.0401 (19)	0.063 (3)	-0.001 (2)	-0.0019 (17)
C31	0.0400 (15)	0.0307 (12)	0.0314 (13)	-0.0003 (11)	0.0002 (11)	0.0019 (10)
C32	0.0324 (14)	0.0285 (12)	0.0311 (13)	-0.0007 (10)	0.0019 (11)	0.0013 (10)
C33	0.0384 (15)	0.0325 (13)	0.0311 (13)	0.0013 (11)	0.0047 (11)	-0.0015 (10)
C34	0.0465 (18)	0.0437 (15)	0.0341 (14)	0.0009 (13)	0.0102 (13)	-0.0050 (12)
C35	0.059 (2)	0.0517 (17)	0.0318 (15)	-0.0047 (15)	0.0123 (14)	0.0011 (13)
C36	0.056 (2)	0.0419 (15)	0.0340 (15)	-0.0027 (14)	0.0031 (13)	0.0090 (12)

Geometric parameters (Å, °)

Br1—C24	1.897 (3)	С7—С9	1.487 (4)
F1—C12	1.339 (3)	C8—H8	0.9500
F2—C12	1.345 (3)	C10-C11	1.461 (6)
F3—C12	1.341 (4)	C10—H10A	0.9900
01—C1	1.207 (4)	C10—H10B	0.9900
O2—C6	1.364 (3)	C11—H11A	0.9800
O2—C5	1.448 (4)	C11—H11B	0.9800
O3—C9	1.202 (4)	C11—H11C	0.9800
O4—C9	1.324 (4)	C12—C33	1.491 (4)
O4—C10	1.452 (4)	C21—C26	1.376 (5)
N1—N2	1.333 (4)	C21—C22	1.377 (4)
N1—C3	1.344 (4)	C22—C23	1.380 (4)
N1-C2	1.453 (3)	C22—H22	0.9500
N2—N3	1.311 (4)	C23—C24	1.361 (5)
N3—C4	1.354 (4)	C23—H23	0.9500
N4—C8	1.311 (4)	C24—C25	1.353 (5)
N4—C32	1.369 (4)	C25—C26	1.389 (5)
C1—C21	1.498 (4)	C25—H25	0.9500
C1—C2	1.510 (4)	C26—H26	0.9500
C2—H2A	0.9900	C31—C32	1.417 (3)
C2—H2B	0.9900	C31—C36	1.419 (4)

C3—C4	1.351 (4)	C32—C33	1.420 (4)
С3—Н3	0.9500	C33—C34	1.368 (4)
C4—C5	1.490 (4)	C34—C35	1.406 (4)
C5—H5A	0.9900	С34—Н34	0.9500
С5—Н5В	0.9900	C35—C36	1.358 (5)
C6—C7	1.378 (4)	С35—Н35	0.9500
C6—C31	1.413 (4)	С36—Н36	0.9500
С7—С8	1.426 (4)		
C6—O2—C5	116.3 (2)	C10-C11-H11B	109.5
C9—O4—C10	116.2 (2)	H11A—C11—H11B	109.5
N2—N1—C3	111.0 (2)	C10-C11-H11C	109.5
N2—N1—C2	119.2 (2)	H11A—C11—H11C	109.5
C3—N1—C2	129.7 (3)	H11B—C11—H11C	109.5
N3—N2—N1	106.5 (3)	F1—C12—F3	106.1 (2)
N2—N3—C4	109.4 (3)	F1—C12—F2	105.6 (2)
C8—N4—C32	117.0 (2)	F3—C12—F2	106.4 (2)
O1—C1—C21	121.6 (3)	F1—C12—C33	112.4 (2)
O1—C1—C2	121.3 (3)	F3—C12—C33	113.1 (2)
C21—C1—C2	117.0 (3)	F2—C12—C33	112.7 (2)
N1—C2—C1	112.4 (3)	C26—C21—C22	118.9 (3)
N1—C2—H2A	109.1	C26—C21—C1	118.3 (3)
C1—C2—H2A	109.1	C22—C21—C1	122.8 (3)
N1—C2—H2B	109.1	C21—C22—C23	120.4 (3)
C1—C2—H2B	109.1	C21—C22—H22	119.8
H2A—C2—H2B	107.9	С23—С22—Н22	119.8
N1—C3—C4	105.1 (3)	C24—C23—C22	119.6 (3)
N1—C3—H3	127.4	С24—С23—Н23	120.2
С4—С3—Н3	127.4	С22—С23—Н23	120.2
C3—C4—N3	107.9 (3)	C25—C24—C23	121.1 (3)
C3—C4—C5	130.3 (3)	C25—C24—Br1	120.0 (3)
N3—C4—C5	121.8 (3)	C23—C24—Br1	118.8 (3)
O2—C5—C4	106.6 (2)	C24—C25—C26	119.6 (3)
O2—C5—H5A	110.4	C24—C25—H25	120.2
C4—C5—H5A	110.4	С26—С25—Н25	120.2
O2—C5—H5B	110.4	C21—C26—C25	120.3 (3)
C4—C5—H5B	110.4	C21—C26—H26	119.9
H5A—C5—H5B	108.6	С25—С26—Н26	119.9
O2—C6—C7	123.6 (3)	C6—C31—C32	118.3 (2)
O2—C6—C31	117.0 (3)	C6—C31—C36	121.7 (2)
C7—C6—C31	119.2 (2)	C32—C31—C36	119.9 (3)
C6—C7—C8	117.5 (2)	N4—C32—C31	122.6 (2)
C6—C7—C9	122.5 (2)	N4—C32—C33	119.5 (2)
C8—C7—C9	119.9 (3)	C31—C32—C33	117.9 (2)
N4—C8—C7	125.4 (3)	C34—C33—C32	120.7 (2)
N4—C8—H8	117.3	C34—C33—C12	120.1 (3)
С7—С8—Н8	117.3	C32—C33—C12	119.2 (2)
03—C9—O4	122.8 (3)	C33—C34—C35	120.7 (3)

O3—C9—C7	125.4 (3)	С33—С34—Н34	119.7
O4—C9—C7	111.8 (2)	С35—С34—Н34	119.7
O4—C10—C11	108.0 (3)	C36—C35—C34	120.4 (3)
O4—C10—H10A	110.1	С36—С35—Н35	119.8
C11—C10—H10A	110.1	С34—С35—Н35	119.8
O4—C10—H10B	110.1	C35—C36—C31	120.3 (3)
C11—C10—H10B	110.1	С35—С36—Н36	119.9
H10A-C10-H10B	108.4	С31—С36—Н36	119.9
C10-C11-H11A	109.5		
C3—N1—N2—N3	-0.8 (5)	C26—C21—C22—C23	2.0 (6)
C2—N1—N2—N3	-178.3 (3)	C1—C21—C22—C23	180.0 (3)
N1—N2—N3—C4	0.6 (5)	C21—C22—C23—C24	-1.9(5)
N2—N1—C2—C1	-127.2 (3)	C22—C23—C24—C25	0.4 (6)
C3—N1—C2—C1	55.8 (5)	C22—C23—C24—Br1	-178.0 (3)
O1—C1—C2—N1	-1.4 (5)	C23—C24—C25—C26	1.0 (7)
C21—C1—C2—N1	-179.0(3)	Br1-C24-C25-C26	179.3 (4)
N2—N1—C3—C4	0.7 (4)	C22—C21—C26—C25	-0.6(7)
C2—N1—C3—C4	177.9 (3)	C1—C21—C26—C25	-178.7 (4)
N1—C3—C4—N3	-0.3 (4)	C24—C25—C26—C21	-0.8 (8)
N1—C3—C4—C5	-178.3 (3)	O2—C6—C31—C32	-174.8 (2)
N2—N3—C4—C3	-0.2 (5)	C7—C6—C31—C32	1.3 (4)
N2—N3—C4—C5	178.1 (3)	O2—C6—C31—C36	6.8 (4)
C6—O2—C5—C4	175.5 (3)	C7—C6—C31—C36	-177.1 (3)
C3—C4—C5—O2	78.5 (5)	C8—N4—C32—C31	0.0 (4)
N3—C4—C5—O2	-99.2 (4)	C8—N4—C32—C33	179.6 (3)
C5—O2—C6—C7	81.6 (4)	C6—C31—C32—N4	-0.9 (4)
C5—O2—C6—C31	-102.5 (3)	C36—C31—C32—N4	177.5 (3)
O2—C6—C7—C8	175.0 (3)	C6—C31—C32—C33	179.6 (2)
C31—C6—C7—C8	-0.9 (4)	C36—C31—C32—C33	-2.1 (4)
O2—C6—C7—C9	-3.8 (4)	N4—C32—C33—C34	-178.1 (3)
C31—C6—C7—C9	-179.6 (3)	C31—C32—C33—C34	1.4 (4)
C32—N4—C8—C7	0.5 (4)	N4—C32—C33—C12	2.8 (4)
C6—C7—C8—N4	0.0 (4)	C31—C32—C33—C12	-177.6 (3)
C9—C7—C8—N4	178.7 (3)	F1-C12-C33-C34	0.6 (4)
C10—O4—C9—O3	-0.3 (5)	F3—C12—C33—C34	-119.5 (3)
C10—O4—C9—C7	179.9 (3)	F2-C12-C33-C34	119.8 (3)
C6—C7—C9—O3	3.1 (5)	F1—C12—C33—C32	179.7 (3)
C8—C7—C9—O3	-175.6 (3)	F3—C12—C33—C32	59.6 (3)
C6—C7—C9—O4	-177.2 (3)	F2-C12-C33-C32	-61.1 (4)
C8—C7—C9—O4	4.1 (4)	C32—C33—C34—C35	0.4 (4)
C9—O4—C10—C11	178.5 (3)	C12—C33—C34—C35	179.4 (3)
O1—C1—C21—C26	-4.3 (6)	C33—C34—C35—C36	-1.6 (5)
C2-C1-C21-C26	173.3 (4)	C34—C35—C36—C31	0.9 (5)
O1—C1—C21—C22	177.7 (4)	C6-C31-C36-C35	179.3 (3)
C2-C1-C21-C22	-4.7 (5)	C32—C31—C36—C35	0.9 (4)

D—H···A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H···A	
C2—H2A···N2 ⁱ	0.99	2.62	3.339 (4)	129	
C3—H3···N3 ⁱ	0.95	2.65	3.288 (4)	125	
C2— $H2B$ ···F2 ⁱⁱ	0.99	2.45	3.308 (3)	144	
C5—H5 <i>A</i> ···O3 ⁱⁱⁱ	0.99	2.37	3.258 (4)	149	
C26—H26…O1 ^{iv}	0.95	2.57	3.354 (5)	140	
C34—H34…F1	0.95	2.34	2.687 (4)	101	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*-1, -*y*+1/2, *z*-1/2; (iii) *x*+1, *y*, *z*; (iv) -*x*, -*y*+1, -*z*+1.