metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dibromido(6-methyl-2,2'-bipyridine- $\kappa^2 N.N'$)cobalt(II)

Sadif A. Shirvan,^a* Sara Haydari Dezfuli,^a Fereydoon Khazali^a and Ali Borsalani^b

^aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and ^bDepartment of Petroleum Engineering, Omidieh Branch, Islamic Azad University, Omidieh, Iran Correspondence e-mail: sadifchemist@hotmail.com

Received 26 October 2012; accepted 1 November 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.018 Å; R factor = 0.085; wR factor = 0.164; data-to-parameter ratio = 17.4.

In the molecule of the title compound, $[CoBr_2(C_{11}H_{10}N_2)]$, the Co^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a chelating 6-methyl-2.2'bipyridine ligand and two terminal Br atoms. In the crystal, π - π stacking interactions between the pyridine rings along the *a*axis direction [centroid–centroid distance = 3.761(7) Å] and C-H···Br hydrogen bonds in the *bc* plane together generate the three-dimensional packing.

Related literature

For related structures, see: Ahmadi et al. (2008a,b, 2009); Amani et al. (2009); Kalateh et al. (2010); Newkome et al. (1982); Onggo et al. (2005); Shirvan et al. (2012); Shirvan & Haydari Dezfuli (2012).

Experimental

Crystal data

 $[CoBr_2(C_{11}H_{10}N_2)]$ $M_r = 388.94$ Monoclinic, $P2_1/n$ a = 7.5541 (7) Å b = 9.7249 (7) Å c = 17.7352 (16) Å $\beta = 97.392 \ (7)^{\circ}$

V = 1292.05 (19) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 7.49 \text{ mm}^-$ T = 173 K $0.45 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min} = 0.379, T_{\rm max} = 0.512$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.085$	145 parameters
$wR(F^2) = 0.164$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 2.16 \text{ e } \text{\AA}^{-3}$
2519 reflections	$\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$

6393 measured reflections

 $R_{\rm int} = 0.099$

2519 independent reflections

1546 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Co1-Br1	2.352 (2)	Co1-N1	2.035 (10)
Co1-Br2	2.3698 (19)	Co1-N2	2.029 (8)
	. ,		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1A \cdots Br1^{i}$ $C8 - H8 \cdots Br2^{ii}$	0.96 0.93	2.89 2.89	3.849 (14) 3.771 (14)	178 158
	. 1 1	. 1		

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2600).

References

- Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008a). Acta Cryst. E64, m1407.
- Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008b). Acta Cryst. E64. m1306-m1307.
- Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169-m1170.
- Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026-3030.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m1241.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457. Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C.
- & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782-1783.
- Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129-136.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1124.
- Shirvan, S. A., Haydari Dezfuli, S., Golabi, E. & Gholamzadeh, M. A. (2012). Acta Cryst. E68, m1327-m1328.

supporting information

Acta Cryst. (2012). E68, m1460 [doi:10.1107/S1600536812045230]

Dibromido(6-methyl-2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(II)

Sadif A. Shirvan, Sara Haydari Dezfuli, Fereydoon Khazali and Ali Borsalani

S1. Comment

Recently, we reported the synthesis and crystal structure of [In(6-mbipy)Cl₃(DMSO)], (II) (Shirvan *et al.*, 2012) and [Cd(6-mbipy)Br₂(DMSO)], (III) (Shirvan & Haydari Dezfuli, 2012) (6-mbipy = 6-methyl-2,2'-bipyridine, DMSO = dimethyl sulfoxide). 6-Methyl-2,2'-bipyridine is a good ligand and a few complexes with 6-mbipy have been prepared, such as that of [Hg(6-mbipy)Cl₂], (IV) (Ahmadi *et al.*, 2008*a*), [Pt(6-mbipy)Cl₄], (V) (Amani *et al.*, 2009), [Pb₄(NO₃)₈(6mbipy)₄], (VI) (Ahmadi *et al.*, 2009), [Zn(6-mbipy)Br₂], (VII) (Kalateh *et al.*, 2010), [Zn(6-mbipy)Cl₂], (VIII) (Ahmadi *et al.*, 2008*b*), [Pd(6-mbipy)Cl₂], (IX) (Newkome *et al.*, 1982) and [Ru(6-mbipy)₃][BF₄]₂, (X) (Onggo *et al.*, 2005). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the Co^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a chelating 6-mbipy ligand and two terminal Br atoms (Table 1). In the crystal, intermolecular C—H···Br hydrogen bonds and π - π contacts (Table 2, Fig. 2) between the pyridine rings, Cg2··· $Cg3^i$ [symmetry code: (i) 1-x, 1-y, -z, Cg2 and Cg3 are the centroids of the rings N1/C2–C6 and N2/C7–C11, respectively], with a centroid–centroid distance of 3.761 (7) Å, stabilize the structure.

S2. Experimental

For the preparation of the title compound, a solution of 6-mbipy (0.28 g, 0.26 ml, 1.65 mmol) in acetonitrile (10 ml) was added to a solution of CoBr₂ (0.36 g, 1.65 mmol) in acetonitrile (10 ml) and the resulting blue solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, blue needle crystals of the title compound were isolated (yield: 0.47 g, 73.2%).

S3. Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH₃) Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density was found 0.96 Å from Br1 the deepest hole 0.79 Å from Br1.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.

Dibromido(6-methyl-2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(II)

Crystal data

 $\begin{bmatrix} \text{CoBr}_2(\text{C}_{11}\text{H}_{10}\text{N}_2) \end{bmatrix} \\ M_r = 388.94 \\ \text{Monoclinic, } P2_1/n \\ \text{Hall symbol: -P 2yn} \\ a = 7.5541 (7) \text{ Å} \\ b = 9.7249 (7) \text{ Å} \\ c = 17.7352 (16) \text{ Å} \\ \beta = 97.392 (7)^{\circ} \\ V = 1292.05 (19) \text{ Å}^3 \\ Z = 4 \\ \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.379, T_{\max} = 0.512$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.085$ $wR(F^2) = 0.164$ S = 1.052519 reflections 145 parameters 0 restraints F(000) = 748 $D_x = 2.000 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6393 reflections $\theta = 3.1-26.0^{\circ}$ $\mu = 7.49 \text{ mm}^{-1}$ T = 173 KNeedle, blue $0.45 \times 0.13 \times 0.10 \text{ mm}$

6393 measured reflections 2519 independent reflections 1546 reflections with $I > 2\sigma(I)$ $R_{int} = 0.099$ $\theta_{max} = 26.0^\circ, \theta_{min} = 3.1^\circ$ $h = -7 \rightarrow 9$ $k = -10 \rightarrow 11$ $l = -21 \rightarrow 21$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 5.329P]$	$\Delta \rho_{\rm max} = 2.16 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.002$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	<i>id isotropic or</i>	equivalent isotrop	oic displacement	parameters	$(Å^2)$	i
----------------------------------	------------------------	--------------------	------------------	------------	---------	---

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C3	0.1467 (17)	0.3377 (14)	0.1282 (7)	0.046 (3)
Н3	0.1126	0.2832	0.1669	0.056*
C4	0.1737 (16)	0.2801 (14)	0.0583 (7)	0.046 (3)
H4	0.1588	0.1861	0.0501	0.055*
Br1	0.04264 (18)	0.91295 (15)	0.11995 (7)	0.0501 (4)
N2	0.2940 (12)	0.7342 (12)	-0.0213 (5)	0.042 (3)
C6	0.2426 (15)	0.5016 (13)	0.0149 (6)	0.034 (3)
C7	0.2897 (14)	0.6000 (13)	-0.0435 (6)	0.034 (3)
C8	0.3225 (16)	0.5617 (15)	-0.1157 (6)	0.045 (3)
H8	0.3190	0.4698	-0.1303	0.054*
C9	0.3607 (16)	0.6643 (16)	-0.1658 (6)	0.045 (4)
H9	0.3865	0.6417	-0.2142	0.055*
C10	0.3601 (18)	0.7992 (16)	-0.1431 (6)	0.049 (4)
H10	0.3798	0.8692	-0.1768	0.059*
N1	0.2173 (12)	0.5578 (10)	0.0835 (5)	0.031 (2)
C11	0.3303 (17)	0.8297 (15)	-0.0711 (6)	0.043 (3)
H11	0.3356	0.9212	-0.0558	0.052*
Br2	0.54925 (17)	0.79979 (15)	0.16326 (7)	0.0467 (4)
Col	0.2680 (2)	0.76329 (17)	0.09004 (8)	0.0345 (4)
C5	0.2222 (17)	0.3629 (13)	0.0021 (6)	0.040 (3)
Н5	0.2414	0.3255	-0.0444	0.047*
C2	0.1726 (16)	0.4806 (14)	0.1384 (7)	0.041 (3)
C1	0.144 (2)	0.5546 (17)	0.2094 (7)	0.070 (5)
H1A	0.2213	0.5171	0.2516	0.084*
H1B	0.0218	0.5439	0.2183	0.084*
H1C	0.1697	0.6505	0.2042	0.084*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C3	0.033 (7)	0.049 (9)	0.057 (7)	0.002 (7)	0.002 (6)	0.001 (6)
C4	0.036 (7)	0.036 (8)	0.061 (8)	0.007 (6)	-0.010 (6)	-0.022 (6)

supporting information

Br1	0.0389 (8)	0.0543 (10)	0.0579 (8)	0.0073 (7)	0.0089 (6)	-0.0186 (6)
N2	0.023 (5)	0.072 (8)	0.029 (5)	0.002 (5)	0.002 (4)	-0.013 (5)
C6	0.020 (6)	0.042 (7)	0.038 (6)	0.008 (6)	-0.002 (4)	-0.013 (5)
C7	0.020 (6)	0.047 (8)	0.033 (6)	0.007 (6)	0.002 (4)	-0.009 (5)
C8	0.034 (7)	0.062 (9)	0.037 (6)	0.010 (7)	-0.002 (5)	-0.026 (6)
C9	0.025 (6)	0.077 (11)	0.035 (6)	0.010 (7)	0.005 (5)	-0.005 (6)
C10	0.053 (9)	0.060 (10)	0.035 (6)	0.019 (8)	0.005 (6)	-0.003 (6)
N1	0.021 (5)	0.034 (6)	0.039 (5)	-0.002 (4)	0.010 (4)	-0.007 (4)
C11	0.046 (8)	0.047 (9)	0.038 (6)	-0.012 (7)	0.011 (5)	-0.001 (6)
Br2	0.0342 (7)	0.0557 (9)	0.0488 (7)	0.0003 (7)	-0.0004 (5)	-0.0266 (6)
Col	0.0306 (9)	0.0390 (11)	0.0347 (8)	-0.0018 (8)	0.0070 (6)	-0.0138 (7)
C5	0.042 (8)	0.034 (7)	0.042 (6)	0.001 (6)	0.002 (5)	-0.006 (6)
C2	0.026 (7)	0.046 (8)	0.049 (7)	-0.005 (6)	-0.001 (5)	-0.005 (6)
C1	0.095 (13)	0.077 (12)	0.040 (7)	-0.029 (10)	0.014 (7)	-0.001 (7)

Geometric parameters (Å, °)

Col—Brl	2.352 (2)	C7—C8	1.386 (14)
Co1—Br2	2.3698 (19)	C8—C9	1.391 (19)
Co1—N1	2.035 (10)	C8—H8	0.9300
Co1—N2	2.029 (8)	C9—C10	1.372 (19)
C3—C4	1.399 (17)	С9—Н9	0.9300
C3—C2	1.411 (18)	C10—C11	1.357 (16)
С3—Н3	0.9300	C10—H10	0.9300
C4—C5	1.366 (18)	N1—C2	1.309 (15)
C4—H4	0.9300	C11—H11	0.9300
N2-C11	1.334 (16)	С5—Н5	0.9300
N2—C7	1.362 (16)	C2—C1	1.491 (18)
C6—N1	1.369 (13)	C1—H1A	0.9600
C6—C5	1.373 (17)	C1—H1B	0.9600
C6—C7	1.487 (17)	C1—H1C	0.9600
C4—C3—C2	118.3 (13)	C2—N1—C6	120.7 (11)
С4—С3—Н3	120.8	C2—N1—Co1	125.8 (8)
С2—С3—Н3	120.8	C6—N1—Co1	113.3 (8)
C5—C4—C3	119.5 (13)	N2-C11-C10	123.0 (13)
C5—C4—H4	120.2	N2-C11-H11	118.5
C3—C4—H4	120.2	C10-C11-H11	118.5
C11—N2—C7	118.3 (10)	N2—Co1—N1	81.3 (4)
C11—N2—Co1	127.0 (9)	N2—Co1—Br1	118.0 (3)
C7—N2—Co1	114.4 (8)	N1—Co1—Br1	119.0 (3)
N1-C6-C5	120.9 (11)	N2—Co1—Br2	111.2 (3)
N1-C6-C7	115.8 (10)	N1—Co1—Br2	109.1 (3)
C5—C6—C7	123.3 (10)	Br1—Co1—Br2	114.06 (7)
N2-C7-C8	121.6 (12)	C4—C5—C6	119.6 (11)
N2-C7-C6	114.5 (9)	C4—C5—H5	120.2
C8—C7—C6	123.9 (12)	C6—C5—H5	120.2
С7—С8—С9	118.3 (13)	N1—C2—C3	120.9 (11)

С7—С8—Н8	120.9	N1—C2—C1	115.6 (12)
С9—С8—Н8	120.9	C3—C2—C1	123.4 (12)
С10—С9—С8	119.3 (11)	C2—C1—H1A	109.5
С10—С9—Н9	120.3	C2—C1—H1B	109.5
С8—С9—Н9	120.3	H1A—C1—H1B	109.5
C11—C10—C9	119.5 (13)	C2—C1—H1C	109.5
C11—C10—H10	120.3	H1A—C1—H1C	109.5
С9—С10—Н10	120.3	H1B—C1—H1C	109.5
C2—C3—C4—C5	-0.6 (18)	C7—N2—Co1—N1	-7.8(8)
$C_{11} = N_2 = C_7 = C_8$	0.2 (16)	C_11 — N_2 — C_01 — Br_1	60.6 (11)
Co1—N2—C7—C8	-173.8 (8)	C7—N2—Co1—Br1	-126.1 (7)
C11—N2—C7—C6	-178.2 (10)	C11—N2—Co1—Br2	-74.0 (10)
Co1—N2—C7—C6	7.8 (12)	C7—N2—Co1—Br2	99.4 (7)
N1C6C7N2	-2.6 (14)	C2—N1—Co1—N2	-176.7 (10)
C5—C6—C7—N2	176.5 (11)	C6—N1—Co1—N2	6.3 (7)
N1—C6—C7—C8	179.1 (10)	C2—N1—Co1—Br1	-59.5 (10)
C5—C6—C7—C8	-1.8 (18)	C6—N1—Co1—Br1	123.5 (7)
N2—C7—C8—C9	0.1 (17)	C2—N1—Co1—Br2	73.7 (9)
C6—C7—C8—C9	178.3 (11)	C6—N1—Co1—Br2	-103.3 (7)
C7—C8—C9—C10	-1.7 (18)	C3—C4—C5—C6	-0.5 (18)
C8—C9—C10—C11	3.1 (19)	N1—C6—C5—C4	0.9 (18)
C5-C6-N1-C2	-0.2 (16)	C7—C6—C5—C4	-178.1 (10)
C7—C6—N1—C2	178.9 (10)	C6—N1—C2—C3	-0.9 (17)
C5-C6-N1-Co1	177.0 (9)	Co1—N1—C2—C3	-177.7 (9)
C7—C6—N1—Co1	-3.9 (11)	C6—N1—C2—C1	-178.3 (11)
C7—N2—C11—C10	1.2 (18)	Co1—N1—C2—C1	4.9 (15)
Co1—N2—C11—C10	174.3 (10)	C4—C3—C2—N1	1.3 (18)
C9—C10—C11—N2	-3 (2)	C4—C3—C2—C1	178.5 (13)
C11—N2—Co1—N1	178.8 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C1—H1A···Br1 ⁱ	0.96	2.89	3.849 (14)	178
C8—H8····Br2 ⁱⁱ	0.93	2.89	3.771 (14)	158

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*.