

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2-Ethyl-2-phenylhydrazin-1-ylidene)indolin-2-one

Uzma Ashiq,^a* Rifat Ara Jamal,^a Hina Ismail,^a Khalid Mohammed Khan^b and Sammer Yousuf^{b*}

^aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and ^bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan Correspondence e-mail: uzzmma@hotmail.com, dr.sammer.yousuf@gmail.com

Received 20 November 2012; accepted 21 November 2012

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.116; data-to-parameter ratio = 13.5.

In the title compound, $C_{16}H_{15}N_3O$, the dihedral angle between the indole ring system (r.m.s. deviation = 0.020 Å) and the phenvl ring is $14.49 (9)^{\circ}$. The molecular conformation is supported by an intramolecular $C-H \cdots O$ interaction, which closes an S(7) ring. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds generate $R_2^2(8)$ loops.

Related literature

For a related structure, see: Jamal et al. (2011). For background to Schiff bases, see: Chaluvaraju & Zaranappa (2011); Khan et al. (2009).

Experimental

Crystal data C16H15N3O

 $M_r = 265.31$

onoclinic, $P2_1/c$	Z = 4
= 9.463 (2) Å	Mo $K\alpha$ radiation
= 17.303 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
= 8.5403 (18) Å	T = 273 K
= 104.427 (5)°	$0.35 \times 0.18 \times 0.06 \text{ mm}$
-13543(5) Å ³	

Data collection

Μ а

b

c β

Bruker SMART APEX CCD	7875 measured reflections
diffractometer	2448 independent reflections
Absorption correction: multi-scan	1783 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.032$
$T_{\min} = 0.971, \ T_{\max} = 0.995$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	181 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
2448 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C15-H15A····O1	0.97	2.21	2.916 (2)	128
$N1-H1A\cdotsO1^{i}$	0.86	1.99	2.844 (2)	172

Symmetry code: (i) -x + 1, -y, -z - 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors are thankful to the Higher Education Commission (HEC) Pakistan for financial support under the National Research Grants Program for Universities (grant No. 20-1862/R&D/10).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6996).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaluvaraju, K. C. & Zaranappa (2011). Res. J. Pharm. Biol. Chem. Sci. 2, 541-546.
- Jamal, R. A., Ashiq, U., Yousuf, S. & Ain, Q. ul (2011). Acta Cryst. E67, o2166. Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. &
- Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o3473 [doi:10.1107/S1600536812047988]

3-(2-Ethyl-2-phenylhydrazin-1-ylidene)indolin-2-one

Uzma Ashiq, Rifat Ara Jamal, Hina Ismail, Khalid Mohammed Khan and Sammer Yousuf

S1. Comment

Isatin and its Schiff bases form an important class of organic compounds with a variety of biological activities. Many studies have reported regarding the biological activities of Schiff bases, including their antifungal, antibacterial, anticancer and antiglycation (Khan *et al.*, 2009; Chaluvaraju & Zaranappa. 2011). In order to study the biological activity of title compound, we undertook the synthesis of title compound and report its crystal structure in this paper (Fig. 1). The title compound I was found a potent DPPH radical scavenger.

The title compound, $C_{16}H_{15}N_3O$ is an structural analogue of our previously published compound 3-amino-*N'*-(2-oxoindolin-3-ylidene)- benzohydrazide (Jamal *et al.*, 2011) with the difference that the keto amine phenyl moiety is replaced by phenyl ring (C9–C14) and N3 is substituted with ethyl group (C15–C16). The phenyl and indole rings are each planar with the dihedral angle of 14.49 (9)° between them. The geometry of molecule is stabilized by an intramolecular C15—H15A···O1 hydrogen bond. In the crystal molecules are consolidated by intermolecular N1—H1A···O1 hydrogen bond (Fig. 2. symmetry codes as in Table 2).

S2. Experimental

To a solution of 2,3-Indolinedione (10 mmol, 1.47 g) in 15 ml of ethanol with few drops of glacial acetic acid and 1ethyl-1-phenylhydrazine (10 mmol,1.36 g) in 15 ml e thanol were added. The mixture was refluxed for 24 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford the title compound. Yellow plates were grown from a mixture of ethanol and methanol (1:1) solvents by slow evaporation at room temperature.

S3. Refinement

H atoms on methyl, methylene, phenyl and nitrogen were positioned geometrically with C—H = 0.96, 0.97, 0.93 and C— H = 0.86 Å respectively, and constrained to ride on their parent atoms with $U_{iso}(H)=1.2U_{eq}(CH, CH_2 \text{ and NH})$ and $1.5U_{eq}(CH_3)$.

Figure 2

The crystal packing of the title compound. Hydrogen atoms are omitted for clearity.

3-(2-Ethyl-2-phenylhydrazin-1-ylidene)indolin-2-one

Crystal data $C_{16}H_{15}N_{3}O$ $M_{r} = 265.31$ Monoclinic, $P2_{1}/c$ a = 9.463 (2) Å b = 17.303 (4) Å c = 8.5403 (18) Å $\beta = 104.427$ (5)° V = 1354.3 (5) Å³ Z = 4

Data collection Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan F(000) = 560 $D_x = 1.301 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1614 reflections $\theta = 2.7-28.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 273 KPlate, yellow $0.35 \times 0.18 \times 0.06 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.971, T_{max} = 0.995$ 7875 measured reflections 2448 independent reflections 1783 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.032$	$k = -20 \rightarrow 20$
$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$	$l = -10 \rightarrow 10$
$h = -11 \rightarrow 11$	

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.08	H-atom parameters constrained
2448 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0444P)^2 + 0.2688P]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.65674 (17)	0.05361 (9)	-0.36767 (16)	0.0663 (5)
N1	0.52529 (18)	-0.04875 (9)	-0.31253 (18)	0.0506 (5)
H1A	0.4712	-0.0548	-0.4088	0.061*
N2	0.79812 (16)	0.02839 (8)	0.01956 (17)	0.0389 (4)
N3	0.89404 (17)	0.08210 (9)	0.00675 (17)	0.0426 (4)
C1	0.5134 (2)	-0.09387 (10)	-0.1807 (2)	0.0419 (5)
C2	0.4213 (2)	-0.15483 (11)	-0.1754 (2)	0.0508 (5)
H2B	0.3551	-0.1723	-0.2682	0.061*
C3	0.4310 (2)	-0.18901 (12)	-0.0267 (3)	0.0547 (6)
H3A	0.3707	-0.2306	-0.0194	0.066*
C4	0.5286 (2)	-0.16256 (11)	0.1112 (2)	0.0515 (5)
H4A	0.5317	-0.1859	0.2101	0.062*
C5	0.6221 (2)	-0.10171 (11)	0.1042 (2)	0.0446 (5)
H5A	0.6884	-0.0844	0.1971	0.053*
C6	0.6148 (2)	-0.06736 (10)	-0.0437 (2)	0.0392 (4)
C7	0.6978 (2)	-0.00462 (10)	-0.0925 (2)	0.0397 (5)
C8	0.6314 (2)	0.00580 (11)	-0.2721 (2)	0.0473 (5)
С9	0.9830 (2)	0.10795 (10)	0.1577 (2)	0.0408 (5)
C10	1.0982 (2)	0.15798 (12)	0.1632 (2)	0.0526 (5)
H10A	1.1160	0.1764	0.0676	0.063*
C11	1.1871 (2)	0.18077 (13)	0.3106 (3)	0.0639 (6)
H11A	1.2647	0.2141	0.3128	0.077*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	1.1626 (3)	0.15511 (13)	0.4522 (3)	0.0685 (7)	
H12A	1.2232	0.1703	0.5507	0.082*	
C13	1.0470 (3)	0.10645 (13)	0.4474 (3)	0.0661 (7)	
H13A	1.0295	0.0888	0.5437	0.079*	
C14	0.9564 (2)	0.08325 (11)	0.3022 (2)	0.0524 (5)	
H14A	0.8775	0.0510	0.3012	0.063*	
C15	0.9259 (2)	0.10639 (11)	-0.1461 (2)	0.0485 (5)	
H15A	0.8863	0.0684	-0.2289	0.058*	
H15B	1.0308	0.1079	-0.1319	0.058*	
C16	0.8632 (2)	0.18441 (12)	-0.2025 (3)	0.0636 (6)	
H16A	0.8869	0.1974	-0.3022	0.095*	
H16B	0.9037	0.2226	-0.1222	0.095*	
H16C	0.7592	0.1831	-0.2190	0.095*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0818 (11)	0.0690 (10)	0.0388 (8)	-0.0259 (9)	-0.0025 (7)	0.0131 (7)
N1	0.0587 (11)	0.0518 (10)	0.0347 (8)	-0.0096 (9)	-0.0008 (7)	-0.0005 (7)
N2	0.0412 (9)	0.0364 (8)	0.0376 (8)	0.0002 (7)	0.0070 (7)	0.0019 (7)
N3	0.0475 (10)	0.0431 (9)	0.0362 (8)	-0.0058 (8)	0.0084 (7)	0.0035 (7)
C1	0.0452 (11)	0.0397 (10)	0.0392 (10)	0.0032 (9)	0.0075 (8)	-0.0009 (8)
C2	0.0502 (13)	0.0467 (12)	0.0536 (12)	-0.0066 (10)	0.0091 (10)	-0.0082 (10)
C3	0.0551 (13)	0.0460 (12)	0.0640 (14)	-0.0083 (10)	0.0167 (11)	0.0001 (10)
C4	0.0528 (13)	0.0500 (12)	0.0532 (12)	0.0005 (10)	0.0158 (10)	0.0110 (10)
C5	0.0427 (11)	0.0486 (11)	0.0405 (11)	0.0037 (9)	0.0068 (8)	0.0036 (9)
C6	0.0381 (10)	0.0375 (10)	0.0406 (10)	0.0039 (8)	0.0073 (8)	0.0005 (8)
C7	0.0434 (11)	0.0384 (10)	0.0354 (9)	0.0015 (9)	0.0063 (8)	0.0015 (8)
C8	0.0552 (13)	0.0466 (11)	0.0362 (10)	-0.0032 (10)	0.0040 (9)	0.0017 (9)
C9	0.0418 (11)	0.0359 (10)	0.0422 (10)	0.0025 (9)	0.0058 (8)	-0.0015 (8)
C10	0.0495 (12)	0.0522 (12)	0.0559 (13)	-0.0055 (10)	0.0124 (10)	-0.0013 (10)
C11	0.0513 (14)	0.0584 (14)	0.0742 (16)	-0.0082 (11)	0.0010 (11)	-0.0089 (12)
C12	0.0771 (17)	0.0580 (14)	0.0557 (14)	-0.0023 (13)	-0.0113 (12)	-0.0086 (11)
C13	0.0910 (18)	0.0603 (14)	0.0404 (12)	-0.0040 (14)	0.0042 (11)	-0.0006 (10)
C14	0.0635 (14)	0.0495 (12)	0.0422 (11)	-0.0071 (11)	0.0095 (10)	-0.0004 (9)
C15	0.0481 (12)	0.0550 (12)	0.0426 (11)	-0.0001 (10)	0.0119 (9)	0.0024 (9)
C16	0.0624 (15)	0.0605 (14)	0.0656 (14)	0.0000 (12)	0.0113 (11)	0.0163 (11)

Geometric parameters (Å, °)

01-C8	1.227 (2)	С7—С8	1.517 (2)
N1—C8	1.359 (2)	C9—C10	1.384 (3)
N1-C1	1.398 (2)	C9—C14	1.387 (3)
N1—H1A	0.8600	C10—C11	1.386 (3)
N2—C7	1.300 (2)	C10—H10A	0.9300
N2—N3	1.323 (2)	C11—C12	1.361 (3)
N3—C9	1.425 (2)	C11—H11A	0.9300
N3—C15	1.472 (2)	C12—C13	1.373 (3)

C1—C2	1.376 (3)	C12—H12A	0.9300
C1—C6	1.393 (2)	C13—C14	1.380 (3)
C2—C3	1.383 (3)	С13—Н13А	0.9300
C_2 H2B	0.0300	C14 $H14A$	0.9300
C2	0.9500		0.9300
C3—C4	1.381 (3)	C15-C16	1.504 (3)
С3—НЗА	0.9300	C15—H15A	0.9700
C4—C5	1.386 (3)	C15—H15B	0.9700
C4—H4A	0.9300	C16—H16A	0.9600
C5—C6	1.382 (2)	C16—H16B	0.9600
С5—Н5А	0.9300	C16—H16C	0.9600
C6 C7	1 460 (3)		0.9000
0-07	1.400 (5)		
~			
C8—N1—C1	112.74 (15)	C10—C9—C14	118.60 (18)
C8—N1—H1A	123.6	C10—C9—N3	120.67 (17)
C1—N1—H1A	123.6	C14—C9—N3	120.73 (17)
C7—N2—N3	129.64 (15)	C9—C10—C11	120.3 (2)
N2—N3—C9	114 13 (14)	C9—C10—H10A	1199
$N_2 N_3 C_{15}$	124 76 (15)	C_{11} C_{10} H_{10A}	119.9
112 - 113 - C15	124.70(15)		119.9
C9—N3—C13	120.49 (16)		121.0 (2)
C2-C1-C6	122.30 (17)	C12—C11—H11A	119.5
C2—C1—N1	129.31 (17)	C10—C11—H11A	119.5
C6-C1-N1	108.40 (16)	C11—C12—C13	119.0 (2)
C1—C2—C3	117.40 (18)	C11—C12—H12A	120.5
C1—C2—H2B	121.3	C13—C12—H12A	120.5
C3—C2—H2B	121.3	C12-C13-C14	1211(2)
C_{4} C_{3} C_{2}	121.3 121.2(2)	C12 $C13$ $H13A$	110 4
C4 = C3 = C2	121.2(2)		119.4
C4—C3—H3A	119.4	CI4—CI3—HI3A	119.4
С2—С3—НЗА	119.4	C13—C14—C9	120.0 (2)
C3—C4—C5	120.91 (19)	C13—C14—H14A	120.0
C3—C4—H4A	119.5	C9—C14—H14A	120.0
C5—C4—H4A	119.5	N3—C15—C16	112.86 (17)
C6—C5—C4	118.62 (18)	N3—C15—H15A	109.0
С6—С5—Н5А	120.7	C16—C15—H15A	109.0
C_4 C_5 H_{5A}	120.7	N3 C15 H15B	109.0
	120.7		109.0
	119.55 (16)		109.0
C5-C6-C/	132.28 (16)	HI5A—CI5—HI5B	107.8
C1—C6—C7	108.18 (15)	C15—C16—H16A	109.5
N2—C7—C6	117.53 (15)	C15—C16—H16B	109.5
N2—C7—C8	137.30 (17)	H16A—C16—H16B	109.5
C6—C7—C8	105.09 (15)	C15-C16-H16C	109.5
01—C8—N1	123 66 (17)	H16A—C16—H16C	109 5
01 C8 C7	120100(17) 130.73(18)	HIGE CIG HIGC	109.5
$\frac{1}{2} \frac{1}{2} \frac{1}$	105.75(10) 105.54(16)		107.5
INI	105.54 (10)		
C/—N2—N3—C9	176.71 (17)	C1—N1—C8—O1	-177.0(2)
C7—N2—N3—C15	-12.3 (3)	C1—N1—C8—C7	0.2 (2)
C8—N1—C1—C2	-178.8 (2)	N2-C7-C8-O1	-1.0 (4)
C8—N1—C1—C6	1.2 (2)	C6—C7—C8—O1	175.5 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9 (3) -179.08 (19) 0.5 (3) -1.3 (3) 0.6 (3) 0.7 (3) -178.50 (19) -1.6 (3) 178.46 (17)	N2-C7-C8-N1 C6-C7-C8-N1 N2-N3-C9-C10 C15-N3-C9-C10 N2-N3-C9-C14 C15-N3-C9-C14 C14-C9-C10-C11 N3-C9-C10-C11	-178.0 (2) -1.4 (2) 173.23 (16) 1.8 (3) -6.5 (3) -177.88 (17) 1.9 (3) -177.84 (18) 0.5 (2)
N1-C1-C6-C7 N3-N2-C7-C6 N3-N2-C7-C8 C5-C6-C7-N2 C1-C6-C7-N2 C5-C6-C7-C8 C1-C6-C7-C8	$\begin{array}{c} -2.1 (2) \\ 174.94 (17) \\ -8.8 (4) \\ -1.2 (3) \\ 179.53 (16) \\ -178.5 (2) \\ 2.2 (2) \end{array}$	C11—C12—C13—C14 C12—C13—C14—C9 C10—C9—C14—C13 N3—C9—C14—C13 N2—N3—C15—C16 C9—N3—C15—C16	0.2 (4) 1.2 (3) -2.2 (3) 177.49 (18) 106.2 (2) -83.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C15—H15A…O1	0.97	2.21	2.916 (2)	128
N1—H1A····O1 ⁱ	0.86	1.99	2.844 (2)	172

Symmetry code: (i) -x+1, -y, -z-1.