

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2-Amino-6-methylpyrimidin-4-yl)-N,N-dimethylpiperidin-4-aminium chloride

S. Sreenivasa,^a* K.E. ManojKumar,^a P.A. Suchetan,^b T. Srinivasan,^c B. S. Palakshamurthy^d and D. Velmurgan^c

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, ^bDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, ^cCentre of Advanced Study in Crystallography and Biophysics, University of Madras Guindy Campus, Chennai 600 025, India, and ^dDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India Correspondence e-mail: drsreenivasa@yahoo.co.in

Received 10 November 2012: accepted 11 November 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.107; data-to-parameter ratio = 14.2.

In the title molecular salt, $C_{12}H_{22}N_5^+ \cdot Cl^-$, the cation is protonated at the dimethyl-substituted tertiary N atom. The piperidine ring adopts a chair conformation with the exocyclic N-C bond in an equatorial orientation. The dihedral angle between the piperidine ring (all atoms) and the pyrimidine ring is 14.00 $(1)^{\circ}$. In the crystal, the ions are connected by N-H···N hydrogen bonds, forming inversion dimers, which are further connected by N-H···Cl hydrogen bonds. Aromatic $\pi - \pi$ stacking interactions [centroid-centroid separation = 3.4790 (9) Å] are also observed in the structure.

Related literature

For background to pyrimidine derivatives and their biological activity, see: Patel et al. (2003).

Experimental

Crystal data $C_{12}H_{22}N_5^+ \cdot Cl^-$

 $M_r = 271.80$

Monoclinic, $C2/c$	Z = 8
a = 24.7908 (12) Å	Mo $K\alpha$ radiation
b = 8.2419 (4) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 13.8764 (6) Å	T = 298 K
$\beta = 91.968 (2)^{\circ}$	$0.21 \times 0.18 \times 0.03 \text{ mm}$
V = 2833.6 (2) Å ³	
Data collection	
Bruker APEXII CCD	10807 measured reflections
diffractometer	2502 independent reflection

diffractometer	2502 independent reflections
Absorption correction: multi-scan	2266 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.024$
$T_{\min} = 0.947, \ T_{\max} = 0.994$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$vR(F^2) = 0.107$	independent and constrained
S = 1.08	refinement
2502 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
76 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3NB\cdots Cl1$ $N5-H5N\cdots Cl1^{i}$ $N3-H3NA\cdots N2$	0.84 (2) 0.878 (19) 0.86 (2)	2.60 (2) 2.20 (2) 2.26 (2)	3.4284 (17) 3.0785 (14) 3.114 (2)	167.2 (17) 177.1 (17) 175.5 (18)

Symmetry code: (i) x, y - 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur, for his constant encouragement. BSPM thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his support and guidence.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6988).

References

Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Patel, R., Desai, K. & Chikhalia, K. (2003). J. Indian Chem. Soc. 80, 138-145. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o3371 [doi:10.1107/S1600536812046533]

1-(2-Amino-6-methylpyrimidin-4-yl)-N,N-dimethylpiperidin-4-aminium chloride

S. Sreenivasa, K.E. ManojKumar, P.A. Suchetan, T. Srinivasan, B. S. Palakshamurthy and D. Velmurgan

S1. Comment

Nitrogen-containing heterocyclic ring such as pyrimidine is a promising structural moiety for drug design. Pyrimidine derivatives form a component in a number of useful drugs and are associated with many biological and therapeutical activities (Patel *et al.*, 2003). In this view, we synthesized the title compound to study its crystal structure. The title compound crystallizes in monoclinic C2/c space group with the piperidine ring in the molecule adopting chair conformation. The dihedral angle between the piperidine ring and the pyrimidine ring in the molecule is 14.00 (1)°. In the crystal structure, the molecules are linked to one another through N—H…N hydrogen bonds generating R_2^2 (8) ring patterns forming inversion related dimers. These dimers are further connected to one another through N—H…Cl hydrogen bonds and weak π - π interactions.

S2. Experimental

To a solution of 2-amino-4-chloro-6-methylpyrimidine (1.39 mmol) in acetonitrile (3 ml) was added 4-(dimethylamino)piperidine (1.66 mmol), xantphos (0.0695 mmol), $Pd(OAc)_2$ (0.139 mmol) and Cs_2CO_3 (2.78 mmol). The reaction mixture was irradiated with microwave radiation at 60° C for 1.5 hrs. The reaction was monitored by TLC. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using MDC/methanol as eluent. Colourless prisms were obtained from slow evaporation of the solution of the compound in dilute alcohol.

S3. Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93- 0.97 Å. All C—H atoms were refined with isotropic displacement parameters (set to 1.2–1.5 times of the U_{eq} of the parent atom) and N—H atoms were refined freely

Figure 1

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound. Hydrogen bonds and π - π interactions are shown as dashed lines.

1-(2-Amino-6-methylpyrimidin-4-yl)-N,N-dimethylpiperidin- 4-aminium chloride

F(000) = 1168

 $\theta = 1.6 - 52^{\circ}$

T = 298 K

 $\mu = 0.26 \text{ mm}^{-1}$

Prism, colourless

 $0.21 \times 0.18 \times 0.03 \text{ mm}$

 $D_{\rm x} = 1.274 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2266 reflections

Prism

Crystal data

 $C_{12}H_{22}N_5^+ \cdot Cl^ M_r = 271.80$ Monoclinic, C2/cHall symbol: -C 2yc a = 24.7908 (12) Åb = 8.2419 (4) Å c = 13.8764 (6) Å $\beta = 91.968 \ (2)^{\circ}$ $V = 2833.6(2) \text{ Å}^3$ Z = 8

Data collection

Bruker APEXII CCD	10807 measured reflections
diffractometer	2502 independent reflections
Radiation source: fine-focus sealed tube	2266 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
Detector resolution: 1.20 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.6^\circ$
ω scans	$h = -28 \rightarrow 29$
Absorption correction: multi-scan	$k = -9 \longrightarrow 8$
(SADABS; Sheldrick, 2004)	$l = -16 \rightarrow 16$
$T_{\min} = 0.947, \ T_{\max} = 0.994$	
Rafinament	

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$ S = 1.08	neighbouring sites
2502 reflections	and constrained refinement
176 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0623P)^2 + 1.9022P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{\rm max} = 0.032$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotr	ropic or	equivalent	isotropic	displacement	parameters	$(Å^2)$)
---	----------	------------	-----------	--------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.199032 (17)	1.43859 (6)	1.09649 (3)	0.04241 (17)	
H5N	0.2006 (7)	0.482 (2)	0.9400 (14)	0.034 (5)*	
H3NA	0.0476 (8)	1.470 (3)	1.0540 (14)	0.044 (5)*	

H3NB	0.0967 (9)	1.378 (2)	1.0672 (14)	0.038 (5)*
N1	0.07954 (5)	1.14699 (15)	0.96467 (10)	0.0313 (3)
N5	0.20241 (5)	0.49472 (15)	0.87744 (10)	0.0286 (3)
N2	-0.00534 (5)	1.28695 (16)	0.95048 (10)	0.0350 (3)
N4	0.09426 (5)	0.90139 (16)	0.89023 (10)	0.0325 (3)
C4	0.05934 (6)	1.02649 (18)	0.90933 (11)	0.0281 (3)
C3	0.00567 (6)	1.02975 (19)	0.87524 (11)	0.0319 (4)
Н3	-0.0092	0.9435	0.8402	0.038*
C7	0.15214 (6)	0.93324 (19)	0.89292 (13)	0.0353 (4)
H7A	0.1605	1.0164	0.9406	0.042*
H7B	0.1625	0.9737	0.8306	0.042*
C6	0.18440 (6)	0.78141 (18)	0.91761 (12)	0.0338 (4)
H6A	0.2226	0.8049	0.9141	0.041*
H6B	0.1774	0.7484	0.9831	0.041*
C10	0.16963 (6)	0.64399 (17)	0.84886 (11)	0.0279 (3)
H10	0.1788	0.6761	0.7834	0.033*
С9	0.10936 (6)	0.6144 (2)	0.85116 (13)	0.0363 (4)
H9A	0.1003	0.5765	0.9147	0.044*
H9B	0.0993	0.5304	0.8050	0.044*
C2	-0.02438 (6)	1.1647 (2)	0.89536 (11)	0.0329 (4)
N3	0.06371 (7)	1.37851 (19)	1.05091 (12)	0.0416 (4)
C8	0.07765 (7)	0.7682 (2)	0.82731 (13)	0.0403 (4)
H8A	0.0832	0.7984	0.7608	0.048*
H8B	0.0395	0.7476	0.8341	0.048*
C1	0.04550 (6)	1.26709 (18)	0.98595 (11)	0.0307 (3)
C12	0.26044 (7)	0.5144 (2)	0.85548 (14)	0.0407 (4)
H12A	0.2740	0.6127	0.8844	0.061*
H12B	0.2641	0.5195	0.7869	0.061*
H12C	0.2806	0.4236	0.8810	0.061*
C11	0.18204 (7)	0.34164 (19)	0.83246 (13)	0.0397 (4)
H11A	0.1446	0.3278	0.8462	0.059*
H11B	0.2024	0.2515	0.8582	0.059*
H11C	0.1860	0.3468	0.7639	0.059*
C5	-0.08123 (8)	1.1816 (3)	0.85504 (15)	0.0527 (5)
H5A	-0.0969	1.2794	0.8792	0.079*
H5B	-0.1022	1.0901	0.8743	0.079*
H5C	-0.0808	1.1862	0.7859	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0423 (3)	0.0540 (3)	0.0307 (2)	-0.00239 (18)	-0.00195 (18)	0.00571 (17)
N1	0.0286 (7)	0.0259 (7)	0.0397 (7)	0.0011 (5)	0.0026 (5)	-0.0023 (5)
N5	0.0331 (7)	0.0263 (7)	0.0263 (7)	0.0036 (5)	0.0014 (5)	0.0005 (5)
N2	0.0335 (7)	0.0315 (7)	0.0399 (7)	0.0060 (6)	0.0011 (6)	-0.0022 (6)
N4	0.0275 (7)	0.0266 (7)	0.0434 (8)	0.0023 (5)	-0.0001 (6)	-0.0071 (6)
C4	0.0307 (8)	0.0251 (7)	0.0286 (7)	0.0013 (6)	0.0045 (6)	0.0022 (6)
C3	0.0334 (8)	0.0325 (8)	0.0296 (8)	0.0027 (6)	-0.0014 (6)	-0.0032 (6)

C7	0.0287 (8)	0.0255 (8)	0.0518 (10)	-0.0005 (6)	0.0050 (7)	-0.0019 (7)
C6	0.0276 (8)	0.0267 (8)	0.0470 (9)	0.0009 (6)	-0.0017 (7)	-0.0061 (7)
C10	0.0337 (8)	0.0234 (7)	0.0266 (7)	0.0037 (6)	0.0015 (6)	0.0019 (6)
C9	0.0345 (9)	0.0266 (8)	0.0474 (10)	0.0001 (7)	-0.0048 (7)	-0.0086 (7)
C2	0.0319 (8)	0.0370 (9)	0.0299 (8)	0.0052 (7)	0.0010 (6)	0.0007 (7)
N3	0.0348 (8)	0.0326 (8)	0.0571 (9)	0.0052 (7)	-0.0033 (7)	-0.0124 (7)
C8	0.0356 (9)	0.0351 (9)	0.0494 (10)	0.0066 (7)	-0.0094 (7)	-0.0121 (8)
C1	0.0314 (8)	0.0261 (8)	0.0348 (8)	0.0002 (6)	0.0055 (6)	0.0006 (6)
C12	0.0325 (9)	0.0385 (9)	0.0510 (10)	0.0050 (7)	0.0022 (7)	-0.0055 (8)
C11	0.0431 (9)	0.0241 (8)	0.0516 (10)	0.0029 (7)	0.0004 (8)	-0.0036 (7)
C5	0.0419 (10)	0.0593 (12)	0.0559 (12)	0.0167 (9)	-0.0140 (9)	-0.0128 (10)

Geometric parameters (Å, °)

N1—C1	1.340 (2)	С10—С9	1.515 (2)	
N1—C4	1.342 (2)	C10—H10	0.9800	
N5-C11	1.488 (2)	C9—C8	1.522 (2)	
N5—C12	1.490 (2)	С9—Н9А	0.9700	
N5-C10	1.5196 (19)	С9—Н9В	0.9700	
N5—H5N	0.878 (19)	C2—C5	1.505 (2)	
N2—C2	1.341 (2)	N3—C1	1.353 (2)	
N2—C1	1.347 (2)	N3—H3NA	0.85 (2)	
N4—C4	1.378 (2)	N3—H3NB	0.84 (2)	
N4—C8	1.453 (2)	C8—H8A	0.9700	
N4—C7	1.458 (2)	C8—H8B	0.9700	
C4—C3	1.397 (2)	C12—H12A	0.9600	
C3—C2	1.373 (2)	C12—H12B	0.9600	
С3—Н3	0.9300	C12—H12C	0.9600	
С7—С6	1.518 (2)	C11—H11A	0.9600	
С7—Н7А	0.9700	C11—H11B	0.9600	
С7—Н7В	0.9700	C11—H11C	0.9600	
C6—C10	1.518 (2)	С5—Н5А	0.9600	
С6—Н6А	0.9700	С5—Н5В	0.9600	
С6—Н6В	0.9700	C5—H5C	0.9600	
C1—N1—C4	116.57 (13)	С8—С9—Н9А	109.4	
C11—N5—C12	108.81 (12)	С10—С9—Н9В	109.4	
C11—N5—C10	113.97 (12)	C8—C9—H9B	109.4	
C12—N5—C10	111.73 (12)	H9A—C9—H9B	108.0	
C11—N5—H5N	106.4 (12)	N2—C2—C3	122.82 (14)	
C12—N5—H5N	107.3 (12)	N2—C2—C5	116.69 (14)	
C10—N5—H5N	108.3 (12)	C3—C2—C5	120.49 (15)	
C2—N2—C1	115.07 (13)	C1—N3—H3NA	119.1 (14)	
C4—N4—C8	120.92 (13)	C1—N3—H3NB	118.5 (13)	
C4—N4—C7	118.99 (13)	H3NA—N3—H3NB	116.1 (19)	
C8—N4—C7	114.18 (13)	N4—C8—C9	111.39 (13)	
N1-C4-N4	116.06 (13)	N4—C8—H8A	109.3	
N1-C4-C3	120.80 (14)	C9—C8—H8A	109.3	

N4—C4—C3	123.14 (14)	N4—C8—H8B	109.3
C2—C3—C4	117.64 (15)	С9—С8—Н8В	109.3
С2—С3—Н3	121.2	H8A—C8—H8B	108.0
С4—С3—Н3	121.2	N1—C1—N2	126.69 (14)
N4—C7—C6	111.57 (13)	N1—C1—N3	116.72 (14)
N4—C7—H7A	109.3	N2—C1—N3	116.58 (14)
С6—С7—Н7А	109.3	N5—C12—H12A	109.5
N4—C7—H7B	109.3	N5—C12—H12B	109.5
С6—С7—Н7В	109.3	H12A—C12—H12B	109.5
H7A—C7—H7B	108.0	N5—C12—H12C	109.5
C10—C6—C7	111.07 (13)	H12A—C12—H12C	109.5
С10—С6—Н6А	109.4	H12B—C12—H12C	109.5
С7—С6—Н6А	109.4	N5—C11—H11A	109.5
C10—C6—H6B	109.4	N5—C11—H11B	109.5
С7—С6—Н6В	109.4	H11A—C11—H11B	109.5
H6A—C6—H6B	108.0	N5—C11—H11C	109.5
C9—C10—C6	108.89 (12)	H11A—C11—H11C	109.5
C9—C10—N5	112.52 (12)	H11B—C11—H11C	109.5
C6C10N5	108.95 (12)	С2—С5—Н5А	109.5
С9—С10—Н10	108.8	С2—С5—Н5В	109.5
C6—C10—H10	108.8	H5A—C5—H5B	109.5
N5-C10-H10	108.8	С2—С5—Н5С	109.5
С10—С9—С8	111.32 (14)	H5A—C5—H5C	109.5
С10—С9—Н9А	109.4	H5B—C5—H5C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D····A	D—H··· A
N3—H3 <i>NB</i> ···Cl1	0.84 (2)	2.60 (2)	3.4284 (17)	167.2 (17)
N5—H5 <i>N</i> ···Cl1 ⁱ	0.878 (19)	2.20 (2)	3.0785 (14)	177.1 (17)
N3—H3 <i>NA</i> …N2	0.86 (2)	2.26 (2)	3.114 (2)	175.5 (18)

Symmetry code: (i) x, y-1, z.