organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-Ethyl 2-chloro-2-[2-(4-methylphenyl)hydrazinylidene]acetate

Abdullah M. Asiri,^{a,b}* Muhammad Nadeem Arshad,^b Mohie E. M. Zayed,^a Khalid A. Alamry^{a,b} and Tanveer Hussain Bokhari^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, ^bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and ^cDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan

Correspondence e-mail: aasiri2@kau.edu.sa, sthbukhari@yahoo.co.uk

Received 4 November 2012; accepted 10 November 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.040; *wR* factor = 0.113; data-to-parameter ratio = 16.2.

The molecule of the title compound, $C_{11}H_{13}ClN_2O_2$, is approximately planar (r.m.s. deviation = 0.099 Å for non-H atoms) and adopts a Z conformation about the C=N double bond. In the crystal, molecules are linked by N-H···O and C-H···O hydrogen bonds to the same O-atom acceptor, forming zigzag chains propagating along [010]. These interactions give rise to $R_2^1(6)$ loops.

Related literature

For related structures, see: Asiri et al. (2011, 2012).

Experimental

Crystal data $C_{11}H_{13}CIN_2O_2$ $M_r = 240.68$ Monoclinic, $P2_1/c$

a = 4.6152 (1) Åb = 9.9444 (1) Åc = 26.3152 (3) Å $\beta = 90.692 (1)^{\circ}$ $V = 1207.66 (3) \text{ Å}^{3}$ Z = 4Cu K α radiation

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) CCD diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{\rm min} = 0.692, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.113$ S = 1.062436 reflections 150 parameters $R_{\rm int} = 0.019$

 $\mu = 2.71 \text{ mm}^{-1}$

 $0.41 \times 0.14 \times 0.13 \text{ mm}$

9526 measured reflections

2436 independent reflections

2224 reflections with $I > 2\sigma(I)$

T = 296 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C6 - H6 \cdots O1^{i}$ $N1 - H1 \cdots O1^{i}$	0.93 0.85 (2)	2.52 2.30 (2)	3.331 (2) 3.1120 (18)	145 161 (2)
Symmetry code: (i)	$-r + 1 v - \frac{1}{r} - \frac{1}{r}$	$7 + \frac{1}{2}$		

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

The authors thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research *via* a Research Group Track Grant (No. 3-102/428).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6984).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Asiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011). Acta Cryst. E67, 01964.
- Asiri, A. M., Arshad, M. N., Zayed, M. E. M., Alamry, K. A. & Shafiq, M. (2012). Acta Cryst. E68, o3274.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o3420 [doi:10.1107/S1600536812046521]

(Z)-Ethyl 2-chloro-2-[2-(4-methylphenyl)hydrazinylidene]acetate

Abdullah M. Asiri, Muhammad Nadeem Arshad, Mohie E. M. Zayed, Khalid A. Alamry and Tanveer Hussain Bokhari

S1. Comment

The present structure (I) is related to compounds already reported by our group, that is, (*Z*)-Ethyl 2-chloro-2-(2-(4-meth-oxyphenyl)hydrazono)acetate (II) (Asiri *et al.*, 2012) and 1-Chloro-1-[(4-methylphenyl)hydrazinylidene]propan-2-one (III) (Asiri *et al.*, 2011).

The title compound, Fig. 1, and II contain methyl and methoxy groups respectively at para positions of aromatic ring, which make them different from each other. The aromatic ring (C1—C6) is oriented at a dihedral angle of 9.49 (8)° with respect to the mean plane of the ester moiety (N1/N2/O1/O2 C7-Cl0; r.m.s. deviation 0.0454 Å), while the same angle in II is 3.05 (2) °. The spatial arrangements of different functional groups around the C7=N2 double bond give rise to trans isomer *i.e. Z* conformation.

In the crystal, N—H···O and C—H···O hydrogen bonds connect the molecules along the *b* axis to form zigzag chains, enclosing six membered $R_{2}^{1}(6)$ ring motifs - see Table. 1 and Fig. 2.

S2. Experimental

The molecule was synthesised according to the literature procedure (Asiri *et al.*, 2011) and recrystallized from ethanol under slow evaporation giving yellow needles.

S3. Refinement

The N—H H atom was located in a difference Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96 and 0.97 Å for CH(aromatic), CH_{methyl}, and CH_{methylene} H atoms, respectively, with $U_{iso}(H) = k \times U_{eq}$ (parent C-atom), where k = 1.5 for CH_{methyl} H atoms and = 1.2 for other H atoms.

Molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A perspective view of the crystal packing of the title compound showing N-H…O and C-H…O hydrogen bonds as dashed lines - see Table 1 for details.

(Z)-Ethyl 2-chloro-2-[2-(4-methylphenyl)hydrazinylidene]acetate

Crystal data	
$C_{11}H_{13}CIN_2O_2$	V = 1207.66 (3) Å ³
$M_r = 240.68$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 504
Hall symbol: -P 2ybc	$D_{\rm x} = 1.324 {\rm ~Mg} {\rm ~m}^{-3}$
a = 4.6152 (1) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
b = 9.9444 (1) Å	Cell parameters from 6552 reflections
c = 26.3152 (3) Å	$\theta = 4.4 - 75.9^{\circ}$
$\beta = 90.692 \ (1)^{\circ}$	$\mu = 2.71 \text{ mm}^{-1}$

T = 296 KNeedle, yellow

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas)
CCD
diffractometer
Radiation source: SuperNova (Cu) X-ray
Source
Mirror monochromator
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
2436 reflections	and constrained refinement
150 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0563P)^2 + 0.2618P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

 $0.41 \times 0.14 \times 0.13 \text{ mm}$

 $T_{\min} = 0.692, T_{\max} = 1.000$ 9526 measured reflections 2436 independent reflections 2224 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 76.1^{\circ}, \, \theta_{\rm min} = 4.8^{\circ}$

 $R_{\rm int} = 0.019$

 $h = -4 \rightarrow 5$ $k = -12 \rightarrow 12$ $l = -32 \rightarrow 33$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.43464 (11)	0.05667 (5)	0.234472 (17)	0.07524 (19)	
01	0.1041 (3)	0.28559 (14)	0.27188 (5)	0.0730 (4)	
02	0.2685 (3)	0.27966 (12)	0.35220 (4)	0.0641 (3)	
N1	0.8092 (3)	-0.02052 (14)	0.31951 (5)	0.0541 (3)	
N2	0.6346 (3)	0.08135 (12)	0.32924 (5)	0.0508 (3)	
C1	0.9873 (3)	-0.07483 (15)	0.35803 (6)	0.0491 (3)	
C2	1.0086 (4)	-0.01791 (17)	0.40583 (6)	0.0579 (4)	
H2	0.9035	0.0590	0.4136	0.070*	
C3	1.1886 (4)	-0.07686 (18)	0.44203 (6)	0.0621 (4)	
Н3	1.2034	-0.0379	0.4741	0.074*	
C4	1.3468 (3)	-0.19164 (17)	0.43198 (6)	0.0574 (4)	
C5	1.3267 (4)	-0.24428 (17)	0.38355 (7)	0.0626 (4)	

Н5	1.4356	-0.3199	0.3755	0.075*	
C6	1.1496 (4)	-0.18777 (17)	0.34674 (6)	0.0592 (4)	
H6	1.1393	-0.2255	0.3144	0.071*	
C7	0.4608 (3)	0.12591 (16)	0.29498 (6)	0.0518 (3)	
C8	0.2603 (3)	0.23844 (16)	0.30433 (6)	0.0546 (4)	
C9	0.0576 (5)	0.3840 (2)	0.36460 (8)	0.0774 (5)	
H9A	0.1042	0.4668	0.3470	0.093*	
H9B	-0.1354	0.3560	0.3541	0.093*	
C10	0.0685 (7)	0.4052 (3)	0.41932 (10)	0.1069 (9)	
H10A	0.0065	0.3250	0.4363	0.160*	
H10B	-0.0572	0.4783	0.4281	0.160*	
H10C	0.2634	0.4263	0.4297	0.160*	
C11	1.5322 (5)	-0.2579 (2)	0.47260 (8)	0.0768 (5)	
H11A	1.4576	-0.3460	0.4797	0.115*	
H11B	1.5289	-0.2045	0.5030	0.115*	
H11C	1.7278	-0.2653	0.4609	0.115*	
H1	0.799 (5)	-0.063 (2)	0.2915 (10)	0.092*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0816 (3)	0.0890 (3)	0.0549 (3)	0.0032 (2)	-0.0103 (2)	-0.0051 (2)
O1	0.0795 (8)	0.0712 (8)	0.0680 (7)	0.0077 (6)	-0.0172 (6)	0.0174 (6)
O2	0.0687 (7)	0.0615 (7)	0.0618 (7)	0.0123 (5)	-0.0083 (5)	0.0025 (5)
N1	0.0542 (7)	0.0577 (7)	0.0502 (7)	0.0023 (6)	-0.0021 (6)	-0.0015 (6)
N2	0.0478 (7)	0.0507 (7)	0.0539 (7)	-0.0047 (5)	-0.0002 (5)	0.0055 (5)
C1	0.0459 (7)	0.0495 (7)	0.0520 (8)	-0.0049 (6)	0.0007 (6)	0.0022 (6)
C2	0.0621 (9)	0.0567 (8)	0.0549 (8)	0.0072 (7)	0.0012 (7)	-0.0032 (7)
C3	0.0664 (10)	0.0685 (10)	0.0513 (9)	0.0011 (8)	-0.0026 (7)	-0.0048 (7)
C4	0.0508 (8)	0.0597 (9)	0.0615 (9)	-0.0048 (7)	-0.0038 (7)	0.0064 (7)
C5	0.0611 (10)	0.0557 (9)	0.0709 (10)	0.0073 (7)	-0.0042 (8)	-0.0039 (7)
C6	0.0639 (10)	0.0575 (9)	0.0561 (9)	0.0035 (7)	-0.0023 (7)	-0.0083 (7)
C7	0.0502 (8)	0.0552 (8)	0.0499 (8)	-0.0079 (6)	-0.0021 (6)	0.0064 (6)
C8	0.0549 (8)	0.0529 (8)	0.0557 (8)	-0.0078 (6)	-0.0039 (7)	0.0122 (6)
C9	0.0837 (13)	0.0655 (11)	0.0826 (13)	0.0187 (10)	-0.0084 (10)	0.0009 (9)
C10	0.137 (2)	0.0947 (17)	0.0889 (17)	0.0374 (16)	0.0124 (15)	-0.0014 (13)
C11	0.0738 (12)	0.0788 (12)	0.0773 (12)	0.0022 (9)	-0.0163 (10)	0.0121 (10)

Geometric parameters (Å, °)

Cl1—C7	1.7377 (16)	C4—C11	1.512 (2)	
O1—C8	1.2056 (19)	C5—C6	1.380 (2)	
O2—C8	1.325 (2)	С5—Н5	0.9300	
O2—C9	1.462 (2)	С6—Н6	0.9300	
N1—N2	1.3215 (19)	C7—C8	1.475 (2)	
N1—C1	1.405 (2)	C9—C10	1.456 (3)	
N1—H1	0.85 (2)	С9—Н9А	0.9700	
N2—C7	1.2788 (19)	С9—Н9В	0.9700	

supporting information

C1—C2 C1—C6	1.382 (2) 1.384 (2)	C10—H10A C10—H10B	0.9600 0.9600
C2—C3	1.386 (2)	C10—H10C	0.9600
С2—Н2	0.9300	C11—H11A	0.9600
C3—C4	1.382 (2)	C11—H11B	0.9600
С3—Н3	0.9300	C11—H11C	0.9600
C4—C5	1.380 (2)		
C8—O2—C9	114.85 (13)	N2—C7—C11	123.01 (13)
N2—N1—C1	120.49 (13)	C8—C7—Cl1	114.63 (11)
N2—N1—H1	121.5 (16)	O1—C8—O2	124.26 (16)
C1—N1—H1	117.4 (16)	O1—C8—C7	123.24 (16)
C7—N2—N1	120.52 (14)	O2—C8—C7	112.49 (13)
C2—C1—C6	119.67 (15)	С10—С9—О2	107.95 (17)
C2C1N1	122.27 (14)	С10—С9—Н9А	110.1
C6—C1—N1	118.05 (14)	O2—C9—H9A	110.1
C1—C2—C3	119.20 (15)	С10—С9—Н9В	110.1
С1—С2—Н2	120.4	O2—C9—H9B	110.1
С3—С2—Н2	120.4	H9A—C9—H9B	108.4
C4—C3—C2	122.08 (16)	C9—C10—H10A	109.5
С4—С3—Н3	119.0	C9—C10—H10B	109.5
С2—С3—Н3	119.0	H10A—C10—H10B	109.5
C5—C4—C3	117.41 (15)	C9—C10—H10C	109.5
C5—C4—C11	121.23 (17)	H10A—C10—H10C	109.5
C3—C4—C11	121.35 (17)	H10B-C10-H10C	109.5
C6—C5—C4	121.77 (16)	C4—C11—H11A	109.5
С6—С5—Н5	119.1	C4—C11—H11B	109.5
С4—С5—Н5	119.1	H11A—C11—H11B	109.5
C5—C6—C1	119.83 (15)	C4—C11—H11C	109.5
С5—С6—Н6	120.1	H11A—C11—H11C	109.5
С1—С6—Н6	120.1	H11B—C11—H11C	109.5
N2—C7—C8	122.34 (14)		
C1N1N2C7	-176.05(13)	C2_C1_C6_C5	13(2)
$N_{1} = N_{1} = C_{1} = C_{2}$	-60(2)	$N_1 - C_1 - C_6 - C_5$	-179.88(15)
$N_2 - N_1 - C_1 - C_2$	175 21 (14)	$N_1 - N_2 - C_7 - C_8$	179 40 (13)
C_{6}	-13(2)	$N_1 = N_2 = C_7 = C_0$	11(2)
$N_1 - C_1 - C_2 - C_3$	179 99 (15)	C9-02-C8-01	36(2)
C1 - C2 - C3 - C4	-0.4(3)	C9-O2-C8-C7	-17540(14)
$C_2 = C_3 = C_4 = C_5$	20(3)	N_{2} C_{7} C_{8} O_{1}	176 63 (15)
$C_2 = C_3 = C_4 = C_{11}$	-177.38 (17)	C11-C7-C8-O1	-4.9(2)
$C_3 - C_4 - C_5 - C_6$	-1.9 (3)	N2-C7-C8-O2	-4.4 (2)
C11—C4—C5—C6	177.44 (17)	Cl1—C7—C8—O2	174.06 (11)
C4—C5—C6—C1	0.3 (3)	C8—O2—C9—C10	172.7 (2)
	(-)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6…O1 ⁱ	0.93	2.52	3.331 (2)	145
N1—H1···O1 ⁱ	0.85 (2)	2.30 (2)	3.1120 (18)	161 (2)

Symmetry code: (i) -x+1, y-1/2, -z+1/2.