

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,6-Dichlorophenyl 4-chlorobenzoate

M. M. M Abdoh,^a V. Srinivasa Murthy,^b B. C. Manjunath,^c S. Shashikanth^b and N. K. Lokanath^c*

^aDepartment of Physics, Faculty of Science, An Najah National University, Nabtus West Bank, Palestine, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore, 570 006, India Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

Received 2 November 2012; accepted 16 November 2012

Key indicators: single-crystal X-ray study; T = 103 K; mean σ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.158; data-to-parameter ratio = 14.0.

In the title compound, $C_{13}H_7Cl_3O_2$, the dihedral angle between the benzene rings is $82.1 (2)^{\circ}$. The dihedral angle between the CO₂ group and its carbon-bonded ring is 14.50 (19)° In the crystal, aromatic π - π stacking interactions [minimum ring centroid separation = 3.604 (2) Å] occur.

Related literature

For background to benzophenones, see: Khanum et al. (2004, 2009). For a related structure, see: Gowda et al. (2008).

Experimental

Crystal data

2	
$C_{13}H_7Cl_3O_2$	$\gamma = 105.854 \ (10)^{\circ}$
$M_r = 301.54$	$V = 628.30 (17) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 7.1584 (10) Å	Mo $K\alpha$ radiation
b = 8.1183 (13) Å	$\mu = 0.72 \text{ mm}^{-1}$
c = 11.5338 (16) Å	$T = 103 { m K}$
$\alpha = 95.352 \ (11)^{\circ}$	$0.32 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 99.852 \ (10)^{\circ}$	

Data collection

Oxford Diffraction Xealibur CCD	2278 independent reflections
diffractometer	1738 reflections with $I > 2\sigma(I)$
8510 measured reflections	$R_{\rm int} = 0.045$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	163 parameters
$wR(F^2) = 0.158$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.84 \ {\rm e} \ {\rm \AA}^{-3}$
2278 reflections	$\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6981).

References

Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, 0843. Khanum, S. A., Shashikanth, S., Sathyanarayana, S. G., Lokesh, S. & Deepak, S. A. (2009). Pest Manag. Sci. 65, 776-780.

Khanum, S. A., Venu, T. D., Shasikanth, S. & Firdous, A. (2004). Bioorg. Med. Chem. Lett. 14, 5351-5355.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o3449 [doi:10.1107/S1600536812047204]

2,6-Dichlorophenyl 4-chlorobenzoate

M. M. M Abdoh, V. Srinivasa Murthy, B. C. Manjunath, S. Shashikanth and N. K. Lokanath

S1. Comment

The benzophenone analogues find a unique place in medicinal chemistry and play a significant role with various pharmacological properties (Khanum *et al.*, 2004). In addition, they are reported to possess antifungal activity (Khanum *et al.*, 2009).

In the title molecule, $C_{13}H_7Cl_3O_2$ (Fig. 1.), dihedral angle between the terminal benzene rings bridged by corboxylate group is 82.1 (2) °, with the conformation of the chlorobenzene ring influenced by the presence of an intramolecular C11 —H···O7 interaction [2.715 (4) Å]. The overall geometry of the title compound is similar to 2,6-dichlorophenyl 4-methylbenzoate (Gowda *et al.*, 2008).

The crystal structure (Fig. 2.) features $\pi \cdots \pi$ and C—Cl $\cdots \pi$ interactions. The distance between Cg(1): C1/C2/C3/C4/C5/C6 and Cg(1) is 3.604 (2) Å [-x + 1,-y,-z + 2] and 3.645 (2) Å [-x, -y, -z + 2].

S2. Experimental

To a stirred mixture of 2,6-dichlorophenol (1 g, 6.13 m*M*) and 4-chlorobenzoyl chloride (0.96 g, 5.52 m*M*, 0.9 eq), 20 ml of 10% aqueous sodium hydroxide was added dropwise at room temperature. The reaction mass was stirred for 1 h. The separated solid was filtered and dissolved in 2 ml diethyl ether. The organic layer was washed with water (3×15 ml) and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 2, 6-dichlorophenyl-4-chrolobenzoate (1.52 g, 82%, *M*. P = 98°C) as a white solid, which was recrystallized as colourless blocks using ethyl alcohol.

IR: 1760 cm⁻¹(COO). ¹H NMR:600Mhz (CDCl₃) δ 7.17–7.21(1*H*,t), 7.39–7.41 (2*H*,d), 7.41–7.51 (2*H*,d), 8.18–8.20 (2*H*,d)

S3. Refinement

All hydrogen atoms were located geometrically with C—H = 0.93–0.97) Å and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(aromatic C)$.

Figure 1

ORTEP diagram of the title compound showing 50% probability ellipsoids.

Figure 2

Packing diagram of the title compound, viewed along the crystallographic *a* axis.

2,6-Dichlorophenyl 4-chlorobenzoate

Crystal data

 $C_{13}H_7Cl_3O_2$ $M_r = 301.54$ Triclinic, *P*1 Hall symbol: -P1 a = 7.1584 (10) Å b = 8.1183 (13) Å c = 11.5338 (16) Å a = 95.352 (11)° $\beta = 99.852$ (10)° $\gamma = 105.854 (10)^{\circ}$ $V = 628.30 (17) \text{ Å}^3$ Z = 2 F(000) = 304 $D_x = 1.594 \text{ Mg m}^{-3}$ Melting point: 371 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2278 reflections $\theta = 1.8-26.0^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 103 K

Data collection

Duiu concention	
Oxford Diffraction Xcalibur CCD diffractometer	2278 independent reflections 1738 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.045$
Graphite monochromator	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 1.8^\circ$
Detector resolution: 16.0839 pixels mm ⁻¹	$h = -8 \rightarrow 8$
ω scans	$k = -10 \rightarrow 10$
8510 measured reflections	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
S = 1.08	H-atom parameters constrained
2278 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0961P)^2 + 0.2256P]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.84 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Block, colourless

 $0.32 \times 0.20 \times 0.18 \text{ mm}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

X	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.32525 (12)	-0.00436 (13)	0.72254 (8)	0.0296 (3)
0.35105 (14)	-0.85956 (14)	0.44115 (9)	0.0354 (3)
0.19259 (12)	-0.30913 (13)	1.10648 (8)	0.0322 (3)
0.2686 (3)	-0.2891 (3)	0.8624 (2)	0.0248 (8)
-0.0500 (3)	-0.3628 (4)	0.7612 (2)	0.0271 (8)
0.2821 (5)	0.0096 (5)	0.8663 (3)	0.0248 (10)
0.2782 (5)	0.1655 (5)	0.9231 (3)	0.0269 (11)
0.2488 (5)	0.1744 (6)	1.0399 (3)	0.0289 (11)
0.2242 (5)	0.0298 (5)	1.0965 (3)	0.0290 (13)
0.2260 (4)	-0.1256 (5)	1.0378 (3)	0.0235 (10)
0.2533 (4)	-0.1378 (5)	0.9200 (3)	0.0224 (10)
0.1124 (5)	-0.3822 (5)	0.7724 (3)	0.0223 (10)
0.1749 (5)	-0.5020 (5)	0.6946 (3)	0.0227 (10)
0.3746 (5)	-0.4855 (5)	0.6964 (3)	0.0264 (11)
0.4286 (5)	-0.5932 (5)	0.6183 (3)	0.0283 (11)
	x $0.32525(12)$ $0.35105(14)$ $0.19259(12)$ $0.2686(3)$ $-0.0500(3)$ $0.2821(5)$ $0.2782(5)$ $0.2488(5)$ $0.2242(5)$ $0.2260(4)$ $0.1124(5)$ $0.1749(5)$ $0.3746(5)$ $0.4286(5)$	xy $0.32525 (12)$ $-0.00436 (13)$ $0.35105 (14)$ $-0.85956 (14)$ $0.19259 (12)$ $-0.30913 (13)$ $0.2686 (3)$ $-0.2891 (3)$ $-0.0500 (3)$ $-0.3628 (4)$ $0.2821 (5)$ $0.1655 (5)$ $0.2782 (5)$ $0.1655 (5)$ $0.2488 (5)$ $0.1744 (6)$ $0.2242 (5)$ $0.0298 (5)$ $0.2533 (4)$ $-0.1378 (5)$ $0.1124 (5)$ $-0.5020 (5)$ $0.3746 (5)$ $-0.4855 (5)$ $0.4286 (5)$ $-0.5932 (5)$	xyz $0.32525 (12)$ $-0.00436 (13)$ $0.72254 (8)$ $0.35105 (14)$ $-0.85956 (14)$ $0.44115 (9)$ $0.19259 (12)$ $-0.30913 (13)$ $1.10648 (8)$ $0.2686 (3)$ $-0.2891 (3)$ $0.8624 (2)$ $-0.0500 (3)$ $-0.3628 (4)$ $0.7612 (2)$ $0.2821 (5)$ $0.0096 (5)$ $0.8663 (3)$ $0.2782 (5)$ $0.1655 (5)$ $0.9231 (3)$ $0.2488 (5)$ $0.1744 (6)$ $1.0399 (3)$ $0.2260 (4)$ $-0.1256 (5)$ $1.0378 (3)$ $0.2533 (4)$ $-0.1378 (5)$ $0.9200 (3)$ $0.1124 (5)$ $-0.5020 (5)$ $0.6946 (3)$ $0.3746 (5)$ $-0.5932 (5)$ $0.6183 (3)$

C13	0.2838 (5)	-0.7194 (5)	0.5378 (3)	0.0272 (11)	
C14	0.0830 (5)	-0.7394 (5)	0.5340 (3)	0.0272 (11)	
C15	0.0296 (5)	-0.6312 (5)	0.6119 (3)	0.0281 (11)	
H2	0.29510	0.26470	0.88370	0.0320*	
H3	0.24570	0.28060	1.08060	0.0350*	
H4	0.20590	0.03730	1.17630	0.0350*	
H11	0.47420	-0.39890	0.75230	0.0320*	
H12	0.56480	-0.58090	0.61970	0.0340*	
H14	-0.01560	-0.82690	0.47810	0.0330*	
H15	-0.10690	-0.64390	0.61000	0.0340*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0248 (5)	0.0392 (6)	0.0206 (5)	0.0065 (4)	0.0017 (3)	-0.0027 (4)
Cl2	0.0410 (6)	0.0383 (7)	0.0287 (5)	0.0173 (4)	0.0097 (4)	-0.0077 (5)
C13	0.0255 (5)	0.0408 (7)	0.0250 (5)	0.0041 (4)	0.0029 (4)	-0.0004(5)
O7	0.0182 (12)	0.0304 (16)	0.0218 (12)	0.0080 (10)	-0.0010 (9)	-0.0090 (12)
09	0.0186 (12)	0.0338 (17)	0.0259 (13)	0.0086 (10)	0.0015 (10)	-0.0080 (13)
C1	0.0126 (16)	0.038 (2)	0.0202 (17)	0.0080 (14)	-0.0015 (13)	-0.0065 (17)
C2	0.0133 (16)	0.028 (2)	0.034 (2)	0.0049 (14)	-0.0012 (14)	-0.0074 (19)
C3	0.0155 (17)	0.034 (2)	0.030(2)	0.0072 (14)	-0.0022 (14)	-0.0186 (18)
C4	0.0131 (16)	0.046 (3)	0.0215 (18)	0.0067 (15)	-0.0005 (13)	-0.0130 (19)
C5	0.0130 (16)	0.035 (2)	0.0175 (17)	0.0040 (14)	0.0001 (12)	-0.0064 (17)
C6	0.0125 (15)	0.030(2)	0.0190 (17)	0.0049 (13)	-0.0020 (12)	-0.0112 (17)
C8	0.0175 (17)	0.025 (2)	0.0192 (17)	0.0012 (14)	0.0013 (13)	-0.0029 (16)
C10	0.0191 (17)	0.028 (2)	0.0186 (17)	0.0066 (14)	0.0022 (13)	-0.0046 (17)
C11	0.0200 (17)	0.030(2)	0.0233 (18)	0.0033 (14)	0.0006 (14)	-0.0059 (17)
C12	0.0182 (17)	0.039 (2)	0.0259 (19)	0.0082 (15)	0.0051 (14)	-0.0045 (18)
C13	0.033 (2)	0.028 (2)	0.0235 (19)	0.0140 (16)	0.0087 (15)	-0.0016 (18)
C14	0.0249 (18)	0.029 (2)	0.0235 (19)	0.0070 (15)	-0.0008 (14)	-0.0038 (18)
C15	0.0173 (17)	0.032 (2)	0.029 (2)	0.0055 (15)	-0.0012 (14)	-0.0094 (19)

Geometric parameters (Å, °)

Cl1—C1	1.737 (4)	C10—C11	1.395 (5)	
Cl2—C13	1.737 (4)	C10—C15	1.403 (5)	
Cl3—C5	1.731 (4)	C11—C12	1.372 (5)	
O7—C6	1.381 (4)	C12—C13	1.378 (5)	
O7—C8	1.376 (4)	C13—C14	1.394 (5)	
O9—C8	1.202 (4)	C14—C15	1.371 (5)	
C1—C2	1.379 (5)	C2—H2	0.9500	
C1—C6	1.380 (5)	С3—Н3	0.9500	
C2—C3	1.397 (5)	C4—H4	0.9500	
C3—C4	1.380 (6)	C11—H11	0.9500	
C4—C5	1.379 (5)	C12—H12	0.9500	
C5—C6	1.404 (5)	C14—H14	0.9500	
C8—C10	1.471 (5)	C15—H15	0.9500	

C6—O7—C8	117.2 (3)	C11—C12—C13	119.5 (4)
Cl1—C1—C2	119.7 (3)	Cl2—C13—C12	119.8 (3)
Cl1—C1—C6	118.1 (3)	Cl2—C13—C14	119.1 (3)
C2—C1—C6	122.2 (3)	C12—C13—C14	121.2 (3)
C1—C2—C3	118.5 (4)	C13—C14—C15	119.1 (3)
C2—C3—C4	120.4 (4)	C10-C15-C14	120.5 (3)
C3—C4—C5	120.3 (3)	C1—C2—H2	121.00
Cl3—C5—C4	121.1 (3)	С3—С2—Н2	121.00
Cl3—C5—C6	118.7 (3)	С2—С3—Н3	120.00
C4—C5—C6	120.2 (3)	С4—С3—Н3	120.00
O7—C6—C1	120.4 (3)	C3—C4—H4	120.00
O7—C6—C5	121.1 (3)	C5—C4—H4	120.00
C1—C6—C5	118.3 (3)	C10-C11-H11	120.00
O7—C8—O9	122.9 (3)	C12-C11-H11	120.00
O7—C8—C10	110.6 (3)	C11—C12—H12	120.00
O9—C8—C10	126.5 (3)	C13—C12—H12	120.00
C8—C10—C11	121.9 (3)	C13—C14—H14	120.00
C8—C10—C15	119.0 (3)	C15—C14—H14	120.00
C11—C10—C15	119.0 (3)	C10—C15—H15	120.00
C10-C11-C12	120.7 (3)	C14—C15—H15	120.00
C8—O7—C6—C1	-76.3 (4)	C4—C5—C6—O7	175.7 (3)
C8—O7—C6—C5	109.5 (4)	C4—C5—C6—C1	1.3 (5)
C6—O7—C8—O9	-18.4 (5)	O7—C8—C10—C11	-15.5 (5)
C6—O7—C8—C10	160.7 (3)	O7—C8—C10—C15	167.8 (3)
Cl1—C1—C2—C3	-178.2 (3)	O9—C8—C10—C11	163.6 (4)
C6—C1—C2—C3	1.6 (6)	O9—C8—C10—C15	-13.1 (6)
Cl1—C1—C6—O7	3.2 (5)	C8—C10—C11—C12	-176.4 (3)
Cl1—C1—C6—C5	177.6 (3)	C15-C10-C11-C12	0.3 (5)
C2-C1-C6-07	-176.6 (3)	C8—C10—C15—C14	176.7 (3)
C2-C1-C6-C5	-2.2 (5)	C11—C10—C15—C14	-0.1 (6)
C1—C2—C3—C4	-0.1 (6)	C10-C11-C12-C13	-0.4 (6)
C2—C3—C4—C5	-0.8 (6)	C11—C12—C13—Cl2	-178.4 (3)
C3—C4—C5—Cl3	-179.3 (3)	C11—C12—C13—C14	0.2 (6)
C3—C4—C5—C6	0.1 (5)	Cl2—C13—C14—C15	178.7 (3)
Cl3—C5—C6—O7	-4.9 (4)	C12—C13—C14—C15	0.0 (6)
Cl3—C5—C6—C1	-179.3 (3)	C13—C14—C15—C10	-0.1 (6)