

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

μ -2,5-Dihydroxyterephthalato-bis[triaqua(1,10-phenanthroline)zinc] dihydroxyterephthalate

Hong Liu,^a Bo Liu,^b Ai-Ping Zhang^b and Chuan-Bi Li^{b*}

^aDepartment of Information & Technology, Jilin Normal University, Siping 136000, People's Republic of China, and ^bDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China Correspondence e-mail: chuanbl@gmail.com

Received 10 September 2012; accepted 6 November 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.086; data-to-parameter ratio = 13.2.

In the title compound, $[Zn_2(C_8H_4O_6)(C_{12}H_8N_2)_2(H_2O_6)]$ - $(C_8H_4O_6)$, the complete ions of both the binuclear dication and the dianion are generated by crystallographic inversion symmetry. The Zn atom is bonded to an N,N'-bidentate phenanthroline ligand, three water moleules and an Omonodenate 2,5-dihydroxyterephthalate dianion. In the resulting distorted octahedral ZnN₂O₄ coordination polyhedron, the water O atoms are in a mer orientation. Two intramolecular O-H···O hydrogen bonds occur in the bridging 2,5-dihydroxyterephthalate dianion within the complex cation and also in the free dianion. An intramolecular $O_w - H \cdots O$ (w = water) hydrogen bond also occurs within the dication. In the crystal, $O-H \cdots O$ hydrogen bonds link the component ions into a three-dimensional network.

Related literature

For a related structure, see: Sun et al. (2007). For background to the applications of coordination polymers, see: Perry et al. (2009).

 \times 0.18 \times 0.15 mm

5446 measured reflections 3824 independent reflections 3205 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.019$

Experimental

Crystal data

$[Zn_2(C_8H_4O_6)(C_{12}H_8N_2)_2(H_2O_6)]$ -	$\beta = 92.226 \ (5)^{\circ}$
$(C_8H_4O_6)$	$\gamma = 90.977 \ (5)^{\circ}$
$M_r = 991.46$	$V = 990.7 (9) \text{ Å}^3$
Triclinic, P1	Z = 1
a = 8.765 (5) Å	Mo $K\alpha$ radiation
b = 10.697 (5) Å	$\mu = 1.30 \text{ mm}^{-1}$
c = 11.062 (5) Å	T = 293 K
$\alpha = 106.994 \ (5)^{\circ}$	$0.25 \times 0.18 \times 0.1$

Data collection

Bruker SMART APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2002)	
$T_{\min} = 0.737, T_{\max} = 0.829$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	289 parameters
$wR(F^2) = 0.086$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
3824 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Zn1-O1	2.0181 (19)	Zn1-O3W	2.113 (2)
Zn1-O1W	2.184 (2)	Zn1-N1	2.124 (2)
Zn1-O2W	2.1581 (19)	Zn1-N2	2.156 (2)

Table 2

Hydrogen-bond	geometry	(A,	°).
---------------	----------	-----	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1WA\cdots O3^{i}$	0.97	1.95	2.902 (3)	170
$O1W-H1WB\cdots O2W^{ii}$	0.92	2.01	2.911 (3)	168
$O2W - H2WA \cdots O2$	0.93	1.75	2.663 (3)	166
$O3-H3A\cdots O2^{iii}$	0.82	1.84	2.562 (3)	147
$O2W-H2WB\cdots O5^{iv}$	0.91	1.80	2.692 (3)	166
O3W−H3WA···O4	0.89	1.85	2.695 (3)	158
O3W−H3WB···O4 ^{iv}	0.83	1.82	2.650 (3)	175
$O6-H6A\cdots O5^{v}$	0.82	1.84	2.566 (3)	146

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z; (iii) -x + 2, -y, -z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

The authors thank Jilin Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6960).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact BbR, Bonn, Germany. Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Perry, J. J. IV, Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400–1417.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, Y. G., Gao, E. J. & Wei, D. Z. (2007). Inorg. Chem. Commun. 10, 467-470.

supporting information

Acta Cryst. (2012). E68, m1503-m1504 [doi:10.1107/S1600536812045837]

μ -2,5-Dihydroxyterephthalato-bis[triaqua(1,10-phenanthroline)zinc] dihydroxy-terephthalate

Hong Liu, Bo Liu, Ai-Ping Zhang and Chuan-Bi Li

S1. Comment

The design and synthesis of coordination compounds have attracted much interest in the fields of supramolecular chemistry and crystal engineering because of their intriguing structural diversities and potential applications (Sun *et al.*, 2007; Perry IV, *et al.*, 2009). To extend the previous work, we obtained the title compound, (I), by using Zn^{II}, phenanthroline (phen) and 2,5-dihydroxyterephthalic acid (dhtp) as the starting materials.

The title compound, (I), is composed of a Zn^{II} canion, a phen molecule, half a coordinated dhtp anion, half a free dhtp anion and three coordinated water molecules in the asymmetric unit as shown in Fig. 1. Zn^{II} canion exhibits a distorted octahedral geometry, being coordinated by two N atoms of a phen molecule, one O atom from dhtp anion and three water O atoms. The Zn–O and Zn–N distances are normal. Zn^{II} canions are connected by dhtp anion to form a $[Zn_2(phen)_2(dhtp)$ $(H_2O)_6]^{II}$ cation unit. In additon, the free dhtp anion as the counter-ion presents in the sturcture. By way of O–H…O hydrogen bonding between the cation units and counter-anions, a three-dimensional network is formed (Fig. 2). The detailed hydrogen-bonding parameters are summarized in Table 1.

S2. Experimental

A mixture of $Zn(CH_3COO)_2 2H_2O$ (0.2 mmol), phen (0.3 mmol) and dhtp (0.2 mmol) were dissolved in 15 ml water. The resulting solution was stirred for about 0.5 h at room temperature, sealed in a 25-ml Teflon-lined stainless steel autoclave and heated at 443 K for three days under autogenous pressure. Afterward, the reaction system was slowly cooled to room temperature and colourless blocks of the title compound were recovered.

S3. Refinement

Carbon-bound H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding, with $U_{iso}(H)$ fixed at $1.2U_{eq}(C)$. Oxygen-bound for H3A and H6A atoms were positioned geometrically (O–H = 0.82 Å) and refined as riding, with $U_{iso}(H)$ fixed at $1.5U_{eq}(O)$. In the case of coordinated water molecules, H atoms were clearly detected in a difference Fourier map, and refined freely. Final O–H bond length span the range 0.83–0.97 Å. Isotropic displacement parameters for H atoms were calculated as $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A representation of title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. Unlabelled atoms are related to the reference atoms by the symmetry operations. [Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z + 1].

Figure 2

The packing diagram of the title compound. All H-atoms except for those involved in hydrogen bonds are omitted for clarity. (hydrogen bonds indicated by dashed lines).

μ -2,5-Dihydroxyterephthalato-bis[triaqua(1,10-phenanthroline)zinc] dihydroxyterephthalate

Crystal data $[Zn_2(C_8H_4O_6)(C_{12}H_8N_2)_2(H_2O)_6](C_8H_4O_6)$ $M_r = 991.46$

Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.765 (5) Å b = 10.697 (5) Å c = 11.062 (5) Å $a = 106.994 (5)^{\circ}$ $\beta = 92.226 (5)^{\circ}$ $\gamma = 90.977 (5)^{\circ}$ $V = 990.7 (9) \text{ Å}^{3}$ Z = 1F(000) = 508

Data collection

Bruker SMART APEXII CCD	5446 measured reflections
diffractometer	3824 independent reflections
Radiation source: fine-focus sealed tube	3205 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
ω scan	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 5$
(SADABS; Bruker, 2002)	$k = -13 \rightarrow 13$
$T_{\min} = 0.737, \ T_{\max} = 0.829$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
3824 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 0.484P]$
289 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

 $D_{\rm x} = 1.662 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.3 - 24.9^{\circ}$ $\mu = 1.30 \text{ mm}^{-1}$

Block, colorless

 $0.25 \times 0.18 \times 0.15 \text{ mm}$

T = 293 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1867 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.50422 (4)	0.32879 (3)	0.16460 (3)	0.03368 (11)	
C1	0.4116 (3)	0.0549 (3)	0.1904 (3)	0.0410 (7)	
H1	0.5020	0.0258	0.1515	0.049*	
C2	0.3222 (4)	-0.0322 (3)	0.2306 (3)	0.0490 (8)	
H2	0.3518	-0.1180	0.2177	0.059*	
C3	0.1916 (4)	0.0092 (3)	0.2888 (3)	0.0534 (9)	
H3	0.1321	-0.0478	0.3178	0.064*	
C4	0.1455 (3)	0.1379 (3)	0.3054 (3)	0.0468 (8)	

C5	0.0065 (4)	0.1877(4)	0 3508 (3)	0.0634(10)
С5 Н5	-0.0560	0.1351	0.3920	0.0054 (10)
C6	-0.0360(4)	0.3089 (4)	0.3656 (3)	0.0643 (11)
H6	-0.1282	0.3382	0.4008	0.077*
C7	0.1202 0.0574 (3)	0.3950 (3)	0.3186 (3)	0.0518 (8)
C8	0.0374(3)	0.5950(5)	0.3177(3)	0.0510(0)
H8	-0.0762	0.5528	0.3500	0.081*
C9	0.1111 (5)	0.5928	0.2692 (4)	0.001 0.0735 (12)
НО	0.0833	0.5754 (4)	0.2652 (4)	0.0755 (12)
C10	0.2505 (4)	0.5432(3)	0.2007 0.2235(3)	0.0600 (9)
H10	0.3157	0.5949	0.1925	0.0000 ())
C11	0.3137 0.1074 (3)	0.3504(3)	0.1725 0.2684 (3)	0.072
C12	0.1974(3) 0.2414(3)	0.3304(3)	0.2007(3)	0.0357 (6)
C12 C13	0.2414(3) 0.7000(3)	0.2194(3)	0.2002(2)	0.0337(0)
C13	0.7999(3)	0.2201(3) 0.1076(2)	0.0307(2)	0.0319(0)
C14 C15	0.9034(3)	-0.0063(2)	0.0500(2)	0.0274(5)
U15	0.8030 (3)	-0.0003(2)	0.0380 (2)	0.0300 (0)
П13	0.7/43	-0.0104 -0.1124(2)	0.0983	0.030°
C10 C17	0.9309(3)	-0.1134(2)	0.0290(2)	0.0290(3)
C17	0.4032(3)	0.2085 (5)	0.3940(3)	0.0377(0)
C18	0.4545(5) 0.5707(2)	0.1290(2)	0.3400(2) 0.4716(2)	0.0307(6)
U10	0.5797 (5)	0.0989 (2)	0.4710(2)	0.0338 (0)
H19	0.0340	0.1000	0.4551	0.041*
C20	0.6264 (3)	-0.0285(2)	0.4243(2)	0.0334 (6)
NI	0.3/40 (2)	0.1776 (2)	0.2049 (2)	0.0346 (5)
N2	0.2937 (3)	0.4250 (2)	0.2225 (2)	0.0419 (6)
01	0.6766 (2)	0.20561 (17)	0.10775 (18)	0.0382 (4)
02	0.8398 (2)	0.32217 (18)	0.0314 (2)	0.0447 (5)
03	0.9102 (2)	-0.22265 (18)	0.0592 (2)	0.0461 (5)
НЗА	0.9735	-0.2795	0.0370	0.069*
04	0.4677 (3)	0.35176 (18)	0.5525 (2)	0.0592 (7)
05	0.3055 (3)	0.29470 (18)	0.6758 (2)	0.0500 (5)
06	0.7485 (3)	-0.05155 (19)	0.3502 (2)	0.0563 (6)
H6A	0.7647	-0.1301	0.3282	0.084*
O1W	0.4148 (2)	0.28676 (19)	-0.03067 (18)	0.0434 (5)
H1WA	0.3083	0.2617	-0.0317	0.052*
H1WB	0.4161	0.3598	-0.0582	0.052*
O2W	0.6253 (2)	0.49092 (17)	0.12905 (17)	0.0371 (4)
H2WA	0.7050	0.4415	0.0879	0.045*
H2WB	0.6629	0.5567	0.1971	0.045*
O3W	0.5968 (2)	0.39846 (17)	0.35216 (17)	0.0380 (4)
H3WA	0.5567	0.3612	0.4060	0.046*
H3WB	0.5806	0.4777	0.3793	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03234 (18)	0.02944 (18)	0.04078 (19)	0.00700 (12)	0.01051 (13)	0.01119 (13)
C1	0.0402 (16)	0.0353 (15)	0.0467 (17)	-0.0007 (13)	-0.0064 (13)	0.0120 (13)

supporting information

C2	0.058 (2)	0.0409 (17)	0.0477 (18)	-0.0125 (15)	-0.0175 (16)	0.0160 (14)
C3	0.061 (2)	0.057 (2)	0.0446 (18)	-0.0277 (18)	-0.0106 (16)	0.0206 (16)
C4	0.0400 (17)	0.063 (2)	0.0343 (16)	-0.0155 (15)	-0.0036 (13)	0.0107 (14)
C5	0.044 (2)	0.091 (3)	0.050(2)	-0.018 (2)	0.0094 (16)	0.011 (2)
C6	0.0291 (17)	0.102 (3)	0.048 (2)	-0.0024 (19)	0.0123 (15)	0.000(2)
C7	0.0350 (16)	0.069 (2)	0.0410 (17)	0.0148 (16)	-0.0012 (13)	-0.0009 (15)
C8	0.047 (2)	0.085 (3)	0.057 (2)	0.029 (2)	0.0002 (17)	-0.002 (2)
C9	0.081 (3)	0.058 (2)	0.074 (3)	0.040 (2)	-0.002 (2)	0.007 (2)
C10	0.068 (2)	0.050 (2)	0.065 (2)	0.0224 (17)	0.0092 (18)	0.0192 (17)
C11	0.0307 (14)	0.0508 (17)	0.0319 (14)	0.0062 (13)	0.0012 (12)	0.0081 (13)
C12	0.0293 (14)	0.0456 (16)	0.0305 (14)	-0.0035 (12)	-0.0027 (11)	0.0093 (12)
C13	0.0296 (14)	0.0303 (14)	0.0331 (14)	0.0045 (11)	0.0008 (11)	0.0048 (11)
C14	0.0230 (12)	0.0291 (13)	0.0270 (12)	0.0053 (10)	0.0003 (10)	0.0033 (10)
C15	0.0215 (13)	0.0336 (14)	0.0340 (14)	0.0037 (10)	0.0072 (10)	0.0076 (11)
C16	0.0285 (13)	0.0277 (13)	0.0316 (13)	-0.0013 (11)	0.0006 (11)	0.0074 (11)
C17	0.0541 (18)	0.0248 (14)	0.0333 (14)	0.0011 (12)	0.0027 (13)	0.0068 (11)
C18	0.0399 (15)	0.0221 (12)	0.0296 (13)	0.0005 (11)	-0.0001 (11)	0.0071 (10)
C19	0.0412 (15)	0.0210 (12)	0.0387 (15)	-0.0053 (11)	0.0038 (12)	0.0081 (11)
C20	0.0379 (15)	0.0276 (13)	0.0349 (14)	0.0012 (11)	0.0051 (12)	0.0091 (11)
N1	0.0306 (12)	0.0355 (13)	0.0381 (12)	0.0005 (10)	0.0001 (10)	0.0115 (10)
N2	0.0410 (14)	0.0395 (13)	0.0450 (14)	0.0138 (11)	0.0050 (11)	0.0111 (11)
01	0.0308 (10)	0.0313 (10)	0.0540 (12)	0.0106 (8)	0.0151 (9)	0.0124 (9)
O2	0.0440 (12)	0.0337 (11)	0.0599 (13)	0.0102 (9)	0.0169 (10)	0.0167 (10)
03	0.0384 (11)	0.0346 (11)	0.0705 (14)	0.0081 (9)	0.0190 (10)	0.0211 (10)
04	0.1041 (19)	0.0225 (10)	0.0548 (13)	0.0075 (11)	0.0337 (13)	0.0132 (9)
05	0.0615 (14)	0.0293 (10)	0.0564 (13)	0.0071 (10)	0.0205 (11)	0.0058 (9)
06	0.0590 (14)	0.0323 (11)	0.0774 (16)	0.0039 (10)	0.0363 (12)	0.0113 (11)
O1W	0.0437 (12)	0.0450 (11)	0.0452 (11)	0.0008 (9)	0.0007 (9)	0.0191 (9)
O2W	0.0425 (11)	0.0287 (10)	0.0407 (11)	0.0044 (8)	0.0081 (9)	0.0097 (8)
O3W	0.0471 (11)	0.0270 (9)	0.0401 (11)	0.0057 (8)	0.0097 (9)	0.0090 (8)

Geometric parameters (Å, °)

Zn1—O1	2.0181 (19)	C11—C12	1.437 (4)
Zn1—O1W	2.184 (2)	C12—N1	1.356 (3)
Zn1—O2W	2.1581 (19)	C13—O1	1.255 (3)
Zn1—O3W	2.113 (2)	C13—O2	1.263 (3)
Zn1—N1	2.124 (2)	C13—C14	1.497 (3)
Zn1—N2	2.156 (2)	C14—C15	1.389 (4)
C1—N1	1.324 (3)	C14—C16 ⁱ	1.402 (3)
C1—C2	1.388 (4)	C15—C16	1.380 (3)
C1—H1	0.9300	C15—H15	0.9300
C2—C3	1.353 (5)	C16—O3	1.367 (3)
С2—Н2	0.9300	C16—C14 ⁱ	1.402 (3)
C3—C4	1.403 (5)	C17—O4	1.244 (3)
С3—Н3	0.9300	C17—O5	1.258 (3)
C4—C12	1.407 (4)	C17—C18	1.505 (4)
C4—C5	1.422 (5)	C18—C19	1.384 (4)

С5—С6	1.339 (5)	C18—C20 ⁱⁱ	1.401 (3)
С5—Н5	0.9300	C19—C20	1.385 (4)
С6—С7	1.441 (5)	C19—H19	0.9300
С6—Н6	0.9300	C20—O6	1.356 (3)
C7—C8	1.391 (5)	C20-C18 ⁱⁱ	1.401 (3)
C7—C11	1.400 (4)	O3—H3A	0.8200
C8—C9	1.364 (6)	O6—H6A	0.8200
C8—H8	0.9300	O1W—H1WA	0.9650
C9—C10	1.397 (5)	O1W—H1WB	0.9182
С9—Н9	0.9300	O2W—H2WA	0.9333
C10—N2	1.322 (4)	O2W—H2WB	0.9127
C10—H10	0.9300	O3W—H3WA	0.8873
C11—N2	1.362 (4)	O3W—H3WB	0.8287
O1—Zn1—O3W	93.06 (8)	C7—C11—C12	119.7 (3)
O1—Zn1—N1	90.52 (9)	N1—C12—C4	122.2 (3)
O3W—Zn1—N1	92.67 (8)	N1—C12—C11	117.9 (2)
O1—Zn1—N2	168.50 (8)	C4—C12—C11	119.9 (3)
O3W—Zn1—N2	90.35 (8)	O1—C13—O2	124.5 (2)
N1—Zn1—N2	78.34 (9)	O1—C13—C14	117.3 (2)
O1—Zn1—O2W	93.13 (8)	O2—C13—C14	118.2 (2)
O3W—Zn1—O2W	86.71 (7)	C15-C14-C16 ⁱ	119.1 (2)
N1—Zn1—O2W	176.32 (8)	C15—C14—C13	119.7 (2)
N2—Zn1—O2W	98.03 (9)	C16 ⁱ —C14—C13	121.2 (2)
O1—Zn1—O1W	90.61 (8)	C16—C15—C14	121.1 (2)
O3W—Zn1—O1W	171.35 (7)	C16—C15—H15	119.4
N1—Zn1—O1W	95.13 (8)	C14—C15—H15	119.4
N2— $Zn1$ — $O1W$	87.58 (9)	O3—C16—C15	118.2 (2)
O2W—Zn1—O1W	85.27 (7)	$03-C16-C14^{i}$	122.0(2)
N1-C1-C2	122.9 (3)	C15-C16-C14 ⁱ	119.8 (2)
N1-C1-H1	118.6	04-017-05	123.5 (3)
C2-C1-H1	118.6	04-017-018	118.2 (3)
C_{3} C_{2} C_{1}	119.2 (3)	05-017-018	118.2(0)
$C_{3} - C_{2} - H_{2}$	120.4	$C19 - C18 - C20^{ii}$	119.3 (2)
C1-C2-H2	120.4	C19 - C18 - C17	120.2(2)
$C_{2}^{-}C_{3}^{-}C_{4}^{-}$	120.3 (3)	$C20^{ii}$ $C18$ $C17$	120.2(2) 120.5(2)
C2-C3-H3	119.9	$C_{18} - C_{19} - C_{20}$	120.5(2) 121.6(2)
C4—C3—H3	119.9	C18—C19—H19	119.2
C_{3} C_{4} C_{12}	117.0(3)	C_{20} C_{19} H_{19}	119.2
C_{3} C_{4} C_{5}	1240(3)	06-C20-C19	119.2 118 7 (2)
$C_{12} - C_{4} - C_{5}$	121.0(3) 1190(3)	$06 - C20 - C18^{ii}$	1223(2)
$C_{12} C_{+} C_{5}$	117.0(3)	$C19-C20-C18^{ii}$	122.5(2) 1191(2)
C6-C5-H5	119.4	C1 - N1 - C12	119.1(2) 118.5(2)
C4—C5—H5	119.4	C1 - N1 - 7n1	178.2(2)
$C_{7} - C_{5} - C_{15}$	1217(3)	C1 = 101 = -2.01 C12 = N1, 7n1	113 14 (19)
С5-С6-Ч6	121.7 (3)	C12 - N1 - Z111 $C10 - N2 - C11$	113.14(10) 1181(2)
C7_C6_H6	119.1	C10 - N2 - C11 C10 - N2 - 7n1	110.1(3) 1208(2)
$C_{1} = C_{0} = 110$	117.1	$C_{10} = 12 = 211$ $C_{11} = N_2 = 7n^1$	127.0 (2)
	11/.3(3)	C_{11} M_2 Z_{111}	112.00(10)

C8—C7—C6 C11—C7—C6	124.1 (3) 118.4 (3)	C13—O1—Zn1 C16—O3—H3A	131.20 (17) 109.5
C9—C8—C7	119.9 (3)	C20—O6—H6A	109.5
С9—С8—Н8 С7—С8—Н8	120.1	Zn1—O1W—H1WA Zn1—O1W—H1WB	107.0 112.0
C8—C9—C10	119.3 (3)	H1WA—O1W—H1WB	105.5
С8—С9—Н9	120.4	Zn1—O2W—H2WA Zn1—O2W—H2WP	95.5
N2-C10-C9	122.6 (4)	H2WA—O2W—H2WB	110.3
N2—C10—H10	118.7	Zn1—O3W—H3WA	114.7
C9—C10—H10 N2—C11—C7	118.7	Zn1—O3W—H3WB H3WA—O3W—H3WB	108.4 106.6
N2-C11-C12	117.6 (2)		10010

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A	
O1W—H1 WA ···O3 ⁱⁱⁱ	0.97	1.95	2.902 (3)	170	
$O1W$ —H1 WB ···O2 W^{iv}	0.92	2.01	2.911 (3)	168	
O2 <i>W</i> —H2 <i>WA</i> ···O2	0.93	1.75	2.663 (3)	166	
O3—H3A···O2 ⁱ	0.82	1.84	2.562 (3)	147	
O2W— $H2WB$ ···O5 ^v	0.91	1.80	2.692 (3)	166	
O3 <i>W</i> —H3 <i>WA</i> ···O4	0.89	1.85	2.695 (3)	158	
$O3W$ — $H3WB$ ··· $O4^{v}$	0.83	1.82	2.650 (3)	175	
06—H6A····O5 ⁱⁱ	0.82	1.84	2.566 (3)	146	

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1.