inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

$Li_{0.17}Na_{5.83}Mo_{11}O_{36}$

Ines Ennajeh, Hamadi Hamza, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 14 August 2012; accepted 24 October 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Mo–O) = 0.005 Å; disorder in main residue; R factor = 0.037; wR factor = 0.095; data-to-parameter ratio = 12.7.

The title mixed-alkali-metal molybdenium oxide, hexakis-(lithium/sodium) undecamolybdate, was synthesized by solidstate reaction at 793 K. Its $[Mo_{11}O_{36}]^{6-}$ framework is built up from MoO₆ octahedra and MoO₅ pyramids linked together by edges and vertices. The framework delimits two types of intersecting tunnels running along [100] and [001], where the sodium and lithium ions are located. Two of the sodium ions and the lithium ion have fractional site occupancies. One of the Mo atoms has site symmetry 2, one sodium ion has site symmetry 2 and one has site symmetry $\overline{1}$, and the Li⁺ ion has site symmetry 2. Structural relationships between the title compound and the anatase and Na₆Mo₁₁O₃₆ structures are discussed.

Related literature

For complex oxides containing lithium ions, see: Daidouh *et al.* (1997); Whittingham & Silbernagel (1976); Mizushima *et al.* (1980); Kanno *et al.* (1994); Guilmard *et al.* (2003); Lin *et al.* (2005); Yuh *et al.* (1995); Koyama *et al.* (2004). For details of structurally related compounds, see: Bramnik & Ehrenberg (2004); Caillet (1967); Seleborg (1967). For further synthetic details, see: Bramnik & Ehrenberg (2004). For bond-valence sums, see: Brown & Altermatt (1985). For related literature, see: Koyama *et al.* (2004).

Experimental

Crystal data Li_{0.17}Na_{5.83}Mo₁₁O₃₆ $M_r = 1766.55$

Monoclinic, C2/ca = 7.2250 (9) Å b = 17.863 (2) Å c = 22.086 (3) Å $\beta = 90.162 (8)^{\circ}$ $V = 2850.5 (6) \text{ Å}^{3}$ Z = 4

Data collection

Enraf–Nonius CAD-4	
diffractometer	
Absorption correction: ψ scan	
(North et al., 1968)	
$T_{\rm min} = 0.25, \ T_{\rm max} = 0.50$	
6662 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 247 parameters

 $wR(F^2) = 0.095$ 1 restraint

 S = 1.33 $\Delta \rho_{max} = 1.39$ e Å⁻³

 3138 reflections
 $\Delta \rho_{min} = -1.85$ e Å⁻³

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Mo *K* α radiation $\mu = 4.89 \text{ mm}^{-1}$

 $0.30 \times 0.24 \times 0.14 \text{ mm}$

2 standard reflections every 120 min

intensity decay: 2.3%

3138 independent reflections 3065 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.032$

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6937).

References

- Bramnik, K. G. & Ehrenberg, H. (2004). Z. Anorg. Allg. Chem. 630, 1336–1341.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Caillet, P. (1967). Bull. Soc. Chem. Fr. pp. 4750-4757.
- Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28-34.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
 Guilmard, M., Croguennec, L. & Delmas, C. (2003). Chem. Mater. 15, 4484–4493
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marberg, Germany.
- Kanno, R., Kubo, H., Kawamoto, Y., Kamiyama, T., Izumi, F., Takeda, Y. & Takano, M. (1994). J. Solid State Chem. 110, 216–225.
- Koyama, Y., Yabuuchi, N., Tanaka, I., Adachi, H. & Ohzuku, T. (2004). J. Electrochem. Soc. 151, A1545–A1551.
- Lin, Y. K., Lu, C. H., Wu, H. C. & Yang, M. H. (2005). J. Power Sources, B146, 594–597.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. (1980). *Mater. Res. Bull.* **15**, 783–789.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Seleborg, M. (1967). Acta Chem. Scand. 21, 499-504.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Whittingham, M. S. & Silbernagel, B. G. (1976). Mater. Res. Bull. 11, 29-36.
- Yuh, C., Johnsen, R., Farooque, M. & Maru, H. (1995). J. Power Sources, B56, 1–10.

supporting information

Acta Cryst. (2012). E68, i88 [doi:10.1107/S1600536812044224]

$Li_{0.17}Na_{5.83}Mo_{11}O_{36}$

Ines Ennajeh, Hamadi Hamza, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

Ces dernières années, un grand intérêt a été accordé à l'étude des conducteurs ioniques pour l'importance de leur application dans le domaine de l'énergétique et de l'électronique, en particulier, les conducteurs ioniques où le porteur de charge est un cation monovalent (Li, Na, Ag) (Daidouh et al., 1997). Les conducteurs par l'ion lithium telques Les matériaux LiMO₂ (M= Mn, Fe, Co, Ni) (Whittingham & Silbernagel, 1976; Mizushima et al., 1980; Kanno et al., 1994) et les matériaux substitués telques $\text{Li}M_{v}\text{Co}_{1-v}\text{O}_{2}$ et $\text{Li}M_{v}\text{Ni}_{1-v}\text{O}_{2}$ (Koyama et al., 2004; Guilmard et al., 2003; Lin et al., 2005) ont pris un grand intérêt dans la réalization des générateurs électrochimiques de haute densité d'énergie. De plus, La découverte des batteries de type Li-ion rechargeable telques les batteries à base de LiCoO₂ (Yuh *et al.*, 1995) a encouragé la recherche dans cet axe, en raison de leur forte densité énergétique, faible coût des matières premières et respect de l'environnement et de sécurité. Plusieurs équipes visent à améliorer ces batteries et de créer des générations nouvelles par substitution dans ces composés. Dans ce cadre, on a essavé d'une part, d'explorer le système Li₂O-Na₂O-MoO₃ et d'autre part d'augmenter la mobilité des ions monovalents dans les composés rencontrés dans la littérature Na₆Mo₁₁O₃₆ (Bramnik & Ehrenberg, 2004), Na₂Mo₃O₁₀ et Na₂Mo₅O₁₆ (Caillet, 1967), Na₂Mo₂O₇ (Seleborg, 1967) en substituant l'ion sodium par le lithium de taille plus faible. Ceci nous a conduit à la synthèse, par réaction à l'état solide, d'un nouveau molybdenium oxyde double de sodium et de lithium de formulation Li_{0,17}Na_{5,83}Mo₁₁O₃₆. L'unité asymétrique est construite par deux groupements identiques $M_{0}O_{21}$ reliés par mize en comment d'arêtes à un octaèdre $M_{0}O_{21}$ (Fig. 1). Dans ces derniers clusters Mo_5O_{21} quatre octaèdres MoO_6 se connectent au moyen d'une pyramide $Mo2O_5$ (Fig. 2). En effet, dans la charpente anionique chaque unité structurale $Mo_{11}O_{36}$ se lie à quatre identiques par partage d'arêtes ou bien de sommets (Fig. 3). Il en résulte une charpente tridimensionnelle possédant des canaux larges parallèles repectivement aux deux directions [001] (Fig. 4) et [-110] (Fig. 5) où se situent les cations monovalents Li⁺ et Na⁺. Les valeurs des charges des ions (BVS) dans la structure ont été calculées moyennant la formule empirique de Brown (Brown & Altermatt, 1985). Le résultat final: Mo1(6,23), Mo2(6,16), Mo3(6,21), Mo4(6,10), Mo5(6,20), Mo6(6,17), Na1(1,16), Na2(1,15), Na3(1,17), Na4(1,22) et Li1(1,04) confirme bien le caractère haxavalent des atomes de molybden dans la phase étudiée. Une étude comparative de notre matériau avec des travaux antérieurs révèle un lien de parenté à celle de Na₆Mo₁₁O₃₆ (Bramnik & Ehrenberg, 2004) qui peut être considéré comme un dérivé de la structure anatase. Ce pendant une différence nette est observée d'une part, dans la symétrie des réseaux: l'anatase TiO₂ (quatratique, groupe I41/amd), $Na_6Mo_{11}O_{36}$ (triclinique, groupe P-1) et notre composé $Li_{0.17}Na_{5.83}Mo_{11}O_{36}$ (monoclinique, groupe C2/c) et d'autre part dans la jonction des polyèdres dans la charpente. En effet, dans les deux composés $Na_6Mo_{11}O_{36}$ et l'anatase TiO₂ les octaèdres MO₆ (M= Mo ou Ti) sont uniquement liés entre eux par des arêtes par contre dans la phase étudiée existent des pyramides MoO₅ et la cohésion entre polyèdres est aussi renforsée par mize en commun de sommets.

S2. Experimental

Dans le but de substituer l'ion Na⁺ par Li⁺ dans Na₆Mo₁₁O₃₆ (Bramnik & Ehrenberg, 2004), un mélange a été réalisé dans les rapports molaires Li:Na:Mo égaux à 1:5:11 à partir des réactifs solides LiNO₃ (Fluka, 62575), NaCO₃ (Fluka, 71350) e t (NH₄)₂Mo₄O₁₃ (Fluka, 69858). Il a été finement broyé et préchauffé à l'air à 573 K pendant une nuit. Après refroidissement et broyage, la préparation est portée, proche de la fusion pour favoraiser la germination et la croissance des cristaux, à 793 K pendant deux jours. le résidu final est refroidi lentement (5 K/jour) dans un intervalle de 50 degrés puis rapide jusqu'à la température ambiante. Par lavage à l'eau chaude des cristaux de couleur jaunâtre de qualité et de taille suffisante ont été séparés pour analyse par DRX.

S3. Refinement

L'examen des Facteurs de structure propose une *sym*étrie orthorombic groupe spacial Cccm, mais le facteur de concistence interne dans ce cas est R_{int} = 27%. De plus, l'affinement dans ce système reste bloqué à 33% et les facteurs thermiques et les grandeurs géométriques sont mal définis. *L*'affinement a été conduit sans problème dans le système monoclinique (R_{int} = 0,032) et dans le groupe d'espace *C*2/*c*. A la fin de la résolution un examen de la Fourier-Différence finale révèle la présence d'un pic d'intensité faible situé à des distances interatomique des atomes d'oxygène correspondant bien au lithium mais ayant une agitation thermique très variable. *L*'utilization des fonctions SUMP et EADP, autorisées par le programme *SHELX*, pour les deux ions Na4 et Li1 conduit à des ellipsoïdes bien définis. De plus, Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont acceptables et sont situées respectivements à 0,79 Å de Mo2 et à 0,91 Å de Mo1.

Unité asymétrique dans Li_{0.17}Na_{5.83}Mo₁₁O₃₆.

Cluster Mo₅O₂₁ dans Li_{0.17}Na_{5.83}Mo₁₁O₃₆. Les éllipsoïdes ont été définis avec 50% de probabilité. [*Code de symétrie*: (i) 1/2 - x, 1/2 + y, 1/2 - z; (ii) 1/2 - x, 1/2 - y, 3/2 - z; (iii) 3/2 - x, 1/2 + y, 1/2 - z; (iv) 3/2 - x, 1/2 + y, 3/2 - z; (v) x - 1/2, 1/2 - y, 2 - 1/2; (vi) x, 1 - y, 1/2 - z; (vi) x - 1/2, 1/2 + y, 2 - 1/2; (vi) x, 1 - y, 1/2 - z; (vi) x - 1/2, 1/2 + y, 2 - 1/2; (vi) x, 1 - y, 1/2 - z; (vi) x - 1/2, 1/2 + y, 2 - 1/2].

Projection de la charpente anionique selon **a** montrant la jonction des unités Mo₁₁O₃₆ dans la structure.

 $Projection \ de \ la \ structure \ de \ Li_{0.17}Na_{5.83}Mo_{11}O_{36}, \ selon \ \textbf{c}, \ mettant \ en \ évidence \ les \ canaux \ où \ logent \ les \ cations \ Na^+.$

Projection de la structure de $Li_{0.17}Na_{5.83}Mo_{11}O_{36}$, selon la direction [-110], montrant des canaux allongés où résident les cations Na^+ .

Hexakis(lithium/sodium) undecamolybdate

Crystal	data
---------	------

Li_{0.17}Na_{5.83}Mo₁₁O₃₆ $M_r = 1766.55$ Monoclinic, C2/c Hall symbol: -C 2yc a = 7.2250 (9) Å b = 17.863 (2) Å c = 22.086 (3) Å $\beta = 90.162$ (8)° $V = 2850.5 \text{ (6) } \text{Å}^{3}$ Z = 4 F(000) = 3259 $D_{x} = 4.116 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation, \$\lambda\$ = 0.71073 \$\text{Å}\$ Cell parameters from 25 reflections \$\theta\$ = 10-15\$^\circ\$ \$\mu\$ = 4.89 mm}^{-1}

T = 298 KPrism, yellow

Data collection

Enraf–Nonius CAD-4	3138 independent reflections
diffractometer	3065 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.032$
Graphite monochromator	$\theta_{\rm max} = 27.2^{\circ}, \theta_{\rm min} = 2.3^{\circ}$
$\omega/2\theta$ scans	$h = -9 \rightarrow 9$
Absorption correction: ψ scan	$k = -1 \rightarrow 22$
(North <i>et al.</i> , 1968)	$l = -28 \rightarrow 28$
$T_{\min} = 0.25, \ T_{\max} = 0.50$	2 standard reflections every 120 min
6662 measured reflections	intensity decay: 2.3%
Refinement	

 $0.30 \times 0.24 \times 0.14 \text{ mm}$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0312P)^2 + 53.4724P]$
$wR(F^2) = 0.095$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.33	$(\Delta/\sigma)_{ m max} < 0.001$
3138 reflections	$\Delta \rho_{\rm max} = 1.39 \text{ e } \text{\AA}^{-3}$
247 parameters	$\Delta \rho_{\rm min} = -1.85 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
direct methods	Extinction coefficient: 0.00239 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	r	v	7.	Uine*/Une	$Occ (\leq 1)$
Mol	-0.05004 (7)	0.00121 (3)	0.08276 (2)		
M.2	0.03004(7)	0.09121(3)	0.08270(2)	0.00020(14)	
M02	-0.04296 (7)	0.09488 (3)	-0.08670(2)	0.00647 (15)	
Mo3	0.28669 (7)	0.16698 (3)	0.17148 (2)	0.00669 (15)	
Mo4	0.0000	0.06761 (4)	0.2500	0.00700 (18)	
Mo5	0.29608 (6)	0.15641 (3)	0.00098 (2)	0.00611 (14)	
Mo6	0.28716 (7)	0.15684 (3)	-0.17582 (2)	0.00792 (15)	
Na1	0.7353 (3)	0.24829 (16)	-0.17054 (12)	0.0162 (5)	
Na2	0.5000	-0.0049 (3)	0.2500	0.0223 (9)	
Na3	0.4865 (3)	-0.00129 (15)	0.08703 (11)	0.0146 (9)	0.974 (12)
Na4	0.7500	0.2500	0.0000	0.0144 (13)	0.884 (17)
Li1	0.0000	0.080 (5)	0.7500	0.0144 (13)	0.17 (3)
01	0.8364 (6)	0.0093 (3)	0.91649 (19)	0.0096 (8)	
O2	0.1841 (6)	0.0087 (3)	0.2570 (2)	0.0155 (9)	

O3	0.0629 (6)	0.2560 (3)	0.8312 (2)	0.0114 (9)
O4	0.8115 (6)	0.0125 (3)	0.0820(2)	0.0116 (9)
O5	0.4298 (6)	0.2375 (3)	0.0005 (2)	0.0116 (9)
O6	0.4138 (5)	0.2410 (2)	0.84170 (19)	0.0085 (8)
O7	0.0400 (6)	0.1004 (3)	0.83715 (19)	0.0105 (9)
08	0.7382 (7)	0.1602 (3)	0.7519 (2)	0.0183 (10)
09	0.2093 (6)	0.1534 (2)	0.9216 (2)	0.0093 (9)
O10	0.0275 (6)	0.0968 (3)	0.16486 (18)	0.0097 (9)
O11	0.2069 (6)	0.1538 (2)	0.08222 (19)	0.0086 (9)
O12	0.0345 (6)	0.0951 (2)	0.00058 (18)	0.0098 (9)
O13	0.4304 (7)	0.0913 (3)	0.1661 (2)	0.0152 (9)
O14	0.2059 (7)	0.1611 (2)	0.2469 (2)	0.0111 (9)
O15	0.7919 (6)	0.1631 (3)	0.9173 (2)	0.0145 (10)
O16	0.4536 (6)	0.0861 (3)	0.0022 (2)	0.0145 (10)
O17	0.7944 (7)	0.1625 (3)	0.0817 (2)	0.0157 (10)
O18	0.4428 (7)	0.0853 (3)	0.8357 (2)	0.0139 (9)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0053 (2)	0.0088 (3)	0.0045 (2)	-0.00116 (18)	0.00002 (16)	0.00022 (17)
Mo2	0.0057 (2)	0.0083 (3)	0.0054 (2)	-0.00105 (17)	-0.00061 (17)	0.00018 (17)
Mo3	0.0053 (2)	0.0087 (3)	0.0060 (2)	-0.00102 (18)	-0.00057 (17)	0.00020 (17)
Mo4	0.0072 (3)	0.0091 (3)	0.0047 (3)	0.000	0.0014 (2)	0.000
Mo5	0.0057 (2)	0.0083 (3)	0.0044 (2)	-0.00079 (18)	0.00004 (17)	-0.00012 (17)
Mo6	0.0070 (2)	0.0083 (3)	0.0084 (3)	-0.00041 (18)	0.00160 (17)	0.00070 (17)
Na1	0.0115 (12)	0.0206 (14)	0.0166 (13)	-0.0003 (11)	-0.0004 (9)	-0.0012 (11)
Na2	0.0123 (17)	0.034 (2)	0.020 (2)	0.000	0.0043 (14)	0.000
Na3	0.0097 (13)	0.0197 (16)	0.0143 (15)	0.0014 (11)	-0.0013 (10)	0.0010 (11)
Na4	0.012 (2)	0.017 (2)	0.014 (2)	0.0019 (16)	-0.0013 (15)	-0.0008 (16)
Li1	0.012 (2)	0.017 (2)	0.014 (2)	0.0019 (16)	-0.0013 (15)	-0.0008 (16)
O1	0.0059 (18)	0.014 (2)	0.009 (2)	-0.0004 (17)	-0.0012 (14)	-0.0016 (16)
O2	0.013 (2)	0.015 (2)	0.018 (2)	0.0023 (19)	0.0045 (17)	0.0058 (19)
O3	0.0074 (19)	0.012 (2)	0.015 (2)	-0.0013 (17)	-0.0008 (16)	0.0025 (17)
O4	0.0072 (19)	0.015 (2)	0.012 (2)	-0.0031 (17)	0.0005 (16)	-0.0022 (17)
O5	0.0109 (19)	0.013 (2)	0.011 (2)	-0.0021 (18)	-0.0003 (16)	0.0008 (17)
O6	0.0052 (17)	0.010 (2)	0.010 (2)	-0.0023 (16)	0.0013 (15)	-0.0002 (16)
O7	0.012 (2)	0.012 (2)	0.008 (2)	-0.0028 (17)	0.0002 (15)	-0.0005 (16)
08	0.021 (3)	0.022 (3)	0.012 (2)	0.005 (2)	-0.0009 (18)	-0.0007 (19)
09	0.011 (2)	0.011 (2)	0.0065 (19)	-0.0018 (16)	0.0010 (16)	-0.0036 (15)
O10	0.011 (2)	0.015 (2)	0.0028 (19)	-0.0045 (17)	0.0008 (15)	0.0009 (15)
O11	0.009 (2)	0.011 (2)	0.0052 (19)	-0.0031 (16)	0.0013 (15)	-0.0009 (15)
O12	0.013 (2)	0.014 (2)	0.0029 (18)	-0.0053 (17)	0.0017 (16)	-0.0010 (15)
O13	0.016 (2)	0.014 (2)	0.015 (2)	0.0051 (18)	-0.0008 (17)	0.0000 (18)
O14	0.014 (2)	0.014 (2)	0.0057 (19)	-0.0003 (17)	0.0002 (16)	-0.0009 (16)
O15	0.014 (2)	0.015 (2)	0.014 (2)	0.0034 (18)	0.0010 (18)	0.0006 (17)
O16	0.016 (2)	0.012 (2)	0.015 (2)	0.0039 (18)	-0.0007 (18)	-0.0012 (18)
O17	0.017 (2)	0.015 (2)	0.014 (2)	0.0004 (18)	-0.0015 (18)	0.0026 (18)

O18	0.015 (2)	0.012 (2)	0.014 (2)	0.0038 (18)	0.0031 (17)	0.0010 (17)		
Geom	Geometric parameters (Å, °)							
Mo1-		1.699	9 (5)	Na3—O1 ⁱⁱ		2.338 (5)		
Mo1-	–O4 ⁱ	1.72	5 (4)	Na3—O4		2.364 (5)		
Mo1-	O10	1.899	9 (4)	Na3—O13		2.440 (5)		
Mo1-	O12	1.918	8 (4)	Na3—O16		2.449 (5)		
Mo1-	011	2.16	7 (4)	Na3—O16 ^{xiii}		2.525 (5)		
Mo1-	O1 ⁱⁱ	2.368	8 (4)	Na4—O5 ^{xi}		2.324 (4)		
Mo2-	O15 ⁱⁱⁱ	1.708	8 (5)	Na4—O5		2.324 (4)		
Mo2-	–O1 ⁱⁱⁱ	1.76	1 (4)	Na4—O17 ^{xi}		2.408 (5)		
Mo2-	–O7 ^{iv}	1.790	0 (4)	Na4—O17		2.408 (5)		
Mo2-	O12	2.000	5 (4)	Na4—O15 ^{xiv}		2.417 (5)		
Mo2-		2.109	9 (4)	Na4—O15 ^{iv}		2.417 (5)		
Mo3-	O13	1.709	9 (5)	Li1—07		1.979 (18)		
Mo3-	O3 ^v	1.75	5 (4)	Li1—O7 ^{xv}		1.979 (18)		
Mo3-	O14	1.769	9 (5)	Li1—O2 ^{xvi}		2.08 (8)		
Mo3-	011	2.060	5 (4)	Li1—O2 ^{xvii}		2.08 (8)		
Mo3-	$-O6^{v}$	2.210	0 (4)	Li1—O8 ^{xviii}		2.37 (6)		
Mo3-	O10	2.258	8 (4)	Li1—O8 ⁱ		2.37 (6)		
Mo4-	$-O2^{vi}$	1.703	3 (5)	O1—Mo2 ^{xix}		1.761 (4)		
Mo4-	O2	1.703	3 (5)	O1—Na3 ⁱⁱ		2.338 (5)		
Mo4-	O10 ^{vi}	1.962	2 (4)	O1—Mo1 ⁱⁱ		2.368 (4)		
Mo4-	O10	1.962	2 (4)	O2—Li1 ^{xvi}		2.08 (8)		
Mo4-	O14	2.238	8 (5)	O3—Mo3 ^v		1.755 (4)		
Mo4-	–O14 ^{vi}	2.238	8 (5)	O3—Na1 ^{xx}		2.371 (5)		
Mo5-	016	1.695	5 (5)	O3—Mo6 ^{xxi}		2.405 (4)		
Mo5-	O5	1.74	1 (4)	O4—Mo1 ^{xxii}		1.725 (4)		
Mo5-		1.862	2 (4)	O5—Mo5 ^{vii}		2.501 (5)		
Mo5-	011	1.909	9 (4)	O6—Mo6 ^{xxi}		1.802 (4)		
Mo5-	012	2.184	4 (4)	O6—Mo3 ^v		2.210 (4)		
Mo5-	–O5 ^{vii}	2.50	1 (5)	O6—Na1 ^{xxi}		2.342 (5)		
Mo6-	–O8 ^{viii}	1.690) (5)	O7—Mo2 ^{xxi}		1.790 (4)		
M06-	O18 ^{iv}	1.720	0 (5)	O7—Mo6 ^{xxi}		2.072 (5)		
M06-	–O6 ^{iv}	1.802	2 (4)	O8—Mo6 ^{viii}		1.690 (5)		
M06-	–O7 ^{iv}	2.072	2 (5)	O8—Na1 ^{xxi}		2.327 (6)		
M06-	09 ^{iv}	2.225	5 (4)	O8—Li1 ^{xxii}		2.37 (6)		
M06-	–O3 ^{iv}	2.40	5 (4)	O9—Mo5 ^{xxi}		1.862 (4)		
Na1-	–O8 ^{iv}	2.32	7 (6)	O9—Mo2 ^{xxi}		2.109 (4)		
Na1-	–O6 ^{iv}	2.342	2 (5)	O9—Mo6 ^{xxi}		2.225 (4)		
Na1-	–O3 ^{ix}	2.37	1 (5)	O14—Na1 ^{xxiii}		2.448 (5)		
Na1-	-O14 ^x	2.448	8 (5)	O15—Mo2 ^{xix}		1.708 (5)		
Na1-	-O15 ^{iv}	2.499	9 (5)	O15—Na4 ^{xxi}		2.417 (5)		
Na1-	-O17 ^{xi}	2.537	7 (6)	O15—Na1 ^{xxi}		2.499 (5)		
Na2-	–O2 ^{viii}	2.30	1 (5)	O16—Na3xiii		2.525 (5)		
Na2-	-02	2.30	1 (5)	O17—Mo1 ^{xxii}		1.699 (5)		
Na2—	–O18 ⁱⁱ	2.413	3 (5)	O17—Na1 ^{xi}		2.537 (6)		

supporting information

Na2—O18 ^{xii}	2.413 (5)	O18—Mo6 ^{xxi}	1.720 (5)
Na2—O13 ^{viiii}	2.575 (6)	O18—Na3 ⁱⁱ	2.329 (5)
Na2—O13	2.575 (6)	O18—Na2 ⁱⁱ	2.413 (5)
Na3—O18 ⁱⁱ	2.329 (5)		
$O17^{i}$ —Mo1—O4 ⁱ	103.1 (2)	O8 ^{viii} —Mo6—O3 ^{iv}	88.1 (2)
O17 ⁱ —Mo1—O10	99.6 (2)	O18 ^{iv} —Mo6—O3 ^{iv}	167.72 (19)
O4 ⁱ —Mo1—O10	102.8 (2)	O6 ^{iv} —Mo6—O3 ^{iv}	73.36 (17)
O17 ⁱ —Mo1—O12	99.9 (2)	O7 ^{iv} —Mo6—O3 ^{iv}	76.61 (16)
O4 ⁱ —Mo1—O12	101.9 (2)	O9 ^{iv} —Mo6—O3 ^{iv}	77.62 (16)
O10-Mo1-O12	143.9 (2)	O8 ^{iv} —Na1—O6 ^{iv}	93.37 (19)
O17 ⁱ —Mo1—O11	100.4 (2)	O8 ^{iv} —Na1—O3 ^{ix}	92.29 (19)
O4 ⁱ —Mo1—O11	156.48 (19)	O6 ^{iv} —Na1—O3 ^{ix}	172.4 (2)
O10-Mo1-O11	74.20 (17)	O8 ^{iv} —Na1—O14 ^x	84.20 (18)
O12—Mo1—O11	72.60 (17)	O6 ^{iv} —Na1—O14 ^x	92.23 (18)
O17 ⁱ —Mo1—O1 ⁱⁱ	179.2 (2)	$O3^{ix}$ —Na1—O14 ^x	93.35 (18)
O4 ⁱ —Mo1—O1 ⁱⁱ	76.14 (18)	O8 ^{iv} —Na1—O15 ^{iv}	99.12 (19)
O10-Mo1-O1 ⁱⁱ	80.95 (17)	O6 ^{iv} —Na1—O15 ^{iv}	92.11 (18)
O12—Mo1—O1 ⁱⁱ	79.90 (17)	O3 ^{ix} —Na1—O15 ^{iv}	82.02 (17)
O11—Mo1—O1 ⁱⁱ	80.36 (16)	O14 ^x —Na1—O15 ^{iv}	174.4 (2)
O15 ⁱⁱⁱ —Mo2—O1 ⁱⁱⁱ	105.7 (2)	O8 ^{iv} —Na1—O17 ^{xi}	174.5 (2)
O15 ⁱⁱⁱ —Mo2—O7 ^{iv}	104.2 (2)	O6 ^{iv} —Na1—O17 ^{xi}	81.93 (17)
O1 ⁱⁱⁱ —Mo2—O7 ^{iv}	104.6 (2)	O3 ^{ix} —Na1—O17 ^{xi}	92.15 (18)
O15 ⁱⁱⁱ —Mo2—O12	98.1 (2)	O14 ^x —Na1—O17 ^{xi}	98.84 (18)
O1 ⁱⁱⁱ —Mo2—O12	95.73 (19)	O15 ^{iv} —Na1—O17 ^{xi}	78.23 (17)
O7 ^{iv} —Mo2—O12	144.1 (2)	O2 ^{viii} —Na2—O2	167.9 (3)
O15 ⁱⁱⁱ —Mo2—O9 ^{iv}	104.2 (2)	O2viii—Na2—O18ii	80.68 (17)
O1 ⁱⁱⁱ —Mo2—O9 ^{iv}	148.71 (18)	O2—Na2—O18 ⁱⁱ	106.73 (19)
O7 ^{iv} —Mo2—O9 ^{iv}	76.26 (18)	O2 ^{viii} —Na2—O18 ^{xii}	106.73 (19)
O12—Mo2—O9 ^{iv}	71.17 (17)	O2—Na2—O18 ^{xii}	80.68 (17)
O13—Mo3—O3 ^v	104.0 (2)	O18 ⁱⁱ —Na2—O18 ^{xii}	106.9 (3)
O13—Mo3—O14	102.7 (2)	O2viii—Na2—O13viii	77.65 (17)
O3 ^v —Mo3—O14	106.5 (2)	O2—Na2—O13 ^{viii}	94.17 (19)
O13—Mo3—O11	90.7 (2)	O18 ⁱⁱ —Na2—O13 ^{viii}	158.13 (16)
O3 ^v —Mo3—O11	103.19 (19)	O18 ^{xii} —Na2—O13 ^{viii}	82.33 (15)
O14—Mo3—O11	143.1 (2)	O2 ^{viii} —Na2—O13	94.17 (19)
O13—Mo3—O6 ^v	167.8 (2)	O2—Na2—O13	77.65 (17)
O3 ^v —Mo3—O6 ^v	79.52 (18)	O18 ⁱⁱ —Na2—O13	82.33 (15)
O14—Mo3—O6 ^v	87.15 (19)	O18 ^{xii} —Na2—O13	158.13 (16)
O11—Mo3—O6 ^v	77.19 (16)	O13 ^{viii} —Na2—O13	96.3 (3)
O13—Mo3—O10	93.5 (2)	O18 ⁱⁱ —Na3—O1 ⁱⁱ	101.64 (19)
O3 ^v —Mo3—O10	161.23 (18)	O18 ⁱⁱ —Na3—O4	83.45 (18)
O14—Mo3—O10	75.65 (18)	O1 ⁱⁱ —Na3—O4	174.76 (19)
O11—Mo3—O10	69.26 (15)	O18 ⁱⁱ —Na3—O13	87.07 (18)
O6 ^v —Mo3—O10	82.01 (16)	O1 ⁱⁱ —Na3—O13	84.13 (18)
O2 ^{vi} —Mo4—O2	103.6 (3)	O4—Na3—O13	97.46 (19)
O2 ^{vi} —Mo4—O10 ^{vi}	99.8 (2)	O18 ⁱⁱ —Na3—O16	172.73 (19)
O2-Mo4-O10 ^{vi}	99.1 (2)	O1 ⁱⁱ —Na3—O16	85.35 (17)
			. /

O2 ^{vi} —Mo4—O10	99.1 (2)	O4—Na3—O16	89.52 (18)
O2-Mo4-O10	99.8 (2)	O13—Na3—O16	95.73 (18)
O10 ^{vi} —Mo4—O10	149.2 (3)	O18 ⁱⁱ —Na3—O16 ^{xiii}	98.48 (18)
O2 ^{vi} —Mo4—O14	167.9 (2)	O1 ⁱⁱ —Na3—O16 ^{xiii}	96.35 (17)
O2—Mo4—O14	86.8 (2)	O4—Na3—O16 ^{xiii}	81.56 (17)
O10 ^{vi} —Mo4—O14	84.27 (18)	O13—Na3—O16 ^{xiii}	174.19 (19)
O10—Mo4—O14	72.72 (17)	O16—Na3—O16 ^{xiii}	78.56 (18)
O2 ^{vi} —Mo4—O14 ^{vi}	86.8 (2)	O5 ^{xi} —Na4—O5	180.0
O2-Mo4-O14 ^{vi}	167.9 (2)	O5 ^{xi} —Na4—O17 ^{xi}	93.72 (16)
O10 ^{vi} —Mo4—O14 ^{vi}	72.72 (17)	O5—Na4—O17 ^{xi}	86.28 (16)
O10-Mo4-O14 ^{vi}	84.27 (18)	O5 ^{xi} —Na4—O17	86.28 (16)
O14—Mo4—O14 ^{vi}	83.5 (2)	O5—Na4—O17	93.72 (16)
O16—Mo5—O5	104.1 (2)	O17 ^{xi} —Na4—O17	180.0 (2)
O16—Mo5—O9 ^{iv}	102.6 (2)	O5 ^{xi} —Na4—O15 ^{xiv}	93.92 (16)
O5—Mo5—O9 ^{iv}	101.7 (2)	O5—Na4—O15 ^{xiv}	86.08 (16)
O16—Mo5—O11	101.2 (2)	O17 ^{xi} —Na4—O15 ^{xiv}	97.62 (16)
O5—Mo5—O11	102.4 (2)	O17—Na4—O15 ^{xiv}	82.38 (16)
O9 ^{iv} —Mo5—O11	140.48 (19)	O5 ^{xi} —Na4—O15 ^{iv}	86.08 (16)
O16—Mo5—O12	102.1 (2)	O5—Na4—O15 ^{iv}	93.92 (16)
O5—Mo5—O12	153.79 (19)	017 ^{xi} —Na4—O15 ^{iv}	82.38 (16)
O9 ^{iv} —Mo5—O12	72.12 (17)	O17—Na4—O15 ^{iv}	97.62 (16)
O11—Mo5—O12	72.37 (17)	O15 ^{xiv} —Na4—O15 ^{iv}	180.0 (2)
O16—Mo5—O5 ^{vii}	178.54 (19)	O7—Li1—O7 ^{xv}	159 (6)
O5—Mo5—O5 ^{vii}	74.42 (19)	O7—Li1—O2 ^{xvi}	108 (2)
O9 ^{iv} —Mo5—O5 ^{vii}	77.99 (17)	O7 ^{xv} —Li1—O2 ^{xvi}	88.6 (17)
O11—Mo5—O5 ^{vii}	78.98 (17)	O7—Li1—O2 ^{xvii}	88.6 (17)
O12—Mo5—O5 ^{vii}	79.37 (15)	O7 ^{xv} —Li1—O2 ^{xvii}	108 (2)
08 ^{viii} —Mo6—O18 ^{iv}	104.1 (2)	O2 ^{xvi} —Li1—O2 ^{xvii}	80 (3)
$O8^{viii}$ —Mo6— $O6^{iv}$	103.7 (2)	O7—Li1—O8 ^{xviii}	78.0 (18)
O18 ^{iv} —Mo6—O6 ^{iv}	104.9 (2)	O7 ^{xv} —Li1—O8 ^{xviii}	89 (2)
$O8^{viii}$ —Mo6— $O7^{iv}$	93.7 (2)	O2 ^{xvi} —Li1—O8 ^{xviii}	166 (3)
O18 ^{iv} —Mo6—O7 ^{iv}	100.4 (2)	O2 ^{xvii} —Li1—O8 ^{xviii}	87.2 (2)
06 ^{iv} —Mo6—O7 ^{iv}	144.52 (18)	07—Li1—O8 ⁱ	89 (2)
08 ^{viii} —Mo6—O9 ^{iv}	159.1 (2)	$O7^{xv}$ —Li1— $O8^i$	78.0 (18)
O18 ^{iv} —Mo6—O9 ^{iv}	90.19 (19)	$O2^{xvi}$ —Li1— $O8^i$	87.2 (2)
O6 ^{iv} —Mo6—O9 ^{iv}	86.85 (17)	O2 ^{xvii} —Li1—O8 ⁱ	166 (3)
O7 ^{iv} —Mo6—O9 ^{iv}	68.45 (16)	O8 ^{xviii} —Li1—O8 ⁱ	106 (4)

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) x-1, y, z-1; (iv) x, y, z-1; (v) -x+1/2, -y+1/2, -z+1; (vi) -x, y, -z+1/2; (vii) -x+1/2, -y+1/2, -z; (viii) -x+1/2, -y+1/2, -z; (viii) -x+1, y, -z+1/2; (vii) -x+1/2, -y+1/2, -z; (viii) -x+1, y, -z+1/2; (vii) -x+1/2, -y+1/2, -z; (viii) -x+1, -y, -z; (vii) -x+1/2; (vii) -x+1/2, -y+1/2, -z; (vii) -x+1/2; (vii) -x+1/2; (vii) -x+3/2, -y+1/2, -z+1; (vi) -x, y, -z+3/2; (vi) -x, -y, -z+1; (vii) x, -y, -z+1; (viii) x-y, -z+1/2; (viii) -x+1/2, -y+1/2, -z; (viii) -x+1, -y, -z; (viii) -x+1/2, -y+1/2, -z+1/2; (viii) -x+1, -y, -z+1; (viii) -x+1, -y, -z+1; (viii) x, -y, -z+1; (viii) x, -y, -z+1/2; (viii) -x+1/2, -y+1/2; (viii) -x+1, y, -z+3/2; (viii) x+1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z+1; (viii) x+1/2, -y+1/2, -z+1/2.