Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Amino-4,6-dimethylpyrimidin-1-ium chloride

Hui-Ling Hu ${ }^{\mathrm{a}}$ and Chun-Wei Yeh ${ }^{\text {b,a* }}$

${ }^{\text {a }}$ Department of Hospitality Management, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, and ${ }^{\text {b }}$ Department of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan
Correspondence e-mail: cwyeh@cycu.org.tw
Received 13 October 2012; accepted 11 November 2012
Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.039 ; w R$ factor $=0.105$; data-to-parameter ratio $=17.4$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Cl}^{-}$, the cation is essentially planar with an r.m.s. deviations of the fitted atoms of $0.008 \AA$. In the crystal, adjacent ions are linked by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds involving the pyrimidine and amine N atoms, forming a three-dimensional network. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the methyl and pyrimidine groups and $\pi-\pi$ stacking [centroid-centroid distance $=3.474$ (1) \AA] between parallel pyrimidine ring systems are also observed.

Related literature

For the crystal structures of 2-aminopyrimidinium salts with other anions, see: Cheng et al. (2010); Eshtiagh-Hosseini et al. (2010); Hu \& Yeh (2012).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=159.62$
Monoclinic, $C 2 / c$
$a=16.372$ (4) \AA
$b=8.795(2) \AA$

$$
\begin{aligned}
& c=12.007(3) \AA \\
& \beta=108.133(5)^{\circ} \\
& V=1642.9(8) \AA^{3} \\
& Z=8 \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

μ	$=0.40 \mathrm{~mm}^{-1}$	$0.4 \times 0.4 \times 0.3 \mathrm{~mm}$
T	$=273 \mathrm{~K}$	

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.869, T_{\max }=0.982$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 93$ parameters
$w R\left(F^{2}\right)=0.105$
$S=0.90$
1620 reflections

H -atom parameters constrained
$\Delta \rho_{\max }=0.18 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).
Cg1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{N} 2 / \mathrm{N} 3$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl}^{\mathrm{i}}$	0.86	2.42	$3.260(2)$	167
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.86	2.57	$3.262(2)$	138
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl}$	0.86	2.22	$3.042(2)$	161
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.96	3.00	$3.446(3)$	110

Symmetry codes: (i) $x,-y, z+\frac{1}{2}$; (ii) $-x, y,-z+\frac{3}{2}$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.
Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97.

We are grateful to the National Science Council of the Republic of China and the Taoyuan Innovation Institute of Technology for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2128).

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, X.-L., Gao, S. \& Ng, S. W. (2010). Acta Cryst. E66, o127.
Eshtiagh-Hosseini, H., Mahjoobizadeh, M. \& Mirzaei, M. (2010). Acta Cryst. E66, o2210.
Hu, H.-L. \& Yeh, C.-W. (2012). Acta Cryst. E68, o2925.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o3372 [doi:10.1107/S1600536812046569]

2-Amino-4,6-dimethylpyrimidin-1-ium chloride

Hui-Ling Hu and Chun-Wei Yeh

S1. Comment

There are several supramolecular structures containing 2-aminopyrimidinium cations with other anions constructed by hydrogen bonds (Cheng, et al. 2010; Eshtiagh-Hosseini, et al. 2010; Hu, et al. 2012). The asymmetric unit of the title molecule, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+}, \mathrm{Cl}^{-}$, consists a mono-protonated 2-amino-4,6-dimethylpyrimidine and one chloride anion (Fig. 1). The protonated pyrimidine groups are flat and these carbon/nitrogen atoms of mean devition from plane are $0.008 \AA$. The cations and anions are interlinked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds which are found between the H atoms bound to the pyrimidine and amine N atoms and the chloride anions showing the three-dimensional net (Fig. 2, Tab. 1). In the crystal, the weak $\mathrm{C}-\mathrm{H} \cdots$ pi interactions between the methyl and pyrimidinyl groups and the pi$\cdots \mathrm{pi}$ stacking between parallel pyrimidine ring systems are observed, respectively [3.474 (1) \AA], while $C g 1$ is the centers of C1—C4/N2—N3.

S2. Experimental

An aqueous solution $(5.0 \mathrm{ml})$ of zinc chloride $(1.0 \mathrm{mmol})$ was layered carefully over a methanolic solution (5.0 ml) of 2-amino-4,6-dimethylpyrimidine (2.0 mmol) in a tube. Yellow crystals were obtained after several weeks. These were washed with methanol and collected in 83.5% yield.

S3. Refinement

H atoms bound to C atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\mathrm{eq}}(\mathrm{C} / \mathrm{N})$.

Figure 1
An ORTEP view of the title compound with the atom-labelling scheme. Thermal ellipsoids are drawn at 30% probability level, and H atoms are represented by small spheres of arbitrary radii.

Figure 2
The packing diagram shows the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots$ pi hydrogen bonds and pi-pi stacking interactions forming the three-dimensional net.

2-Amino-4,6-dimethylpyrimidin-1-ium chloride

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+} \mathrm{Cl}^{-}$
$F(000)=672$
$M_{r}=159.62$
Monoclinic, C2/c
Hall symbol: - C 2yc
$a=16.372$ (4) \AA
$b=8.795$ (2) \AA
$c=12.007(3) \AA$
$\beta=108.133(5)^{\circ}$
$V=1642.9$ (8) \AA^{3}
$Z=8$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
$D_{\mathrm{x}}=1.291 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation, $\lambda=0.71073 \AA$
Cell parameters from 1118 reflections
$\theta=2.7-22.9^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Block, yellow
$0.4 \times 0.4 \times 0.3 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.869, T_{\text {max }}=0.982$
5044 measured reflections
1620 independent reflections
1008 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.046 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=2.6^{\circ} \\
& h=-19 \rightarrow 20
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=0.90$
1620 reflections
93 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 11$
$l=-14 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0545 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.18$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.06044(4)$	$0.20186(8)$	$0.63062(5)$	$0.0635(3)$
C1	$0.19281(13)$	$0.0360(3)$	$0.9384(2)$	$0.0456(6)$
C2	$0.28190(14)$	$0.1835(2)$	$0.8578(2)$	$0.0476(6)$
C3	$0.35098(14)$	$0.1274(3)$	$0.9429(2)$	$0.0524(6)$
H3A	0.4063	0.1584	0.9477	0.063^{*}
C4	$0.33775(13)$	$0.0227(3)$	$1.0228(2)$	$0.0490(6)$
C5	$0.28542(16)$	$0.2952(3)$	$0.7666(2)$	$0.0639(7)$
H5A	0.2522	0.3834	0.7718	0.096^{*}
H5B	0.2623	0.2499	0.6905	0.096^{*}
H5C	0.3440	0.3244	0.7785	0.096^{*}
C6	$0.41211(15)$	$-0.0414(3)$	$1.1175(2)$	$0.0682(8)$
H6A	0.3997	-0.0390	1.1906	0.102^{*}
H6B	0.4625	0.0183	1.1242	0.102^{*}
H6C	0.4219	-0.1445	1.0987	0.102^{*}
N1	$0.11391(11)$	$-0.0037(2)$	$0.93458(18)$	$0.0598(6)$
H1A	0.1063	-0.0665	0.9853	0.072^{*}
H1B	0.0703	0.0334	0.8814	0.072^{*}
N2	$0.20317(11)$	$0.1349(2)$	$0.85719(15)$	$0.0470(5)$
H2N	0.1585	0.1678	0.8037	0.056^{*}
N3	$0.25965(11)$	$-0.0223(2)$	$1.02128(16)$	$0.0480(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0469(4)$	$0.0883(5)$	$0.0535(4)$	$0.0071(3)$	$0.0131(3)$	$0.0016(3)$
C1	$0.0433(12)$	$0.0489(13)$	$0.0451(14)$	$-0.0002(11)$	$0.0144(11)$	$-0.0052(11)$
C2	$0.0516(13)$	$0.0483(13)$	$0.0459(13)$	$-0.0037(11)$	$0.0193(11)$	$-0.0071(11)$
C3	$0.0415(12)$	$0.0603(15)$	$0.0579(16)$	$-0.0074(11)$	$0.0190(11)$	$-0.0044(13)$
C4	$0.0447(13)$	$0.0536(14)$	$0.0469(14)$	$0.0019(11)$	$0.0117(11)$	$-0.0066(11)$
C5	$0.0717(16)$	$0.0674(16)$	$0.0581(16)$	$-0.0057(14)$	$0.0280(13)$	$0.0069(14)$
C6	$0.0487(13)$	$0.0823(19)$	$0.0663(19)$	$0.0064(14)$	$0.0073(13)$	$0.0103(15)$
N1	$0.0407(11)$	$0.0734(15)$	$0.0629(15)$	$-0.0037(10)$	$0.0129(10)$	$0.0083(10)$
N2	$0.0434(10)$	$0.0530(11)$	$0.0428(11)$	$0.0034(9)$	$0.0107(8)$	$0.0017(9)$
N3	$0.0425(10)$	$0.0528(12)$	$0.0467(12)$	$0.0015(9)$	$0.0110(9)$	$0.0027(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-N1	1.325 (3)	C5-H5A	0.9600
C1-N3	1.331 (3)	C5-H5B	0.9600
$\mathrm{C} 1-\mathrm{N} 2$	1.356 (3)	C5-H5C	0.9600
C2-N2	1.356 (3)	C6-H6A	0.9600
C2-C3	1.359 (3)	C6-H6B	0.9600
C2-C5	1.486 (3)	C6- H 6 C	0.9600
C3-C4	1.395 (3)	N1-H1A	0.8600
C3-H3A	0.9300	N1-H1B	0.8600
C4-N3	1.333 (3)	N2-H2N	0.8600
C4-C6	1.494 (3)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	119.3 (2)	H5A-C5-H5C	109.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	118.9 (2)	H5B-C5-H5C	109.5
N3-C1-N2	121.8 (2)	C4-C6-H6A	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	117.2 (2)	C4-C6-H6B	109.5
N2-C2-C5	117.3 (2)	H6A-C6-H6B	109.5
C3-C2-C5	125.4 (2)	C4-C6-H6C	109.5
C2-C3-C4	119.0 (2)	H6A-C6-H6C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.5	H6B-C6-H6C	109.5
C4-C3-H3A	120.5	C1-N1-H1A	120.0
N3-C4-C3	122.7 (2)	C1-N1-H1B	120.0
N3-C4-C6	116.7 (2)	H1A-N1-H1B	120.0
C3-C4-C6	120.6 (2)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$	121.99 (18)
C2-C5-H5A	109.5	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	119.0
C2-C5-H5B	109.5	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	119.0
H5A-C5-H5B	109.5	C1-N3-C4	117.2 (2)
C2-C5-H5C	109.5		

supporting information

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g l$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{N} 2 / \mathrm{N} 3$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl}^{\mathrm{i}}$	0.86	2.42	$3.260(2)$	167
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl} l^{\mathrm{ii}}$	0.86	2.57	$3.262(2)$	138
$\mathrm{~N} 2 — \mathrm{H} 2 N \cdots \mathrm{Cl}$	0.86	2.22	$3.042(2)$	161
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.96	3.00	$3.446(3)$	110

Symmetry codes: (i) $x,-y, z+1 / 2$; (ii) $-x, y,-z+3 / 2$; (iii) $-x+1 / 2, y+1 / 2,-z+3 / 2$.

