metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S, S'$]lead(II)

Shirveen Sewpersad and Werner E. Van Zyl*

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: vanzylw@ukzn.ac.za

Received 19 October 2012; accepted 14 November 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.020; wR factor = 0.045; data-to-parameter ratio = 23.7.

The title compound, $[Pb(C_{11}H_{16}O_2PS_2)_2]$, is a neutral fourcoordinate mononuclear complex with a distorted squarepyramidal geometry of the PbS₄ core. The apical Pb^{II} atom of each pyramid is 1.33059 (3) Å above the basal S_4 plane. The metal atom is surrounded by two chelating dithiophosphonate ligands binding through the S-donor atoms. The ligands are anisobidentate as the pyramid is comprised of Pb-S bond lengths that vary substantially [2.6999 (7), 2.7128 (6), 2.8877 (7) and 2.9472 (7) Å], clearly indicating two short and two longer bond lengths. The P-S bond lengths are also paired as shorter [1.9959 (9) and 1.9877 (8) Å] and slightly longer [2.0115 (9) and 2.0245 (9) Å], indicating an anisobidentate nature of the ligand whereby the shorter P-S bond has more double-bond character than the other. The S-Pb-S (chelating) bond angles range from 71.841 (18) to $72.692 (19)^{\circ}$, whilst the Pb-S-P bond angles range from 84.70 (3) to 90.51 (3)°.

Related literature

For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010). For similar lead(II) dithiophosphonate complexes, see: Gray et al. (2003, 2004).

Experimental

Crystal data

α β

$[Pb(C_{11}H_{16}O_2PS_2)_2]$	$\gamma = 69.034 \ (1)^{\circ}$
$M_r = 757.85$	V = 1443.5 (2) Å ³
Triclinic, P1	Z = 2
a = 10.2092 (8) Å	Mo $K\alpha$ radiation
b = 11.7016 (10) Å	$\mu = 6.27 \text{ mm}^{-1}$
c = 12.9915 (10) Å	T = 173 K
$\alpha = 89.297 \ (2)^{\circ}$	$0.16 \times 0.14 \times 0.1$
$\beta = 85.016 \ (2)^{\circ}$	

Data collection

Bruker Kappa DUO APEXII diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.434, T_{\max} = 0.546$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.045$ S = 1.037212 reflections

 \times 0.14 \times 0.11 mm 36710 measured reflections

7212 independent reflections 6564 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.037$

304 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2529).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). Dalton Trans. pp. 3450-3457.
- Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477-2486.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.
- Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117-132.

supporting information

Acta Cryst. (2012). E68, m1502 [doi:10.1107/S1600536812046818]

Bis[O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S, S'$]lead(II)

Shirveen Sewpersad and Werner E. Van Zyl

S1. Comment

The phosphor-1,1,-dithiolate class of compounds is the heavier and softer congener of the more popular phosphonate derivatives. Several sub-categories are known which include the dithiophosphato $[S_2P(OR)_2]^-$, (R = typically alkyl), di-thiophosphinato $[S_2PR_2]^-$ (R = alkyl or aryl), and dithiophosphonato $[S_2PR(OR')]^-$, (R = typically aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed. Lead dithiophosphonate complexes have only been developed during the past 10 years (Gray *et al.*, 2003; 2004) and the solid-state structure of the lead complexes deviate substantially from typical 4-coordinate transition-metals such as Ni(II), Cd(II), Hg(II) of the same ligand.

The title complex exhibits a structure that is built up of distorted square pyramids in dimeric pairs. The dimeric pair is characterised by intermolecular interactions between the Pb atom of one monomer with a S atom of adjacent unit, containing a Pb···S distance of 3.619 Å. Similar intermolecular interactions occur between the Pb atom of one monomeric unit and four carbon atoms in an adjacent aromatic ring in the Pb-Ar (Ar = aromatic ring) bond distance range of 3.421-3.597 Å. A related structure with a different alkoxy group was previously reported (Gray *et al.*, 2004), showing similar inter Pb···S and Pb···Ar interactions, and intermolecular Pb-S bond lenghts. It was postulated that the aforementioned Pb···Ar interactions stabilized the dimeric structure. The structure reported by Gray *et al.* (2004) adopts a similar molecular unit, the lead also resides in the centre of a distorted pyramid, 1.30 Å above the basal S₄ plane. General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000).

S2. Experimental

A colorless methanol (40 ml) solution of $NH_4[S_2P(O^iPr)(4-C_6H_4OEt)]$ (1.010 g, 3.443 mmol) was prepared. Another solution of $Pb(NO_3)_2$ (0.570 g, 1.721 mmol) in deionized water (20 ml) was prepared, and added to the colorless solution with stirring over a period of 5 min. This resulted in a white precipitate, which proved to be the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 *x* 10 ml) and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing white powder. Colorless crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 0.926 g, 71%. M.p. 397–398 K.

³¹P NMR (CDCl₃): *δ* (p.p.m.): 94.20. ¹H NMR (CDCl₃): *δ* (p.p.m.): 7.89(2*H*, dd, *o*-ArH), 6.89(2*H*, dd, *m*-ArH), 5.01(1*H*, d quart, CH), 4.03(2*H*, quart, ArOCH₂), 1.39(3*H*, t, ArOCH₂CH₃), 1.32(6*H*, d, CH₃). ¹³C NMR (CDCl₃): *δ* (p.p.m.): 161.97 (*p*-ArC), 133.32 (*ipso*-Ar—C), 131.57 (*m*-ArC), 114.32 (*o*-ArC), 71.34 (CH), 64.03(ArOCH₂), 24.85 (CH₃), 14.91 (ArOCH₂CH₃).

S3. Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined with geometrical constraints and constrained to ride on their parent atoms, with C–H = 0.95–1 00 Å, and $U_{iso}(H_{aryl}) = 1.2 \times U_{eq}C_{aryl}$ and $U_{iso}(H_{methyl}) = 1.5 \times U_{eq}C_{methyl}$.

Figure 1

The molecular structure of the title complex with displacement ellipsoids shown at the 50% probability level. H-atoms have been omitted for clarity.

Figure 2

The molecular structure of a dimeric pair of the title complex showing intermolecular Pb•••S and Pb•••Ar interactions.

Bis[O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S, S'$]lead(II)

Crystal data	
$[Pb(C_{11}H_{16}O_2PS_2)_2]$	<i>c</i> = 12.9915 (10) Å
$M_r = 757.85$	$\alpha = 89.297 \ (2)^{\circ}$
Triclinic, P1	$\beta = 85.016 \ (2)^{\circ}$
Hall symbol: -P 1	$\gamma = 69.034 (1)^{\circ}$
a = 10.2092 (8) Å	V = 1443.5 (2) Å ³
b = 11.7016 (10) Å	Z = 2

F(000) = 744?e $D_x = 1.744 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 36710 reflections

Data collection

Refinement

Bruker Kappa DUO APEXII	36710 measured reflections
diffractometer	7212 independent reflections
Radiation source: fine-focus sealed tube	6564 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
$0.5^{\circ} \varphi$ scans and ω scans	$\theta_{\rm max} = 28.4^\circ, \ \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Sheldrick, 1996)	$k = -15 \rightarrow 15$
$T_{\min} = 0.434, \ T_{\max} = 0.546$	$l = -17 \rightarrow 17$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.020$	Hydrogen site location: inferred from
$wR(F^2) = 0.045$	neighbouring sites
S = 1.03	H-atom parameters constrained
7212 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0234P)^2 + 0.042P]$
304 parameters	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\theta = 1.6-28.4^{\circ}$ $\mu = 6.27 \text{ mm}^{-1}$

Block, colourless

 $0.16 \times 0.14 \times 0.11 \text{ mm}$

T = 173 K

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pb1	0.563161 (9)	0.892734 (7)	0.676272 (7)	0.02692 (3)	
S1	0.48642 (6)	0.83844 (6)	0.47888 (5)	0.03000 (13)	
S2	0.80447 (7)	0.77787 (6)	0.55716 (5)	0.03150 (13)	
S3	0.55200 (7)	0.68031 (6)	0.75505 (5)	0.03173 (14)	
S4	0.75140 (7)	0.82120 (5)	0.84420 (5)	0.03020 (13)	
P1	0.69313 (6)	0.77422 (5)	0.43769 (5)	0.02499 (13)	
P2	0.67269 (7)	0.68943 (5)	0.86809 (5)	0.02494 (13)	
01	0.8185 (2)	1.06377 (17)	0.08990 (14)	0.0368 (4)	
02	0.74190 (18)	0.64074 (14)	0.38776 (13)	0.0314 (4)	
03	0.31553 (18)	0.75446 (15)	1.26420 (13)	0.0315 (4)	
04	0.79180 (18)	0.55982 (14)	0.88024 (13)	0.0299 (4)	
C1	0.7390 (2)	0.8566 (2)	0.33187 (18)	0.0244 (5)	

C2	0.7854 (2)	0.9519(2)	0.35221 (19)	0.0280 (5)
H2	0.7992	0.9676	0.4213	0.034*
C3	0.8118 (3)	1.0243 (2)	0.27399 (19)	0.0295 (5)
H3	0.8416	1.0898	0.2894	0.035*
C4	0.7941 (3)	1.0000 (2)	0.17254 (19)	0.0293 (5)
C5	0.7474 (3)	0.9048 (2)	0.15114 (19)	0.0294 (5)
Н5	0.7350	0.8885	0.0819	0.035*
C6	0.7191 (3)	0.8344(2)	0.22993 (18)	0.0276(5)
H6	0.6861	0.7707	0.2148	0.033*
C7	0.8657(3)	1,1634 (3)	0.1081(2)	0.0438(7)
H7A	0.9567	1.1329	0.1394	0.053*
H7B	0 7958	1 2251	0.1558	0.053*
C8	0.8824(4)	1 2188 (3)	0.0058(2)	0.0507 (8)
H8A	0.9426	1.1547	-0.0432	0.076*
H8B	0.9257	1 2803	0.0139	0.076*
HSC	0.7898	1.2578	-0.0203	0.076*
	0.7074(3)	0.5436(2)	0.0203	0.0361 (6)
но	0.6554	0.5776	0.5125	0.043*
C10	0.6158 (4)	0.5770	0.3123 0.3833 (3)	0.0567 (9)
H10A	0.5333	0.5735	0.3681	0.085*
H10R	0.5555	0.4437	0.3081	0.085*
H10C	0.5650	0.4630	0.3185	0.085*
C11	0.8454(4)	0.4059	0.3183 0.4627(3)	0.085
	0.8454 (4)	0.4434 (3)	0.4027 (3)	0.0702 (11)
	0.8932	0.4093	0.5902	0.105*
	0.0201	0.3817	0.3034	0.105*
	0.9029	0.4610	0.4983 0.00127 (18)	0.105°
C12	0.3720(3)	0.7089(2)	0.99137(18)	0.0231(3)
U15 U12	0.4855 (5)	0.8232 (2)	0.0827	0.0294 (3)
ПI3 С14	0.4855	0.8955	0.9857	0.035*
C14	0.3992 (3)	0.8444 (2)	1.11555 (19)	0.0297 (5)
H14	0.3414	0.9251	1.1370	0.036*
	0.3976 (3)	0.7450 (2)	1.1/388 (18)	0.0269 (5)
	0.4827 (3)	0.6269 (2)	1.14110 (19)	0.0307 (5)
HI6	0.4811	0.5588	1.1811	0.03/*
C1/	0.5694 (3)	0.6088 (2)	1.05057 (19)	0.0297 (5)
HI/	0.6275	0.5281	1.0283	0.036*
C18	0.2206 (3)	0.8742 (2)	1.2982 (2)	0.0331 (6)
HI8A	0.1523	0.9098	1.2464	0.040*
H18B	0.2738	0.9290	1.3069	0.040*
C19	0.1447 (3)	0.8615 (2)	1.3993 (2)	0.0375 (6)
H19A	0.0849	0.8141	1.3885	0.056*
H19B	0.0861	0.9429	1.4273	0.056*
H19C	0.2134	0.8193	1.4481	0.056*
C20	0.9080 (3)	0.5123 (2)	0.79867 (19)	0.0305 (5)
H20	0.8964	0.5734	0.7425	0.037*
C21	0.9019 (3)	0.3954 (2)	0.7559 (2)	0.0418 (7)
H21A	0.9166	0.3347	0.8105	0.063*
H21B	0.9756	0.3638	0.6990	0.063*

supporting information

H21C	0.8095	0.4117	0.7304	0.063*
C22	1.0424 (3)	0.4935 (3)	0.8471 (3)	0.0529 (8)
H22A	1.0400	0.5717	0.8750	0.079*
H22B	1.1225	0.4615	0.7948	0.079*
H22C	1.0525	0.4349	0.9032	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.02779 (5)	0.02345 (5)	0.02595 (5)	-0.00485 (3)	-0.00277 (4)	0.00404 (3)
S1	0.0212 (3)	0.0358 (3)	0.0304 (3)	-0.0072 (2)	-0.0021 (2)	0.0031 (2)
S2	0.0231 (3)	0.0399 (3)	0.0279 (3)	-0.0064 (2)	-0.0058 (2)	0.0074 (3)
S3	0.0417 (4)	0.0317 (3)	0.0279 (3)	-0.0191 (3)	-0.0099 (3)	0.0051 (2)
S4	0.0366 (4)	0.0277 (3)	0.0305 (3)	-0.0156 (3)	-0.0072 (3)	0.0037 (2)
P1	0.0224 (3)	0.0250 (3)	0.0244 (3)	-0.0050 (2)	-0.0013 (2)	0.0044 (2)
P2	0.0297 (3)	0.0213 (3)	0.0233 (3)	-0.0084 (2)	-0.0036 (2)	0.0030 (2)
01	0.0457 (11)	0.0417 (10)	0.0306 (10)	-0.0245 (9)	-0.0069 (8)	0.0114 (8)
O2	0.0349 (10)	0.0250 (8)	0.0300 (9)	-0.0067 (7)	0.0021 (8)	0.0039 (7)
O3	0.0326 (10)	0.0268 (8)	0.0324 (10)	-0.0093 (7)	0.0048 (8)	-0.0016 (7)
O4	0.0327 (10)	0.0239 (8)	0.0265 (9)	-0.0035 (7)	0.0023 (7)	0.0038 (7)
C1	0.0196 (11)	0.0246 (11)	0.0244 (12)	-0.0028 (8)	-0.0013 (9)	0.0046 (9)
C2	0.0258 (13)	0.0320 (12)	0.0251 (12)	-0.0086 (10)	-0.0040 (10)	0.0018 (9)
C3	0.0290 (13)	0.0303 (12)	0.0322 (13)	-0.0139 (10)	-0.0052 (11)	0.0027 (10)
C4	0.0263 (13)	0.0306 (12)	0.0297 (13)	-0.0090 (10)	-0.0020 (10)	0.0088 (10)
C5	0.0316 (14)	0.0305 (12)	0.0249 (12)	-0.0093 (10)	-0.0043 (10)	0.0027 (10)
C6	0.0264 (13)	0.0244 (11)	0.0306 (13)	-0.0075 (9)	-0.0024 (10)	0.0011 (9)
C7	0.0547 (19)	0.0535 (17)	0.0378 (16)	-0.0360 (15)	-0.0109 (14)	0.0127 (13)
C8	0.070 (2)	0.0589 (19)	0.0415 (17)	-0.0446 (17)	-0.0103 (16)	0.0164 (14)
C9	0.0384 (15)	0.0304 (13)	0.0401 (15)	-0.0135 (11)	-0.0029 (12)	0.0108 (11)
C10	0.062 (2)	0.057 (2)	0.060 (2)	-0.0307 (17)	-0.0116 (18)	0.0045 (16)
C11	0.062 (2)	0.0476 (19)	0.106 (3)	-0.0207 (17)	-0.034 (2)	0.035 (2)
C12	0.0282 (13)	0.0230 (10)	0.0224 (11)	-0.0070 (9)	-0.0020 (10)	0.0008 (9)
C13	0.0328 (14)	0.0227 (11)	0.0307 (13)	-0.0074 (10)	-0.0035 (11)	0.0042 (9)
C14	0.0311 (13)	0.0215 (11)	0.0333 (13)	-0.0061 (9)	-0.0006 (11)	-0.0008 (9)
C15	0.0281 (13)	0.0278 (11)	0.0254 (12)	-0.0104 (9)	-0.0037 (10)	-0.0013 (9)
C16	0.0361 (14)	0.0250 (11)	0.0309 (13)	-0.0116 (10)	-0.0007 (11)	0.0043 (10)
C17	0.0336 (14)	0.0220 (11)	0.0298 (13)	-0.0058 (9)	-0.0009 (11)	0.0017 (9)
C18	0.0295 (14)	0.0289 (12)	0.0380 (15)	-0.0071 (10)	-0.0007 (11)	-0.0054 (10)
C19	0.0309 (14)	0.0423 (14)	0.0382 (15)	-0.0132 (11)	0.0042 (12)	-0.0093 (12)
C20	0.0346 (14)	0.0275 (12)	0.0257 (12)	-0.0080 (10)	0.0037 (11)	-0.0012 (9)
C21	0.0446 (17)	0.0352 (14)	0.0438 (16)	-0.0140 (12)	0.0062 (13)	-0.0100 (12)
C22	0.0365 (17)	0.065 (2)	0.0524 (19)	-0.0132 (15)	0.0009 (15)	-0.0208 (16)

Geometric parameters (Å, °)

Pb1—S2	2.6999 (7)	C9—C10	1.480 (4)
Pb1—S3	2.7128 (6)	C9—C11	1.502 (4)
Pb1—S1	2.8877 (7)	С9—Н9	1.0000

Pb1-S4	29472(7)	C10—H10A	0.9800
S1P1	1,9959(9)	C10 H10R	0.9800
S2 P1	2.0115(0)	C10 $H10C$	0.9800
S2 P2	2.0115(9) 2.0245(9)		0.9800
SJ-12 SA D2	2.0243(9) 1 0877(8)		0.9800
34-12	1.3077(0) 1.5877(17)		0.9800
P1 = C1	1.3077(17) 1.704(2)		0.9800
$P1 \rightarrow C1$	1.794(2)	C12 - C13	1.380(3)
P2	1.3848 (10)	C12-C17	1.400 (3)
P2	1.797 (2)	C13 - C14	1.381 (3)
01	1.356 (3)	C13—H13	0.9500
01	1.441 (3)	C14—C15	1.386 (3)
O2—C9	1.476 (3)	C14—H14	0.9500
O3—C15	1.363 (3)	C15—C16	1.392 (3)
O3—C18	1.437 (3)	C16—C17	1.379 (3)
O4—C20	1.471 (3)	C16—H16	0.9500
C1—C2	1.394 (3)	C17—H17	0.9500
C1—C6	1.399 (3)	C18—C19	1.500 (4)
C2—C3	1.384 (3)	C18—H18A	0.9900
C2—H2	0.9500	C18—H18B	0.9900
C3—C4	1.392 (3)	C19—H19A	0.9800
С3—Н3	0.9500	C19—H19B	0.9800
C4—C5	1.398 (3)	C19—H19C	0.9800
С5—С6	1.382 (3)	C20—C22	1.503 (4)
С5—Н5	0.9500	C20—C21	1.507 (3)
С6—Н6	0.9500	C20—H20	1.0000
С7—С8	1.495 (4)	C21—H21A	0.9800
C7—H7A	0.9900	C21—H21B	0.9800
C7—H7B	0.9900	C21—H21C	0.9800
C8—H8A	0.9800	C22—H22A	0.9800
C8—H8B	0.9800	C22—H22B	0.9800
C8—H8C	0.9800	C^{22} H ²² C	0.9800
00 1100	0.9000	022 11220	0.9000
S2—Pb1—S3	93.09 (2)	С11—С9—Н9	109.0
S2—Pb1—S1	72.692 (19)	C9—C10—H10A	109.5
S3—Pb1—S1	91.516 (19)	C9—C10—H10B	109.5
S2—Pb1—S4	82.708 (19)	H10A—C10—H10B	109.5
S3—Pb1—S4	71.841 (18)	C9—C10—H10C	109.5
S1—Pb1—S4	149.566 (17)	H10A—C10—H10C	109.5
P1—S1—Pb1	85.24 (3)	H10B—C10—H10C	109.5
P1—S2—Pb1	90.16(3)	C9-C11-H11A	109.5
P2 = S3 = Pb1	90.51 (3)	C9-C11-H11B	109.5
P2 = S4 = Pb1	84 70 (3)	H11A—C11—H11B	109.5
$0^2 - P_1 - C_1$	100 90 (10)	C9-C11-H11C	109.5
$0^2 - P1 - S1$	110.94(7)	H11A_C11_H11C	109.5
C1P1S1	111 88 (8)	H11B_C11_H11C	109.5
0^{2} _P1_S2	111.30 (0)	C13 - C12, $C17$	110 0 (2)
$C1_P1_S2$	100 60 (8)	C_{13} C_{12} C_{17} C_{13} C_{12} P_{2}	119.0 (2)
S1P1S2	111 63 (4)	C13 C12 - 12 C17 - C12 P2	121 87 (17)
51 11 52	111.00 (7)	-11 - 12 - 12	121.0/(1/)

O4—P2—C12	101.33 (10)	C12—C13—C14	121.2 (2)
O4—P2—S4	112.17 (8)	C12—C13—H13	119.4
C12—P2—S4	111.43 (8)	C14—C13—H13	119.4
O4—P2—S3	109.88 (7)	C13—C14—C15	119.5 (2)
C12—P2—S3	109.56 (9)	C13—C14—H14	120.2
S4—P2—S3	111.98 (4)	C15—C14—H14	120.2
C4-01-C7	118.0 (2)	O3-C15-C14	123.9 (2)
C9—O2—P1	119.79 (15)	O3—C15—C16	116.0 (2)
C15-03-C18	117.87 (18)	C14—C15—C16	120.1(2)
C20-O4-P2	119.72 (14)	C17—C16—C15	119.9 (2)
$C_{2}-C_{1}-C_{6}$	118.8 (2)	C17—C16—H16	120.0
C2-C1-P1	119.26 (18)	C15-C16-H16	120.0
C6-C1-P1	121 73 (18)	C16-C17-C12	120.2(2)
$C_3 - C_2 - C_1$	121.4 (2)	C16—C17—H17	119.9
C3—C2—H2	119 3	C12-C17-H17	119.9
C1 - C2 - H2	119.3	03 - C18 - C19	108.0(2)
$C_{2} - C_{3} - C_{4}$	119.3 (2)	03 - C18 - H18A	110.1
$C_2 = C_3 = H_3$	120.4	C19-C18-H18A	110.1
C4—C3—H3	120.4	O_3 — C_{18} —H18B	110.1
01 - C4 - C3	120.4 124.3(2)	C19-C18-H18B	110.1
01 - C4 - C5	124.5(2) 1159(2)	H18A - C18 - H18B	108.4
$C_{3} - C_{4} - C_{5}$	119.9(2) 119.8(2)	C18-C19-H19A	109.5
$C_{5} = C_{4}$	119.6(2) 120.5(2)	C18-C19-H19B	109.5
С6-С5-Н5	110.8	H194 - C19 - H19B	109.5
C4-C5-H5	119.8	C18-C19-H19C	109.5
C_{1} C_{2} C_{3} C_{1}	120.1 (2)	$H_{10} = C_{10} = H_{10} C_{10}$	109.5
C5 C6 H6	110.0	H10R C10 H10C	109.5
C_{1} C_{6} H_{6}	119.9	04 C20 C22	109.3 107.2(2)
C1 = C0 = 110	119.9 107.2(2)	04 - 020 - 022	107.2(2) 107.8(2)
01 - 07 - 08	107.2(2)	$C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	107.8(2) 112.0(2)
C° C^{-} H^{-}	110.3	C_{22} C_{20} C_{21}	112.9 (2)
$C_0 - C_1 - H_7 R$	110.3	C_{22} C_{20} H_{20}	109.0
OI - C / - H / B	110.5	C_{22} C_{20} H_{20}	109.0
$U_0 - U_1 - \Pi_1 D$	110.5	$C_{21} = C_{20} = H_{20}$	109.0
$\Pi/A = C / = \Pi/D$	108.5	C20—C21—H21A	109.5
$C_{1} = C_{0} = H_{0} A$	109.5	C_{20} C_{21} H_{21B}	109.5
	109.5	$H_2IA - C_2I - H_2IB$	109.5
$H\delta A = C\delta = H\delta B$	109.5	C_{20} C_{21} $H_{21}C$	109.5
$C = C \delta = H \delta C$	109.5	$H_2IA = C_2I = H_2IC$	109.5
$H\delta A - C\delta - H\delta C$	109.5	H2IB = C2I = H2IC	109.5
H8B - C8 - H8C	109.5	C20—C22—H22A	109.5
02 - C9 - C10	108.7(2)	C20—C22—H22B	109.5
02-09-011	106.4 (2)	H22A—C22—H22B	109.5
CIU = C9 = CII	114.4 (3)	U_{20} — U_{22} — $H_{22}U_{22}$	109.5
U2-U9-H9	109.0	H22A - C22 - H22C	109.5
С10—С9—Н9	109.0	H22B—C22—H22C	109.5
S2—Pb1—S1—P1	-3 39 (3)	C6-C1-C2-C3	0.0 (3)
S3—Pb1—S1—P1	-96.16(3)	P1-C1-C2-C3	-175.01(18)
			-, -, -, -, (10)

S4—Pb1—S1—P1	-40.94(5)	C1 - C2 - C3 - C4	-1.2(4)
S3Pb1S2P1	93 98 (3)	C7 - 01 - C4 - C3	-0.1(4)
S1—Pb1—S2—P1	3 36 (3)	C7-01-C4-C5	1795(2)
S4—Pb1—S2—P1	165 23 (3)	C_{2} C_{3} C_{4} C_{1}	-1791(2)
S2—Pb1—S3—P2	87 41 (3)	$C_2 = C_3 = C_4 = C_5$	13(4)
S1—Pb1—S3—P2	160.16 (3)	01 - C4 - C5 - C6	-179.9(2)
S4—Pb1—S3—P2	6.13 (3)	C3-C4-C5-C6	-0.2(4)
S2—Pb1—S4—P2	-101.96(3)	C4—C5—C6—C1	-0.9(4)
S3—Pb1—S4—P2	-6.27 (3)	C2-C1-C6-C5	1.0 (3)
S1—Pb1—S4—P2	-66.05(4)	P1-C1-C6-C5	175.93 (18)
Pb1—S1—P1—O2	129.49 (7)	C4—O1—C7—C8	-179.2(2)
Pb1—S1—P1—C1	-118.68 (9)	P1—O2—C9—C10	117.6 (2)
Pb1—S1—P1—S2	4.68 (3)	P1-O2-C9-C11	-118.6 (2)
Pb1—S2—P1—O2	-129.58 (7)	O4—P2—C12—C13	160.0 (2)
Pb1—S2—P1—C1	119.60 (8)	S4—P2—C12—C13	40.5 (2)
Pb1—S2—P1—S1	-4.99 (4)	S3—P2—C12—C13	-84.0 (2)
Pb1—S4—P2—O4	132.71 (7)	O4—P2—C12—C17	-25.8 (2)
Pb1—S4—P2—C12	-114.48 (9)	S4—P2—C12—C17	-145.23 (19)
Pb1—S4—P2—S3	8.62 (4)	S3—P2—C12—C17	90.3 (2)
Pb1—S3—P2—O4	-134.69 (7)	C17—C12—C13—C14	1.4 (4)
Pb1—S3—P2—C12	114.82 (8)	P2-C12-C13-C14	175.8 (2)
Pb1—S3—P2—S4	-9.33 (4)	C12—C13—C14—C15	-1.1 (4)
C1—P1—O2—C9	-172.27 (18)	C18-03-C15-C14	2.8 (3)
S1—P1—O2—C9	-53.57 (19)	C18—O3—C15—C16	-176.9 (2)
S2—P1—O2—C9	71.40 (18)	C13—C14—C15—O3	-179.5 (2)
C12—P2—O4—C20	-174.11 (17)	C13-C14-C15-C16	0.2 (4)
S4—P2—O4—C20	-55.17 (18)	O3—C15—C16—C17	-179.9 (2)
S3—P2—O4—C20	70.07 (17)	C14-C15-C16-C17	0.4 (4)
O2—P1—C1—C2	-145.78 (18)	C15—C16—C17—C12	0.0 (4)
S1—P1—C1—C2	96.21 (19)	C13—C12—C17—C16	-0.8 (4)
S2—P1—C1—C2	-28.2 (2)	P2-C12-C17-C16	-175.1 (2)
O2—P1—C1—C6	39.3 (2)	C15—O3—C18—C19	-178.9 (2)
S1—P1—C1—C6	-78.67 (19)	P2	119.9 (2)
S2—P1—C1—C6	156.88 (17)	P2—O4—C20—C21	-118.3 (2)