organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(1-Benzyl-1H-benzimidazol-2-yl)ethanone

Chuan-Jing Zhang, Xiu-Zhen Xu, Ning Yang, Ren-Ying Zhao and Yan-Qing Ge*

Taishan Medical University, Tai an 271016, People's Republic of China Correspondence e-mail: ygge@yahoo.cn

Received 19 September 2012; accepted 23 October 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.068; *wR* factor = 0.189; data-to-parameter ratio = 13.1.

In the title compound, C₁₆H₁₄N₂O, the benzimidazole ring system is essentially planar. The planes of the benzene rings make a dihedral angle of 85.92 (8)°. In the crystal, neighbouring molecule are connected into paris along the c axis by weak C-H···O interactions and the connected pairs are expanded through C-H···N hydrogen bonds and C-H··· π interactions along the b axis.

Related literature

For the synthesis, see: Cao et al. (2012). For applications of nitrogen-containing heterocyclic compounds in the agrochemical and pharmaceutical fields, see: Ge et al. (2009, 2011). For a related structure, see: Sun et al. (2012).

Experimental

Crystal	data
$C_{16}H_{14}N$	$_2O$
$M_r = 250$	0.29
Triclinic	, P1

a = 6.1307 (10)
b = 6.5226 (12)
c = 34.739 (6)

$\alpha = 90.021 \ (3)^{\circ}$	
$\beta = 92.749 \ (3)^{\circ}$	
$\gamma = 110.674 (3)^{\circ}$	
V = 1298.0 (4) Å ³	
Z = 4	

Data collection

Brucker APEXII CCD area-	6666 measured reflections
detector diffractometer	4523 independent reflections
Absorption correction: multi-scan	3775 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.061$
$T_{\rm min} = 0.978, T_{\rm max} = 0.985$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	345 parameters
$wR(F^2) = 0.189$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
4523 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.28 \times 0.24 \times 0.19 \text{ mm}$

measured reflections independent reflections

T = 293 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C4-C9 and C20-C	25 rings, respectively
--	------------------------

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots N2^{i}$	0.93	2.62	3.517 (4)	161
C16−H16···O1 ⁱⁱ	0.93	2.58	3.427 (4)	152
$C21 - H21 \cdots N4^{iii}$	0.93	2.62	3.513 (4)	161
$C32 - H32 \cdot \cdot \cdot O2^{ii}$	0.93	2.57	3.410 (4)	150
$C1 - H1C \cdots Cg1^{iv}$	0.96	2.61	3.487 (4)	151
$C17 - H17A \cdots Cg2^{iv}$	0.96	2.61	3.491 (4)	153
Symmetry codes: (i)	-x, -y + 1, -z	x; (ii) $x - 1$,	v, z; (iii) $-x, -$	v, -z + 1; (iv)

x, y - 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This study was supported by the Shandong Natural Science Foundation (No. ZR2012BL04)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2103).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cao, X. Q., Lin, X. H., Zhu, Y. & Ge, Y. Q. (2012). Spectrochim. Acta Part A, 98, 76-80.

Ge, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070-1076

Ge, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009). Heterocycles, 78, 725-736.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, T., Xie, J.-W., Zhao, R.-Y., Zhu, A.-G. & Ge, Y.-Q. (2012). Acta Cryst. E68, 02947.

supporting information

Acta Cryst. (2012). E68, o3340 [doi:10.1107/S1600536812043875]

1-(1-Benzyl-1H-benzimidazol-2-yl)ethanone

Chuan-Jing Zhang, Xiu-Zhen Xu, Ning Yang, Ren-Ying Zhao and Yan-Qing Ge

S1. Comment

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide applications in the agrochemical and pharmaceutical fields (Ge *et al.*; 2009, 2011). Some benzoimidazole derivatives which belong to this category exhibit interesting biological properties, such as anti-bacterial, anti-inflammatory, anti-fungal and anti-tumor. The title benzoimidazole(I) (Fig. 1) was synthesized in order to study its biological properties. (I) was screened for anticancer activities and found to be inactive.

We report here the crystal structure of the title compound. In the molecular structure, the 90 degree angle on alpha shows the benzene ring and the imidazole are in the same plane and the two benzene ring makes dihedral angle of 85.92 (8)°. Moreover, there exist inermolecular weak C—H···O and C—H···N hydrogen bonding, also the intermolecular face-to-face C—H··· π stacking interaction.

S2. Experimental

A mixture of 1-(1H-benzo[d]imidazol-2-yl) ethanone(0.02 mol), (chloromethyl) benzene (0.024 mol) and potassium carbonate (0.024 mol) in acetonitrile (100 ml) was heated to reflux for 5 h. The solvent was removed under reduced pressure and the product was isolated by column chromatography on silica gel (yield 85%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate (0.10 *M*) to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 12 h.

S3. Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH₂ groups) and 0.93 Å (for aromatic protons), their isotropic displacement parameters were set to 1.2 times the equivalent displacement parameter of their parent atoms.

Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

1-(1-Benzyl-1H-benzimidazol-2-yl)ethanone

Crystal data

 $C_{16}H_{14}N_{2}O$ $M_{r} = 250.29$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.1307 (10) Å b = 6.5226 (12) Å c = 34.739 (6) Å $a = 90.021 (3)^{\circ}$ $\beta = 92.749 (3)^{\circ}$ $\gamma = 110.674 (3)^{\circ}$ $V = 1298.0 (4) \text{ Å}^{3}$

Data collection

Brucker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Z = 4 F(000) = 528 $D_x = 1.281 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3788 reflections $\theta = 2.9-28.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block, colorless $0.28 \times 0.24 \times 0.19 \text{ mm}$

 φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.978, T_{\max} = 0.985$

$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
$h = -7 \rightarrow 5$
$k = -6 \rightarrow 7$
$l = -41 \rightarrow 40$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.080P)^2 + 1.3353P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.009$
$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.2590 (4)	0.5385 (4)	0.04941 (6)	0.0375 (5)	
N1	0.3603 (4)	0.6559 (4)	0.11075 (6)	0.0387 (5)	
C9	0.2089 (5)	0.7550 (4)	0.09724 (8)	0.0360 (6)	
C4	0.1469 (5)	0.6810 (4)	0.05892 (8)	0.0349 (6)	
01	0.6433 (4)	0.3837 (4)	0.11196 (7)	0.0618 (7)	
C3	0.3821 (5)	0.5266 (5)	0.08078 (8)	0.0374 (6)	
C11	0.3396 (5)	0.4803 (5)	0.17452 (8)	0.0431 (7)	
C8	0.1216 (6)	0.9027 (5)	0.11414 (9)	0.0457 (7)	
H8	0.1639	0.9531	0.1394	0.055*	
C10	0.4598 (6)	0.6760 (5)	0.15034 (8)	0.0478 (7)	
H10A	0.4493	0.8061	0.1624	0.057*	
H10B	0.6239	0.6952	0.1497	0.057*	
C5	-0.0061 (5)	0.7522 (5)	0.03642 (8)	0.0415 (7)	
H5	-0.0477	0.7043	0.0110	0.050*	
C2	0.5329 (5)	0.3922 (5)	0.08265 (9)	0.0426 (7)	
C1	0.5351 (6)	0.2674 (5)	0.04673 (10)	0.0533 (8)	
H1A	0.6700	0.2249	0.0478	0.080*	
H1B	0.5401	0.3581	0.0248	0.080*	
H1C	0.3965	0.1388	0.0445	0.080*	
C6	-0.0931 (6)	0.8958 (5)	0.05327 (9)	0.0481 (7)	
H6	-0.1964	0.9448	0.0389	0.058*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C7	-0.0307(6)	0.9703(5)	0.09136 (10)	0.0497 (8)
H7	-0.0933	1.0679	0.1017	0.060*
C16	0.0981 (6)	0.3821 (5)	0.17316 (9)	0.0487 (7)
H16	0.0072	0.4360	0.1568	0.058*
C12	0.4703 (7)	0.3977 (7)	0.19917 (9)	0.0612 (9)
H12	0.6322	0.4621	0.2005	0.073*
C13	0.3631 (8)	0.2209 (8)	0.22184 (11)	0.0769 (12)
H13	0.4536	0.1660	0.2381	0.092*
C14	0.1242 (8)	0.1247 (7)	0.22070 (10)	0.0694 (11)
H14	0.0527	0.0070	0.2364	0.083*
C15	-0.0081(7)	0.2042 (6)	0.19608 (10)	0.0605 (9)
H15	-0.1699	0.1382	0.1948	0.073*
N3	0.2918 (4)	0.1314 (4)	0.38915 (6)	0.0382(5)
N4	0.2276 (4)	0.0279 (4)	0.45054 (6)	0.0373 (5)
C25	0.1488 (5)	0.2343 (4)	0.40291 (8)	0.0365 (6)
C20	0.1103 (5)	0.1685 (4)	0.44105 (7)	0.0343 (6)
02	0.5754 (4)	-0.1398 (4)	0.38807 (7)	0.0604 (6)
C19	0.3329 (5)	0.0094 (4)	0.41922 (8)	0.0367 (6)
C27	0.2311 (5)	-0.0590 (5)	0.32567 (8)	0.0420 (7)
C21	-0.0289(5)	0.2441 (5)	0.46367 (8)	0.0420 (7)
H21	-0.0546	0.2018	0.4891	0.050*
C26	0.3662 (5)	0.1418 (5)	0.34957 (8)	0.0463 (7)
H26A	0.5306	0.1609	0.3502	0.056*
H26B	0.3482	0.2689	0.3374	0.056*
C18	0.4815 (5)	-0.1260 (5)	0.41743 (9)	0.0429(7)
C24	0.0503 (5)	0.3784 (5)	0.38595 (8)	0.0447 (7)
H24	0.0760	0.4228	0.3606	0.054*
C17	0.5069 (6)	-0.2427 (5)	0.45347 (10)	0.0511 (8)
H17A	0.3755	-0.3767	0.4548	0.077*
H17B	0.5136	-0.1511	0.4755	0.077*
H17C	0.6479	-0.2751	0.4533	0.077*
C28	0.3418 (7)	-0.1542 (6)	0.30162 (9)	0.0580 (9)
H28	0.5033	-0.0937	0.3005	0.070*
C32	-0.0115 (6)	-0.1540 (6)	0.32685 (9)	0.0495 (8)
H32	-0.0909	-0.0935	0.3429	0.059*
C23	-0.0862 (6)	0.4507 (5)	0.40859 (9)	0.0479 (7)
H23	-0.1541	0.5471	0.3984	0.058*
C22	-0.1260 (6)	0.3834 (5)	0.44664 (9)	0.0483 (7)
H22	-0.2214	0.4349	0.4609	0.058*
C31	-0.1339 (7)	-0.3367 (6)	0.30447 (11)	0.0619 (9)
H31	-0.2954	-0.3985	0.3055	0.074*
C29	0.2199 (8)	-0.3370 (7)	0.27911 (10)	0.0714 (11)
H29	0.2983	-0.3982	0.2630	0.086*
C30	-0.0193 (8)	-0.4277 (7)	0.28074 (11)	0.0697 (11)
H30	-0.1030	-0.5510	0.2657	0.084*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N2	0.0412 (13)	0.0429 (12)	0.0320 (12)	0.0194 (10)	0.0003 (10)	0.0024 (9)
N1	0.0393 (13)	0.0487 (13)	0.0301 (12)	0.0185 (11)	-0.0017 (10)	0.0009 (10)
C9	0.0356 (14)	0.0407 (14)	0.0315 (14)	0.0131 (12)	0.0028 (11)	0.0027 (11)
C4	0.0361 (14)	0.0363 (13)	0.0326 (13)	0.0132 (11)	0.0029 (11)	0.0035 (11)
01	0.0563 (14)	0.0921 (18)	0.0516 (14)	0.0450 (14)	-0.0029 (11)	0.0094 (12)
C3	0.0351 (14)	0.0423 (14)	0.0358 (14)	0.0149 (12)	0.0023 (11)	0.0040 (11)
C11	0.0473 (17)	0.0631 (18)	0.0257 (13)	0.0283 (15)	-0.0018 (12)	-0.0035 (12)
C8	0.0525 (18)	0.0479 (16)	0.0392 (16)	0.0208 (14)	0.0034 (13)	-0.0027 (13)
C10	0.0443 (17)	0.0619 (19)	0.0340 (15)	0.0162 (14)	-0.0093 (13)	-0.0031 (13)
C5	0.0471 (17)	0.0460 (16)	0.0345 (14)	0.0211 (13)	-0.0027 (12)	0.0053 (12)
C2	0.0354 (15)	0.0516 (17)	0.0443 (17)	0.0196 (13)	0.0040 (13)	0.0078 (13)
C1	0.059 (2)	0.0536 (18)	0.058 (2)	0.0321 (16)	0.0067 (16)	0.0002 (15)
C6	0.0492 (18)	0.0515 (17)	0.0515 (18)	0.0278 (15)	0.0000 (14)	0.0079 (14)
C7	0.0538 (19)	0.0478 (17)	0.0553 (19)	0.0271 (15)	0.0085 (15)	0.0009 (14)
C16	0.0509 (18)	0.0628 (19)	0.0368 (16)	0.0259 (16)	-0.0005 (13)	0.0005 (14)
C12	0.058 (2)	0.096 (3)	0.0390 (17)	0.039 (2)	0.0002 (15)	0.0114 (17)
C13	0.085 (3)	0.111 (3)	0.054 (2)	0.057 (3)	0.007 (2)	0.030 (2)
C14	0.095 (3)	0.076 (2)	0.046 (2)	0.040 (2)	0.0195 (19)	0.0160 (17)
C15	0.058 (2)	0.067 (2)	0.057 (2)	0.0204 (17)	0.0105 (16)	-0.0019 (17)
N3	0.0403 (13)	0.0476 (13)	0.0287 (11)	0.0178 (11)	0.0051 (9)	0.0045 (9)
N4	0.0401 (13)	0.0428 (13)	0.0325 (12)	0.0188 (10)	0.0039 (10)	0.0037 (9)
C25	0.0363 (14)	0.0391 (14)	0.0344 (14)	0.0136 (12)	0.0019 (11)	0.0017 (11)
C20	0.0379 (14)	0.0357 (13)	0.0296 (13)	0.0130 (11)	0.0022 (11)	0.0015 (10)
O2	0.0567 (14)	0.0883 (17)	0.0514 (14)	0.0436 (13)	0.0108 (11)	-0.0015 (12)
C19	0.0355 (14)	0.0406 (14)	0.0349 (14)	0.0149 (12)	0.0010 (11)	0.0024 (11)
C27	0.0492 (17)	0.0603 (18)	0.0256 (13)	0.0303 (14)	0.0049 (12)	0.0091 (12)
C21	0.0478 (17)	0.0451 (16)	0.0370 (15)	0.0205 (13)	0.0069 (12)	0.0013 (12)
C26	0.0446 (17)	0.0598 (18)	0.0353 (15)	0.0181 (14)	0.0120 (13)	0.0125 (13)
C18	0.0364 (15)	0.0513 (17)	0.0436 (17)	0.0190 (13)	-0.0001 (13)	-0.0014 (13)
C24	0.0523 (18)	0.0495 (16)	0.0349 (15)	0.0219 (14)	-0.0015 (13)	0.0072 (12)
C17	0.0552 (19)	0.0553 (18)	0.0538 (19)	0.0334 (16)	0.0008 (15)	0.0070 (14)
C28	0.062 (2)	0.092 (3)	0.0353 (16)	0.046 (2)	0.0044 (15)	0.0034 (16)
C32	0.0486 (18)	0.065 (2)	0.0413 (16)	0.0274 (16)	0.0057 (13)	0.0009 (14)
C23	0.0519 (18)	0.0477 (17)	0.0516 (18)	0.0275 (14)	-0.0025 (14)	0.0054 (14)
C22	0.0525 (18)	0.0511 (17)	0.0502 (18)	0.0288 (15)	0.0056 (14)	-0.0019 (14)
C31	0.058 (2)	0.071 (2)	0.057 (2)	0.0253 (18)	-0.0066 (17)	0.0025 (17)
C29	0.095 (3)	0.099 (3)	0.0431 (19)	0.063 (3)	-0.0003 (19)	-0.0115 (19)
C30	0.089 (3)	0.079 (3)	0.050 (2)	0.043 (2)	-0.0192 (19)	-0.0122 (18)

Geometric parameters (Å, °)

N2—C3	1.313 (4)	N3—C25	1.379 (4)
N2—C4	1.385 (4)	N3—C19	1.380 (4)
N1—C9	1.372 (4)	N3—C26	1.464 (4)
N1—C3	1.380 (4)	N4—C19	1.318 (4)

N1—C10	1.464 (4)	N4—C20	1.382 (4)
C9—C8	1.398 (4)	C25—C24	1.401 (4)
C9—C4	1.404 (4)	C25—C20	1.398 (4)
C4—C5	1.394 (4)	C20—C21	1.397 (4)
O1—C2	1.208 (4)	O2—C18	1.213 (4)
C3—C2	1.481 (4)	C19—C18	1.480 (4)
C11—C12	1.380 (4)	C27—C28	1.377 (4)
C11—C16	1.389 (5)	C27—C32	1.397 (4)
C11—C10	1.508 (4)	C27—C26	1.503 (4)
C8—C7	1.383 (4)	$C_{21} - C_{22}$	1.371 (4)
C8—H8	0.9300	C_{21} H21	0.9300
C10—H10A	0.9700	C26—H26A	0.9700
C10_H10B	0.9700	C26_H26B	0.9700
C5 C6	1,373(A)	C18 C17	1.495(4)
C5_H5	0.0300	$C_{10} = C_{17}$	1.772(4)
C_{2}	0.9300	C_{24} C_{23}	1.372 (4)
	1.495 (4)	C17 H174	0.9300
CI—HIA	0.9600		0.9600
CI—HIB	0.9600		0.9600
C1—H1C	0.9600	С17—Н17С	0.9600
C6—C7	1.398 (5)	C28—C29	1.380 (6)
С6—Н6	0.9300	C28—H28	0.9300
С7—Н7	0.9300	C32—C31	1.378 (5)
C16—C15	1.386 (5)	С32—Н32	0.9300
C16—H16	0.9300	C23—C22	1.398 (5)
C12—C13	1.378 (6)	С23—Н23	0.9300
C12—H12	0.9300	С22—Н22	0.9300
C13—C14	1.373 (6)	C31—C30	1.370 (6)
С13—Н13	0.9300	C31—H31	0.9300
C14—C15	1.375 (5)	C29—C30	1.378 (6)
C14—H14	0.9300	C29—H29	0.9300
C15H15	0.9300	C_{30} H30	0.9300
	0.7500	0.50 1150	0.7500
C3—N2—C4	105.1 (2)	C25—N3—C19	106.0 (2)
C9—N1—C3	1063(2)	$C_{25} - N_{3} - C_{26}$	1253(2)
C9-N1-C10	124.9(2)	C19 N3 C26	128.6(2)
$C_3 = N_1 = C_{10}$	124.9(2) 128.7(2)	C19 - N4 - C20	120.0(2) 105.3(2)
N1 C9 C8	120.7(2) 132.5(3)	N3 C25 C24	105.5(2) 132.4(3)
N1 = C9 = C8	152.5(3) 105.0(2)	N3 C25 C20	132.4(3)
N1 = C9 = C4	103.9(2)	$N_{3} = C_{23} = C_{20}$	100.1(2)
$C_{0} - C_{9} - C_{4}$	121.0(3) 120.5(2)	$C_{24} = C_{23} = C_{20}$	121.3(3)
N2	129.5 (2)	N4-C20-C21	129.3 (2)
N2—C4—C9	109.7 (2)	N4—C20—C25	109.7 (2)
C5-C4-C9	120.8 (3)	C21—C20—C25	121.0 (3)
N2—C3—N1	113.0 (2)	N4—C19—N3	112.8 (2)
N2—C3—C2	122.5 (3)	N4—C19—C18	122.6 (2)
N1—C3—C2	124.5 (2)	N3—C19—C18	124.5 (2)
C12—C11—C16	118.7 (3)	C28—C27—C32	117.8 (3)
C12—C11—C10	119.9 (3)	C28—C27—C26	121.2 (3)
C16—C11—C10	121.5 (3)	C32—C27—C26	121.0 (3)

C7 - C8 - C9	1167(3)	$C^{22} - C^{21} - C^{20}$	1169(3)
C7—C8—H8	121.7	C22—C21—H21	121.5
C9—C8—H8	121.7	C20—C21—H21	121.5
N1-C10-C11	113.2 (2)	N3-C26-C27	113.3 (2)
N1-C10-H10A	108.9	N3—C26—H26A	108.9
C11—C10—H10A	108.9	C27—C26—H26A	108.9
N1-C10-H10B	108.9	N3—C26—H26B	108.9
C11—C10—H10B	108.9	C27—C26—H26B	108.9
H10A—C10—H10B	107.7	H26A—C26—H26B	107.7
C6—C5—C4	117.4 (3)	O2—C18—C19	120.9 (3)
С6—С5—Н5	121.3	O2—C18—C17	123.0 (3)
С4—С5—Н5	121.3	C19—C18—C17	116.2 (3)
O1—C2—C3	121.0 (3)	C23—C24—C25	116.7 (3)
O1—C2—C1	122.9 (3)	C23—C24—H24	121.7
C3—C2—C1	116.0 (3)	C25—C24—H24	121.7
C2—C1—H1A	109.5	C18—C17—H17A	109.5
C2—C1—H1B	109.5	C18—C17—H17B	109.5
H1A—C1—H1B	109.5	H17A—C17—H17B	109.5
C2—C1—H1C	109.5	C18—C17—H17C	109.5
H1A—C1—H1C	109.5	H17A—C17—H17C	109.5
H1B—C1—H1C	109.5	H17B—C17—H17C	109.5
C5—C6—C7	121.9 (3)	C27—C28—C29	121.8 (4)
С5—С6—Н6	119.1	C27—C28—H28	119.1
С7—С6—Н6	119.1	C29—C28—H28	119.1
C8—C7—C6	121.7 (3)	C31—C32—C27	120.5 (3)
С8—С7—Н7	119.2	С31—С32—Н32	119.7
С6—С7—Н7	119.2	С27—С32—Н32	119.7
C15—C16—C11	120.3 (3)	C24—C23—C22	121.7 (3)
C15—C16—H16	119.9	С24—С23—Н23	119.1
C11—C16—H16	119.9	С22—С23—Н23	119.1
C13—C12—C11	120.6 (4)	C21—C22—C23	122.1 (3)
C13—C12—H12	119.7	C21—C22—H22	118.9
C11—C12—H12	119.7	C23—C22—H22	118.9
C14—C13—C12	120.8 (4)	C30—C31—C32	120.4 (4)
C14—C13—H13	119.6	С30—С31—Н31	119.8
C12—C13—H13	119.6	С32—С31—Н31	119.8
C15—C14—C13	119.3 (4)	C28—C29—C30	119.3 (3)
C15—C14—H14	120.4	С28—С29—Н29	120.3
C13—C14—H14	120.4	С30—С29—Н29	120.3
C14—C15—C16	120.4 (4)	C31—C30—C29	120.1 (4)
C14—C15—H15	119.8	С31—С30—Н30	119.9
C16—C15—H15	119.8	С29—С30—Н30	119.9

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C20–C25 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…N2 ⁱ	0.93	2.62	3.517 (4)	161

supporting information

C10—H10B…O1	0.97	2.46	2.887 (4)	106	
C16—H16…O1 ⁱⁱ	0.93	2.58	3.427 (4)	152	
C21—H21····N4 ⁱⁱⁱ	0.93	2.62	3.513 (4)	161	
C26—H26A····O2	0.97	2.45	2.882 (4)	107	
C32—H32…O2 ⁱⁱ	0.93	2.57	3.410 (4)	150	
C1—H1 C ··· $Cg1^{iv}$	0.96	2.61	3.487 (4)	151	
C17—H17 A ···· $Cg2^{iv}$	0.96	2.61	3.491 (4)	153	

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*, -*z*+1; (iv) *x*, *y*-1, *z*.