metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[μ -O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S:S'$]bis{[O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S,S'$]mercury(II)}

Shirveen Sewpersad and Werner E. Van Zyl*

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: vanzylw@ukzn.ac.za

Received 31 October 2012; accepted 12 November 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.023; wR factor = 0.049; data-to-parameter ratio = 21.0.

The title compound, $[Hg_2(C_{11}H_{16}O_2PS_2)_4]$, is a dinuclear complex with a distorted tetrahedral geometry around each Hg^{II} atom. Although the two Hg^{II} atoms are surrounded by the same ligand, two different coordination modes are observed: one is chelating and the other bridging. The Hg-S bonds form two distinct pairs of long and short bonds. One pair includes both chelating and bridging Hg-S bonds with approximately equal bond lengths of 2.4042 (8) and 2.3997 (7) Å, respectively. The other pair is significantly longer at 2.9361 (9) and 2.8105 (8) Å, respectively. This pattern forms a center of inversion through the molecule with an equal and opposite effect occurring at the other Hg^{II} atom. The S-Hg-S angles vary widely from 76.26 (2) to $154.65 (3)^{\circ}$, indicative of a distorted tetrahedral arrangement of the S atoms around the Hg^{II} atom. The P–S bond lengths are 1.9681 (10) and 2.0519 (11) $^{\circ}$, clearly indicating partial double-bond character in the former. The molecule contains an inversion center situated between the two Hg^{II} atoms.

Related literature

For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010). For examples of mercury(II) dithiophosphonate complexes, see: Gray *et al.* (2004*a*,*b*); Devillanova *et al.* (2006).

 $\gamma = 80.862 \ (4)^{\circ}$ V = 1429.5 (6) Å³

Mo $K\alpha$ radiation

0.15 \times 0.15 \times 0.12 mm

34157 measured reflections

6382 independent reflections

5622 reflections with $I > 2\sigma(I)$

 $\mu = 5.81 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.077$

Z = 1

Experimental

Crystal data

 $[Hg_2(C_{11}H_{16}O_2PS_2)_4]$ $M_r = 1502.49$ Triclinic, $P\overline{1}$ a = 11.079 (3) Å b = 11.985 (3) Å c = 12.253 (3) Å $\alpha = 62.908$ (4)° $\beta = 84.418$ (4)°

Data collection

Bruker Kappa DUO APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{min} = 0.476, T_{max} = 0.542$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	304 parameters
$wR(F^2) = 0.049$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
6382 reflections	$\Delta \rho_{\rm min} = -1.02 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2088).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA. Devillanova, F., Aragoni, C., Arca, M., Hursthouse, M. B. & Huth, S. L. (2006). Univ. Southampt. Cryst. Struct. Rep. Arch. pp. 250–255.

- Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004a). Dalton Trans. pp. 2477-2486.
- Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004b). Z. Anorg. Allg. Chem. **630**, 1851–1857.
- Sheldrick, G. M. (1997). *SADABS*, University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.
- Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.
- Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. **167**, 117–132.

supporting information

Acta Cryst. (2012). E68, m1488-m1489 [doi:10.1107/S1600536812046624]

Bis[μ -O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S:S'$]bis{[O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S,S'$]mercury(II)}

Shirveen Sewpersad and Werner E. Van Zyl

S1. Comment

The phosphor-1,1,-dithiolate class of compounds is the heavier and softer congener of the more popular phosphonate derivatives. It contains the S₂P functionality as a common feature and several sub-categories are known which include the dithiophosphato $[S_2P(OR')_2]^-$, (R' = typically alkyl), dithiophosphinato $[S_2PR_2]^-$ (R = alkyl or aryl), and dithiophosphonato $[S_2PR(OR')_2]^-$, (R = typically aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed.

All known Hg(II) complexes with this ligand type are structurally more or less similar, as shown in the Scheme. The complexes are all dinuclear, mercuric, neutral, and 4-coordinate around each metal atom.

General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000). The title complex was formed through the reaction between two Hg^{2+} cations and four $[S_2P(4-C_6H_4OEt)(O^iPr)]^-$ ligands, the formed complex feature an 8-membered $Hg_2P_2S_4$ metallo-ring. Two of the ligands bind in a chelating manner and two ligands bind in a bridging manner, both types are anisobidentate, however, due to short and long pairings of the P --S bond and especially the Hg-S bonds.

S2. Experimental

A colorless methanol (40 ml) solution of $NH_4[S_2P(O^iPr)(4-C_6H_4OEt)]$ (1.322 g, 4.506 mmol) was prepared. A second colorless solution of $Hg(NO_3)_2$. H_20 (0.772 g, 2.253 mmol) in deionized water (20 ml) was prepared, and added to the ligand solution with stirring over a period of 5 min. This resulted in a white precipitate indicating the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 *x* 10 ml) to remove NH_4NO_3 and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing white powder. Colourless crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 76%. *M*.p. 117–118°C.

³¹P NMR (CDCl₃): δ (p.p.m.): 100.73. ¹H NMR (CDCl₃): δ (p.p.m.): 7.93 (2*H*, dd, J(³¹P-¹H) = 14.46 Hz, J(¹H -¹H) = 8.82 Hz, *o*-ArH), 6.91 (2*H*, dd, J(³¹P-¹H) = 8.84 Hz, J(¹H -¹H) = 3.40 Hz, *m*-ArH), 5.23 (1*H*, d quart, J(³¹P-¹H) = 20.82 Hz, J(¹H -¹H) = 6.19 Hz, CH), 4.05 (2*H*, quart, J(¹H -¹H) = 6.96 Hz, ArOCH₂), 1.42 (6*H*, d, J(¹H -¹H) = 6.2 Hz, CH₃), 1.39 (3*H*, t, J(¹H -¹H) = 6.96 Hz, ArOCH₂CH₃). ¹³C NMR (CDCl₃): δ (p.p.m.): 162.27 (*p*-ArC), 132.15 (*m*-ArC), 130.40 (Ar—C₁), 114.32 (*o*-ArC), 72.22 (CH), 64.03 (ArOCH₂), 24.27 (CH₃), 14.91 (ArOCH₂CH₃).

S3. Refinement

All hydrogen atoms were placed in idealized positions and refined with geometrical constraints and U_{eq} of 1.20–1.50 of parent C atom. The structure was refined to *R* factor of 0.0227.

Figure 1

The ORTEP molecular structure of the title complex, shown with 50% probability.

Bis[μ -O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S:S'$]bis{[O-isopropyl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S,S'$]mercury(II)}

Crystal data

[Hg₂(C₁₁H₁₆O₂PS₂)₄] $M_r = 1502.49$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 11.079 (3) Å b = 11.985 (3) Å c = 12.253 (3) Å a = 62.908 (4)° $\beta = 84.418$ (4)° $\gamma = 80.862$ (4)° V = 1429.5 (6) Å³

Data collection

Bruker Kappa DUO APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $0.5^{\circ} \varphi$ scans and ω scans Z = 1 F(000) = 740 $D_x = 1.745 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 34157 reflections $\theta = 1.9-27.4^{\circ}$ $\mu = 5.81 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.15 \times 0.15 \times 0.12 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) $T_{\min} = 0.476$, $T_{\max} = 0.542$ 34157 measured reflections 6382 independent reflections 5622 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.077$	$k = -15 \rightarrow 15$
$\theta_{\rm max} = 27.4^{\circ}, \theta_{\rm min} = 1.9^{\circ}$	$l = -15 \rightarrow 15$
$h = -14 \rightarrow 14$	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from
$wR(F^2) = 0.049$	neighbouring sites
S = 0.97	H-atom parameters constrained
6382 reflections	$w = 1/[\sigma^2(F_o^2) + (0.017P)^2]$
304 parameters	where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.87 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.02 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Hg1	0.406211 (9)	0.860930 (11)	0.068281 (10)	0.03450 (5)
S1	0.21870 (6)	0.87000 (7)	-0.02079 (7)	0.03184 (16)
S2	0.33676 (6)	0.60580 (7)	0.21177 (6)	0.02963 (15)
S3	0.47011 (6)	1.09499 (7)	-0.19071 (6)	0.02882 (15)
S4	0.61332 (6)	0.79500 (7)	-0.05226 (6)	0.03264 (16)
P1	0.21046 (6)	0.68074 (7)	0.08684 (6)	0.02416 (15)
P2	0.59057 (6)	0.95292 (7)	-0.20573 (6)	0.02505 (15)
01	0.24135 (16)	0.4936 (2)	-0.28729 (18)	0.0369 (5)
O2	0.07486 (14)	0.66471 (17)	0.13934 (16)	0.0283 (4)
O3	1.05424 (16)	1.14120 (19)	-0.45478 (18)	0.0370 (5)
O4	0.54046 (15)	0.93611 (17)	-0.31346 (16)	0.0286 (4)
C1	0.2184 (2)	0.6092 (2)	-0.0143 (2)	0.0243 (6)
C2	0.1144 (2)	0.6060 (3)	-0.0679 (2)	0.0339 (7)
H2	0.0358	0.6332	-0.0434	0.041*
C3	0.1250 (2)	0.5637 (3)	-0.1559 (3)	0.0366 (7)
Н3	0.0537	0.5607	-0.1911	0.044*
C4	0.2396 (2)	0.5255 (3)	-0.1936 (2)	0.0280 (6)
C5	0.3435 (2)	0.5230 (3)	-0.1371 (3)	0.0284 (6)
Н5	0.4219	0.4926	-0.1590	0.034*
C6	0.3305 (2)	0.5655 (3)	-0.0487 (3)	0.0293 (6)
H6	0.4015	0.5645	-0.0104	0.035*
C7	0.3573 (2)	0.4493 (3)	-0.3265 (3)	0.0349 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7A	0.3947	0.3713	-0.2581	0.042*
H7B	0.4134	0.5141	-0.3530	0.042*
C8	0.3361 (3)	0.4232 (4)	-0.4312 (3)	0.0503 (9)
H8A	0.2828	0.3568	-0.4033	0.075*
H8B	0.4146	0.3952	-0.4611	0.075*
H8C	0.2972	0.5004	-0.4975	0.075*
C9	0.0212 (2)	0.7226 (3)	0.2196 (3)	0.0328 (7)
H9	0.0767	0.7807	0.2197	0.039*
C10	-0.0988(3)	0.7978 (3)	0.1647 (3)	0.0507 (9)
H10A	-0.0837	0.8647	0.0824	0.076*
H10B	-0.1397	0.8359	0.2167	0.076*
H10C	-0.1511	0.7419	0.1595	0.076*
C11	0.0099 (3)	0.6180 (3)	0.3468 (3)	0.0403 (7)
H11A	-0.0408	0.5584	0.3459	0.060*
H11B	-0.0283	0.6534	0.4017	0.060*
H11C	0.0913	0.5737	0.3758	0.060*
C12	0.7306 (2)	1.0142 (3)	-0.2752 (2)	0.0267 (6)
C13	0.7268 (2)	1.1228 (3)	-0.3845 (3)	0.0338 (7)
H13	0.6497	1.1674	-0.4171	0.041*
C14	0.8323 (2)	1.1688 (3)	-0.4480 (3)	0.0343 (7)
H14	0.8275	1.2432	-0.5240	0.041*
C15	0.9455 (2)	1.1049 (3)	-0.3994 (3)	0.0307 (6)
C16	0.9506 (2)	0.9983 (3)	-0.2874 (3)	0.0347 (7)
H16	1.0276	0.9565	-0.2525	0.042*
C17	0.8446 (2)	0.9522 (3)	-0.2259 (3)	0.0331 (6)
H17	0.8493	0.8780	-0.1498	0.040*
C18	1.0515 (3)	1.2395 (3)	-0.5783 (3)	0.0378 (7)
H18A	1.0037	1.3180	-0.5815	0.045*
H18B	1.0125	1.2142	-0.6316	0.045*
C19	1.1816 (3)	1.2612 (3)	-0.6217 (3)	0.0503 (9)
H19A	1.2200	1.2835	-0.5669	0.075*
H19B	1.1821	1.3303	-0.7052	0.075*
H19C	1.2271	1.1839	-0.6213	0.075*
C20	0.4382 (2)	0.8642 (3)	-0.2971 (3)	0.0314 (7)
H20	0.4191	0.8146	-0.2077	0.038*
C21	0.3287 (3)	0.9560 (3)	-0.3587 (3)	0.0468 (8)
H21A	0.3069	1.0137	-0.3213	0.070*
H21B	0.2598	0.9097	-0.3487	0.070*
H21C	0.3479	1.0047	-0.4462	0.070*
C22	0.4828 (3)	0.7755 (3)	-0.3523 (3)	0.0415 (8)
H22A	0.5113	0.8238	-0.4371	0.062*
H22B	0.4159	0.7305	-0.3512	0.062*
H22C	0.5504	0.7144	-0.3045	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Hg1	0.03746 (7)	0.03923 (8)	0.03315 (8)	-0.02021 (5)	0.00380 (5)	-0.01779 (6)

S 1	0.0325 (4)	0.0254 (4)	0.0331 (4)	-0.0065 (3)	-0.0045 (3)	-0.0077 (3)
S2	0.0288 (3)	0.0303 (4)	0.0288 (4)	-0.0053 (3)	-0.0040 (3)	-0.0112 (3)
S3	0.0272 (3)	0.0276 (4)	0.0345 (4)	-0.0068 (3)	0.0003 (3)	-0.0155 (3)
S4	0.0339 (4)	0.0301 (4)	0.0283 (4)	-0.0051 (3)	0.0038 (3)	-0.0090 (3)
P1	0.0220 (3)	0.0250 (4)	0.0266 (4)	-0.0065 (3)	0.0011 (3)	-0.0119 (3)
P2	0.0260 (3)	0.0271 (4)	0.0240 (4)	-0.0085 (3)	0.0018 (3)	-0.0120 (3)
01	0.0292 (10)	0.0557 (15)	0.0360 (12)	-0.0048 (9)	0.0007 (8)	-0.0298 (11)
O2	0.0236 (9)	0.0348 (12)	0.0328 (11)	-0.0098 (8)	0.0067 (7)	-0.0200 (9)
O3	0.0271 (10)	0.0425 (13)	0.0369 (12)	-0.0111 (9)	0.0067 (8)	-0.0133 (10)
O4	0.0341 (10)	0.0324 (12)	0.0245 (10)	-0.0160 (8)	0.0035 (8)	-0.0142 (9)
C1	0.0239 (12)	0.0243 (15)	0.0235 (14)	-0.0060 (10)	-0.0003 (10)	-0.0089 (12)
C2	0.0224 (13)	0.0484 (19)	0.0350 (17)	-0.0050 (12)	0.0019 (11)	-0.0225 (15)
C3	0.0250 (14)	0.059 (2)	0.0359 (17)	-0.0084 (13)	-0.0008 (11)	-0.0288 (16)
C4	0.0303 (14)	0.0290 (16)	0.0255 (15)	-0.0074 (12)	0.0009 (11)	-0.0120 (13)
C5	0.0237 (13)	0.0296 (16)	0.0339 (16)	-0.0023 (11)	0.0011 (11)	-0.0167 (13)
C6	0.0230 (13)	0.0343 (17)	0.0349 (16)	-0.0031 (11)	-0.0036 (11)	-0.0189 (14)
C7	0.0312 (14)	0.0427 (19)	0.0370 (17)	-0.0051 (13)	0.0023 (12)	-0.0236 (15)
C8	0.0424 (18)	0.078 (3)	0.043 (2)	-0.0038 (17)	0.0040 (14)	-0.041 (2)
C9	0.0346 (15)	0.0348 (18)	0.0380 (17)	-0.0109 (13)	0.0089 (12)	-0.0238 (15)
C10	0.0457 (19)	0.038 (2)	0.053 (2)	0.0070 (15)	0.0093 (16)	-0.0137 (17)
C11	0.0387 (16)	0.050 (2)	0.0367 (18)	-0.0115 (14)	0.0065 (13)	-0.0233 (16)
C12	0.0282 (13)	0.0327 (17)	0.0240 (14)	-0.0092 (11)	0.0026 (11)	-0.0158 (13)
C13	0.0278 (14)	0.0386 (18)	0.0292 (16)	-0.0061 (12)	-0.0039 (11)	-0.0089 (14)
C14	0.0317 (14)	0.0370 (18)	0.0263 (16)	-0.0104 (12)	0.0000 (11)	-0.0055 (14)
C15	0.0270 (14)	0.0344 (17)	0.0348 (17)	-0.0095 (12)	0.0032 (11)	-0.0182 (14)
C16	0.0245 (14)	0.0361 (18)	0.0390 (18)	-0.0012 (12)	-0.0015 (12)	-0.0135 (15)
C17	0.0348 (15)	0.0306 (17)	0.0285 (16)	-0.0057 (12)	-0.0008 (12)	-0.0081 (13)
C18	0.0398 (16)	0.0410 (19)	0.0348 (17)	-0.0145 (14)	0.0088 (13)	-0.0179 (15)
C19	0.0424 (18)	0.056 (2)	0.049 (2)	-0.0184 (16)	0.0165 (15)	-0.0196 (18)
C20	0.0314 (14)	0.0397 (18)	0.0285 (16)	-0.0188 (13)	0.0034 (11)	-0.0162 (14)
C21	0.0342 (16)	0.061 (2)	0.054 (2)	-0.0060 (15)	-0.0022 (14)	-0.0326 (19)
C22	0.0429 (17)	0.043 (2)	0.048 (2)	-0.0182 (15)	0.0028 (14)	-0.0249 (17)

Geometric parameters (Å, °)

Hg1—S3 ⁱ	2.3997 (7)	C9—C11	1.499 (4)
Hg1—S1	2.4042 (8)	C9—C10	1.509 (4)
Hg1—S4	2.8105 (8)	С9—Н9	1.0000
Hg1—S2	2.9361 (9)	C10—H10A	0.9800
S1—P1	2.0519 (11)	C10—H10B	0.9800
S2—P1	1.9681 (10)	C10—H10C	0.9800
S3—P2	2.0568 (10)	C11—H11A	0.9800
S3—Hg1 ⁱ	2.3998 (7)	C11—H11B	0.9800
S4—P2	1.9699 (11)	C11—H11C	0.9800
P1—O2	1.5807 (17)	C12—C13	1.377 (4)
P1—C1	1.788 (3)	C12—C17	1.398 (4)
P2—O4	1.5848 (18)	C13—C14	1.382 (4)
P2—C12	1.791 (2)	С13—Н13	0.9500

O1—C4	1.363 (3)	C14—C15	1.393 (4)
O1—C7	1.435 (3)	C14—H14	0.9500
O2—C9	1.476 (3)	C15—C16	1.383 (4)
O3—C15	1.357 (3)	C16—C17	1.380 (4)
O3—C18	1.433 (3)	C16—H16	0.9500
O4—C20	1.475 (3)	C17—H17	0.9500
C1—C6	1.375 (3)	C18—C19	1.507 (4)
C1—C2	1.395 (3)	C18—H18A	0.9900
C2—C3	1.374 (4)	C18—H18B	0.9900
С2—Н2	0.9500	C19—H19A	0.9800
C3—C4	1.389 (4)	C19—H19B	0.9800
С3—Н3	0.9500	C19—H19C	0.9800
C4-C5	1 389 (3)	C20—C21	1 500 (4)
C5-C6	1 379 (4)	C20—C22	1 501 (4)
С5—Н5	0.9500	C20—H20	1 0000
С6—Н6	0.9500	C21—H21A	0.9800
C7-C8	1.498(4)	C21—H21B	0.9800
C7—H7A	0.9900	C21—H21C	0.9800
C7—H7B	0.9900	C22_H22A	0.9800
	0.9900	C22 H22R C22_H22B	0.9800
C8—H8B	0.9800	C22—H22C	0.9800
	0.9800	022 11220	0.9000
60-1100	0.9000		
\$3 ⁱ _Hσ1_\$1	154 65 (3)	С10—С9—Н9	109.5
S3 ⁱ Hg1S4	91 92 (3)	C9-C10-H10A	109.5
S1_Hg1_S4	112 32 (3)	C9-C10-H10B	109.5
S ³ⁱ _Ha ¹ _S ²	112.32(3) 109.11(2)	H_{10A} C_{10} H_{10B}	109.5
S1 Hg1 S2	76.26(2)	C_{0} C_{10} H_{10}	109.5
S1 - 11g1 - S2 S4 - Hg1 - S2	70.20(2)	$H_{10A} = C_{10} = H_{10C}$	109.5
$-54 - 11g_1 - 52$ D1 S1 Hg1	97.22(2) 92.17(3)	H10R C10 H10C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72.17(3)	$C_{0} = C_{10} = H_{11} \Lambda$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79.38 (3)	C_{9} C_{11} H_{11} $H_$	109.5
12 - 35 - 11g1 D2 S4 Ha1	97.48 (3)		109.5
$r_2 = 34$ - r_{g1}	94.01(4)	$\frac{111}{100}$	109.5
02-PI-CI	100.30(10)		109.5
02-P1-S2	114.83(8) 114.20(0)	HIA-CII-HIIC	109.5
C1 - P1 - S2	114.39 (9)		109.5
02-PI-SI	107.71 (8)	C13 - C12 - C17	118.5 (2)
CI = PI = SI	106.96 (9)	C13 - C12 - P2	119.0 (2)
$S_2 - P_1 - S_1$	111.53 (4)	C1/-C12-P2	122.4(2)
$04 - P_2 - C_{12}$	100.50 (10)	C12-C13-C14	121.8 (3)
$04-r_2-54$	113.62 (8)	C12— $C13$ — $H13$	119.1
C_{12} P_2 S_2	113.57 (10)	C12 C14 C15	119.1
04 - P2 - 83	104.78 (8)	C13 - C14 - C15	119.2 (3)
U12 - P2 - S3	108.57 (10)	C13—C14—H14	120.4
S4—P2—S3	114.56 (4)	C15—C14—H14	120.4
C4 - O1 - C'	117.9 (2)	O3—C15—C16	116.5 (2)
C9—O2—P1	120.41 (15)	O3—C15—C14	124.0 (3)
C15—O3—C18	117.1 (2)	C16—C15—C14	119.6 (2)

C20—O4—P2	123.35 (15)	C17—C16—C15	120.6 (3)
C6—C1—C2	118.4 (2)	C17—C16—H16	119.7
C6—C1—P1	119.55 (19)	C15—C16—H16	119.7
C2—C1—P1	121.8 (2)	C16—C17—C12	120.3 (3)
C3—C2—C1	120.4 (2)	C16—C17—H17	119.9
С3—С2—Н2	119.8	С12—С17—Н17	119.9
C1—C2—H2	119.8	O3—C18—C19	107.8 (2)
C2—C3—C4	120.3 (2)	O3—C18—H18A	110.1
С2—С3—Н3	119.8	C19—C18—H18A	110.1
С4—С3—Н3	119.8	O3—C18—H18B	110.1
O1—C4—C5	124.2 (2)	C19—C18—H18B	110.1
O1—C4—C3	116.0 (2)	H18A—C18—H18B	108.5
C5—C4—C3	119.8 (2)	С18—С19—Н19А	109.5
C6—C5—C4	118.7 (2)	C18—C19—H19B	109.5
С6—С5—Н5	120.6	H19A—C19—H19B	109.5
С4—С5—Н5	120.6	C18—C19—H19C	109.5
C1—C6—C5	122.2 (2)	H19A—C19—H19C	109.5
С1—С6—Н6	118.9	H19B—C19—H19C	109.5
С5—С6—Н6	118.9	O4—C20—C21	108.4 (2)
01	108.0 (2)	04-C20-C22	105.6 (2)
01—C7—H7A	110.1	C21—C20—C22	113.5 (3)
С8—С7—Н7А	110.1	O4—C20—H20	109.7
01—C7—H7B	110.1	C21—C20—H20	109.7
С8—С7—Н7В	110.1	C22—C20—H20	109.7
H7A—C7—H7B	108.4	С20—С21—Н21А	109.5
С7—С8—Н8А	109.5	C20—C21—H21B	109.5
С7—С8—Н8В	109.5	H21A—C21—H21B	109.5
H8A—C8—H8B	109.5	C20—C21—H21C	109.5
С7—С8—Н8С	109.5	H21A—C21—H21C	109.5
H8A—C8—H8C	109.5	H21B—C21—H21C	109.5
H8B—C8—H8C	109.5	C20—C22—H22A	109.5
O2—C9—C11	107.6 (2)	С20—С22—Н22В	109.5
O2—C9—C10	106.3 (2)	H22A—C22—H22B	109.5
C11—C9—C10	114.4 (2)	С20—С22—Н22С	109.5
О2—С9—Н9	109.5	H22A—C22—H22C	109.5
С11—С9—Н9	109.5	H22B—C22—H22C	109.5
S3 ⁱ —Hg1—S1—P1	-110.80(6)	C1—C2—C3—C4	-0.9(5)
S4-Hg1-S1-P1	87.19 (4)	C7-01-C4-C5	2.9 (4)
S2—Hg1—S1—P1	-5.07 (3)	C7—O1—C4—C3	-177.9(3)
$S3^{i}$ —Hg1—S2—P1	159.53 (3)	C2-C3-C4-O1	-175.5(3)
S1 - Hg1 - S2 - P1	5.38 (3)	C2-C3-C4-C5	3.7 (4)
S4—Hg1— $S2$ —P1	-105.91(3)	01-C4-C5-C6	175.7 (2)
S3 ⁱ —Hg1—S4—P2	-104.88 (4)	C3—C4—C5—C6	-3.5 (4)
S1—Hg1—S4—P2	67.51 (4)	C2-C1-C6-C5	2.3 (4)
S2—Hg1—S4—P2	145.58 (3)	P1-C1-C6-C5	-172.3(2)
Hg1 $-$ S2 $-$ P1 $-$ O2	-129.47(8)	C4-C5-C6-C1	0.5 (4)
Hg1— $S2$ — $P1$ — $C1$	114.96 (9)	C4-01-C7-C8	-178.8(3)
			-, -, -, -, -, -, -, -, -, -, -, -, -, -

$H_{\sigma}1$ _S2_P1_S1	-659(4)	P1_02_C9_C11	-108.9(2)
Hg1 S1 P1 Ω^2	134.70(7)	P1 O2 C9 C10	100.9(2) 128 1 (2)
$H_{1} = G_{1} = H_{1} = G_{2}$	117.94 (9)	11 - 02 - 03 - 010	126.1(2)
Hg1—S1—P1—C1	-117.84 (8)	$04 - P_2 - C_{12} - C_{13}$	56.8 (2)
Hg1—S1—P1—S2	7.92 (5)	S4—P2—C12—C13	178.5 (2)
Hg1—S4—P2—O4	-105.45 (8)	S3—P2—C12—C13	-52.8 (2)
Hg1—S4—P2—C12	140.49 (9)	O4—P2—C12—C17	-119.7 (2)
Hg1—S4—P2—S3	14.94 (4)	S4—P2—C12—C17	2.0 (3)
$Hg1^{i}$ S3 $P2$ $O4$	-165.11 (7)	S3—P2—C12—C17	130.7 (2)
Hg1 ⁱ —S3—P2—C12	-58.41 (10)	C17—C12—C13—C14	2.3 (4)
$Hg1^{i}$ S3 $P2$ $S4$	69.71 (4)	P2-C12-C13-C14	-174.3 (2)
C1—P1—O2—C9	-173.8 (2)	C12—C13—C14—C15	-1.1 (4)
S2—P1—O2—C9	62.9 (2)	C18—O3—C15—C16	171.0 (3)
S1—P1—O2—C9	-62.0(2)	C18—O3—C15—C14	-9.7 (4)
C12—P2—O4—C20	167.3 (2)	C13—C14—C15—O3	179.3 (3)
S4—P2—O4—C20	45.6 (2)	C13—C14—C15—C16	-1.4 (4)
S3—P2—O4—C20	-80.2 (2)	O3—C15—C16—C17	-178.1 (2)
O2—P1—C1—C6	-158.7 (2)	C14—C15—C16—C17	2.5 (4)
S2—P1—C1—C6	-35.1 (2)	C15—C16—C17—C12	-1.2 (4)
S1—P1—C1—C6	89.0 (2)	C13—C12—C17—C16	-1.2 (4)
O2—P1—C1—C2	26.9 (2)	P2-C12-C17-C16	175.3 (2)
S2—P1—C1—C2	150.5 (2)	C15—O3—C18—C19	-178.4 (2)
S1—P1—C1—C2	-85.5 (2)	P2-04-C20-C21	107.9 (2)
C6—C1—C2—C3	-2.1 (4)	P2	-130.0 (2)
P1—C1—C2—C3	172.4 (2)		

Symmetry code: (i) -x+1, -y+2, -z.