metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1,5-Diphenylthiocarbazonato-*kS*)trimethyltin(IV)

Karel G. Von Eschwege,^a* Jannie C. Swarts,^a Manuel A. S. Aquino^b and T. Stanley Cameron^c

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa, ^bDepartment of Chemistry, St Francis Xavier University, PO Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada, and ^cDepartment of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada Correspondence e-mail: veschwkg@ufs.ac.za

Received 6 November 2012; accepted 16 November 2012

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.027; data-to-parameter ratio = 15.0.

In the title compound, $[Sn(C_{13}H_{11}N_4S)(CH_3)_3]$, the Sn^{IV} atom is coordinated by an S atom from the 1,5-diphenylthiocarbazonato (L) ligand [Sn-S 2.4710(6) Å] and by three methyl groups [Sn-C 2.123 (3)-2.130 (2) Å] in a distorted tetrahedral geometry. The aromatic rings of the L ligand form a dihedral angle of 2.1 (1) $^{\circ}$.

Related literature

For general background to dithizone and dithizonato metal complexes, see: Irving (1977). For the synthesis of dithizone, see: Pelkis et al. (1957). For structural aspects of dithizone and its oxidation products and observed solvatochromism and concentratochromism, see: Von Eschwege et al. (2011a). For related ligand and complex structures, see: Harrowfield et al. (1983); Kong & Wong (1999); Herbstein & Schwotzer (1984); Fernandes et al. (2002); Von Eschwege et al. (2008); Laing et al. (1971). For electrochemical studies of dithizone and its Hg complex, see: Von Eschwege & Swarts (2010); Von Eschwege et al. (2011b). For femto second laser spectroscopy studies on a photochromic dithizonatomercury complex, see: Schwoerer et al. (2011). For the weighting scheme, see: Carruthers & Watkin (1979).

Experimental

Crystal data

$[Sn(C_{13}H_{11}N_4S)(CH_3)_3]$
$M_r = 419.11$
Monoclinic, $P2_1/n$
a = 11.1058 (4) Å
b = 7.2672 (3) Å
c = 22.5024 (9) Å
$\beta = 101.0116 \ (11)^{\circ}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\min} = 0.751, \ T_{\max} = 0.886$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture o
$wR(F^2) = 0.027$	independent and constrained
S = 1.07	refinement
3344 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Watkin et al., 1999); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

 $V = 1782.69 (12) \text{ Å}^3$

 $0.20 \times 0.19 \times 0.08 \; \rm mm$

17952 measured reflections

4092 independent reflections 3344 reflections with $F^2 > 2.0\sigma(F^2)$

mixture of

Mo $K\alpha$ radiation

 $\mu = 1.55 \text{ mm}^-$

T = 223 K

 $R_{\rm int} = 0.023$

Z = 4

We acknowledge the Central Research Fund of the University of the Free State for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5361).

References

Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.

- Fernandes, R. M., Lang, E. S., Lopez, E. M. V. & De Souza, G. F. (2002). Polyhedron, 21, 1149-1153.
- Harrowfield, J. M., Pakawatchai, C. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1109-1113.

Herbstein, F. H. & Schwotzer, W. (1984). J. Am. Chem. Soc. 106, 2367-2373. Irving, H. M. N. H. (1977). Dithizone. London: Chemical Society.

Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.

Kong, F. & Wong, W. (1999). J. Chem. Soc. Dalton Trans. pp. 2497-2501.

- Laing, M., Sommerville, P. & Alsop, P. A. (1971). J. Chem. Soc. A, pp. 1247-1251.
- Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR. 27, 2190-2194.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Schwoerer, H., Von Eschwege, K. G., Bosman, G., Krok, P. & Conradie, J. (2011). ChemPhysChem, pp. 2653-2658.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Von Eschwege, K. G., Conradie, J. & Kuhn, A. (2011a). J. Phys. Chem. A, 115, 14637-14646.
- Von Eschwege, K. G., Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. A, 112, 2211-2218.
- Von Eschwege, K. G. & Swarts, J. C. (2010). Polyhedron, 29, 1727-1733.
- Von Eschwege, K. G., Van As, L. & Swarts, J. C. (2011b). Electrochim. Acta, 56, 10064-10068.
- Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1999). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2012). E68, m1518 [doi:10.1107/S1600536812047216]

(1,5-Diphenylthiocarbazonato-*kS*)trimethyltin(IV)

Karel G. Von Eschwege, Jannie C. Swarts, Manuel A. S. Aquino and T. Stanley Cameron

S1. Comment

During a study of the reactions of dimethylamino-trimethyltin, orange crystals of the title compound suitable for X-ray crystallography, were isolated from a diethyl ether solution. The structure revealed distorted tetrahedral coordination geometry around tin, with S—Sn—C bond angles 110.5 (4)°, 105.0 (4)° and 98.0 (9)°. Contrary to most bidentate metaldithizonate complexes, but with the exception of one ligand in In(HDz)₃ (Harrowfield et al., 1983) and in an osmium carbonyl cluster compound (Kong & Wong, 1999), coordination of dithizone to trimethyltin(IV) was found to be monodentate, through the sulfur atom alone. The dithizonate ligand clearly illustrates a high degree of planarity, with the ligand backbone being linear, comparable to that of uncoordinated dithizone (Herbstein & Schwotzer, 1984). The Sn-S bond length of 2.4710 (6) Å agrees well with the value of 2.433 (2) Å in a related compound, 4,6-dimethylpyrimidine-2thione triphenyltin(IV),Ph₃Sn(Me₂Pymt), reported by Fernandes et al. (2002). The less bulky pyrimidine-thione ligand, however, is bidentately coordinated to Sn through both sulfur and nitrogen, forming a four-membered ring, as opposed to the usual 5-membered metal-dithizonate rings, as seen in PhHgHDz (Von Eschwege et al., 2008). In the case of Me₃Sn(HDz), the metal lies completely outside the ligand plane, whereas in most other metal dithizonates the carbonsulfur-metal angle is in the direction of the nitrogen (N4) that does not carry the imine proton, H2 (Laing et al., 1971). The three methyl carbons, being at bond distances of 2.13 (2) Å, hold the metal in the sterically more favourable out-ofplane position. Bond lengths along the ligand backbone are neither typically single nor double bond in character. However, the N3—N4 bond length of 1.267 (9) Å and the N1—C1 bond length of 1.308 (9) Å are close to typical double bond lengths of 1.25 Å and 1.29 Å respectively. Even the N1—N2 bond (1.327 (14) Å), which is expected to be a single bond, has more double bond character than single. N—N single bonds are typically 1.45 Å in length. The N3—C1 bond length of 1.40 (2) Å is shorter than an N—C single bond length of 1.47 Å. Observed deviation from single and double bond distances is further evidence of the high degree of electron delocalization along the dithizonate backbone.

S2. Experimental

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. Dithizone (0.1 g, 0.39 mmol) was dissolved in dry benzene (100 ml) and dimethylamino-trimethyltin (0.082 g, 0.394 mmol) was added under nitrogen. The solvent was removed under reduced pressure, yielding 0.157 g (97%) orange dithizonatotrimethyltin(IV), after crystallization from diethyl ether. The product proved to be unstable in most solvents, except benzene and diethyl ether. M.p. 134°C, λ max/nm (diethyl ether) 442, δ H (300 MHz, C₆D₆, Spectrum A7)/p.p.m.: 0.47 (6 H, s, 2 × CH₃), 0.54 (3 H, s, CH₃), 6.85 – 8.09 (10 H, 3 × m, C₆H₅).

S3. Refinement

The amino H atom was located on a difference map and isotropically refined. C-bound H atoms were placed in calculated positions [C—H = 0.93 Å], and refined as riding, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.

Figure 2

A portion of the molecular packing of the title compound.

65

(1,5-Diphenylthiocarbazonato-*kS*)trimethyltin(IV)

 $[Sn(C_{13}H_{11}N_4S)(CH_3)_3]$ $M_r = 419.11$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.1058 (4) Å b = 7.2672 (3) Å c = 22.5024 (9) Å $\beta = 101.0116$ (11)° V = 1782.69 (12) Å³ Z = 4

Data collection

Rigaku SCXmini diffractometer	4092 independent reflections 3344 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 6.85 pixels mm ⁻¹	$R_{\rm int} = 0.023$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(<i>REOAB</i> ; Jacobson, 1998)	$k = -9 \longrightarrow 9$
$T_{\min} = 0.751, T_{\max} = 0.886$	$l = -29 \rightarrow 28$
17952 measured reflections	
Refinement	
Refinement on F	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.027$	and constrained refinement
$wR(F^2) = 0.027$	Chebychev polynomial with 3 parameters
S = 1.07	(Carruthers & Watkin, 1979) 3.3785 -1.53
3344 reflections	2.4749
223 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$

F(000) = 840.00

 $\theta = 3.0 - 27.6^{\circ}$

 $\mu = 1.55 \text{ mm}^{-1}$ T = 223 K

Needle, orange

 $0.20 \times 0.19 \times 0.08 \text{ mm}$

 $D_{\rm x} = 1.561 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 16795 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.36 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement was performed using reflections with $F^2 > 3.0 \sigma(F^2)$. The weighted *R*-factor(*wR*), goodness of fit (*S*) and *R*-factor (gt) are based on *F*, with *F* set to zero for negative *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.584750 (10)	0.72516(2)	0.103690 (10)	0.03181 (4)	
S2	0.48283 (6)	0.42282 (9)	0.08476 (3)	0.03382 (14)	
N1	0.54036 (19)	0.2246 (3)	0.18902 (10)	0.0345 (5)	
N2	0.4294 (2)	0.2702 (3)	0.19760 (10)	0.0376 (5)	
N3	0.69296 (19)	0.2259 (3)	0.13655 (9)	0.0342 (5)	
N4	0.73146 (18)	0.2866 (3)	0.09132 (9)	0.0327 (4)	
C1	0.6418 (3)	0.7378 (5)	0.19937 (13)	0.0556 (9)	

C2	0.7339 (2)	0.7446 (3)	0.05745 (14)	0.0432 (7)
C3	0.4335 (2)	0.8952 (3)	0.06533 (13)	0.0433 (7)
C4	0.5753 (2)	0.2867 (3)	0.14066 (11)	0.0313 (5)
C5	0.3905 (2)	0.2214 (3)	0.25098 (10)	0.0288 (5)
C6	0.2710 (2)	0.2653 (3)	0.25609 (11)	0.0331 (5)
C7	0.2291 (2)	0.2216 (3)	0.30840 (12)	0.0371 (6)
C8	0.3056 (2)	0.1336 (4)	0.35559 (11)	0.0392 (6)
С9	0.4242 (2)	0.0906 (3)	0.35032 (11)	0.0372 (6)
C10	0.4679 (2)	0.1334 (3)	0.29838 (11)	0.0342 (6)
C11	0.8525 (2)	0.2291 (3)	0.08796 (11)	0.0312 (5)
C12	0.8917 (2)	0.2776 (3)	0.03507 (11)	0.0367 (6)
C13	1.0091 (2)	0.2330 (4)	0.02757 (13)	0.0456 (7)
C14	1.0872 (2)	0.1392 (4)	0.07256 (15)	0.0476 (8)
C15	1.0482 (2)	0.0905 (4)	0.12533 (14)	0.0447 (7)
C16	0.9316 (2)	0.1346 (3)	0.13339 (12)	0.0372 (6)
H1	0.6600	0.8589	0.2110	0.067*
H2	0.5792	0.6946	0.2178	0.067*
Н3	0.7113	0.6652	0.2111	0.067*
H4	0.7433	0.8663	0.0463	0.052*
Н5	0.8054	0.7050	0.0828	0.052*
H6	0.7185	0.6712	0.0230	0.052*
H7	0.3781	0.9004	0.0915	0.052*
H8	0.4615	1.0131	0.0594	0.052*
Н9	0.3949	0.8462	0.0284	0.052*
H10	0.2194	0.3239	0.2243	0.040*
H11	0.1493	0.2516	0.3119	0.044*
H12	0.2772	0.1034	0.3907	0.047*
H13	0.4755	0.0319	0.3822	0.045*
H14	0.5479	0.1037	0.2952	0.041*
H15	0.8391	0.3401	0.0046	0.044*
H16	1.0354	0.2663	-0.0078	0.055*
H17	1.1659	0.1088	0.0674	0.057*
H18	1.1011	0.0275	0.1556	0.054*
H19	0.9058	0.1015	0.1689	0.045*
H20	0.386 (3)	0.335 (4)	0.1727 (14)	0.048 (9)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.02999 (9)	0.03258 (9)	0.03273 (9)	0.00214 (7)	0.00567 (6)	0.00547 (7)
0.0313 (2)	0.0345 (3)	0.0352 (3)	-0.0008 (2)	0.0050 (2)	0.0076 (2)
0.0357 (10)	0.0341 (10)	0.0367 (10)	0.0043 (8)	0.0142 (8)	0.0069 (8)
0.0350 (10)	0.0453 (12)	0.0352 (10)	0.0091 (9)	0.0133 (8)	0.0130 (9)
0.0337 (9)	0.0347 (10)	0.0360 (10)	0.0022 (8)	0.0112 (8)	0.0070 (8)
0.0312 (9)	0.0357 (10)	0.0319 (9)	-0.0010 (8)	0.0075 (7)	0.0026 (8)
0.0575 (18)	0.067 (2)	0.0384 (14)	0.0051 (15)	-0.0006 (12)	-0.0010 (14)
0.0373 (12)	0.0429 (16)	0.0514 (15)	-0.0042 (10)	0.0133 (11)	0.0021 (11)
0.0409 (14)	0.0390 (14)	0.0482 (15)	0.0051 (11)	0.0044 (12)	0.0079 (11)
	U ¹¹ 0.02999 (9) 0.0313 (2) 0.0357 (10) 0.0350 (10) 0.0337 (9) 0.0312 (9) 0.0575 (18) 0.0373 (12) 0.0409 (14)	U^{11} U^{22} $0.029999(9)$ $0.03258(9)$ $0.0313(2)$ $0.0345(3)$ $0.0357(10)$ $0.0341(10)$ $0.0350(10)$ $0.0453(12)$ $0.0337(9)$ $0.0347(10)$ $0.0312(9)$ $0.0357(10)$ $0.0575(18)$ $0.067(2)$ $0.0373(12)$ $0.0429(16)$ $0.0409(14)$ $0.0390(14)$	U^{11} U^{22} U^{33} $0.02999(9)$ $0.03258(9)$ $0.03273(9)$ $0.0313(2)$ $0.0345(3)$ $0.0352(3)$ $0.0357(10)$ $0.0341(10)$ $0.0367(10)$ $0.0350(10)$ $0.0453(12)$ $0.0352(10)$ $0.0337(9)$ $0.0347(10)$ $0.0360(10)$ $0.0312(9)$ $0.0357(10)$ $0.0319(9)$ $0.0575(18)$ $0.067(2)$ $0.0384(14)$ $0.0373(12)$ $0.0429(16)$ $0.0514(15)$ $0.0409(14)$ $0.0390(14)$ $0.0482(15)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C4	0.0313 (11)	0.0298 (10)	0.0343 (11)	0.0013 (9)	0.0102 (9)	0.0046 (9)
C5	0.0316 (10)	0.0256 (10)	0.0308 (10)	-0.0018 (9)	0.0096 (8)	0.0020 (8)
C6	0.0315 (11)	0.0331 (12)	0.0348 (11)	0.0006 (9)	0.0068 (9)	0.0012 (9)
C7	0.0305 (11)	0.0404 (12)	0.0432 (12)	-0.0035 (10)	0.0144 (9)	-0.0032 (11)
C8	0.0439 (14)	0.0459 (15)	0.0302 (12)	-0.0090 (11)	0.0134 (10)	-0.0007 (10)
C9	0.0442 (14)	0.0370 (13)	0.0284 (11)	-0.0020 (10)	0.0020 (10)	0.0046 (9)
C10	0.0301 (11)	0.0350 (12)	0.0376 (12)	0.0017 (9)	0.0070 (9)	0.0033 (10)
C11	0.0339 (11)	0.0290 (11)	0.0313 (10)	-0.0021 (9)	0.0077 (8)	-0.0034 (9)
C12	0.0381 (12)	0.0432 (13)	0.0306 (11)	-0.0008 (11)	0.0108 (9)	-0.0017 (10)
C13	0.0467 (14)	0.0540 (17)	0.0416 (13)	-0.0017 (13)	0.0221 (11)	-0.0056 (12)
C14	0.0363 (14)	0.0462 (16)	0.0628 (18)	0.0056 (11)	0.0159 (12)	-0.0108 (14)
C15	0.0404 (14)	0.0387 (14)	0.0528 (16)	0.0080 (11)	0.0036 (12)	0.0023 (12)
C16	0.0411 (13)	0.0363 (13)	0.0346 (12)	0.0017 (10)	0.0080 (10)	0.0049 (10)

Geometric parameters (Å, °)

Sn1—S2	2.4710 (6)	C15—C16	1.380 (4)
Sn1—C1	2.127 (2)	N2—H20	0.82 (3)
Sn1—C2	2.123 (3)	C1—H1	0.930
Sn1—C3	2.130 (2)	C1—H2	0.930
S2—C4	1.766 (2)	С1—Н3	0.930
N1—N2	1.325 (3)	С2—Н4	0.930
N1—C4	1.304 (3)	С2—Н5	0.930
N2—C5	1.398 (3)	С2—Н6	0.930
N3—N4	1.257 (3)	С3—Н7	0.930
N3—C4	1.400 (3)	С3—Н8	0.930
N4—C11	1.423 (3)	С3—Н9	0.930
C5—C6	1.391 (3)	C6—H10	0.930
C5—C10	1.391 (3)	C7—H11	0.930
C6—C7	1.383 (3)	C8—H12	0.930
С7—С8	1.383 (3)	С9—Н13	0.930
C8—C9	1.381 (4)	C10—H14	0.930
C9—C10	1.384 (3)	C12—H15	0.930
C11—C12	1.389 (3)	C13—H16	0.930
C11—C16	1.395 (3)	C14—H17	0.930
C12—C13	1.385 (4)	C15—H18	0.930
C13—C14	1.380 (4)	C16—H19	0.930
C14—C15	1.385 (4)		
C3····C4 ⁱ	3.526 (3)	H7…C8 ^{iv}	3.204
C4···C3 ⁱⁱ	3.526 (3)	H7…H4 ^{viii}	3.565
C13…C13 ⁱⁱⁱ	3.599 (4)	H7…H11 ^{iv}	2.499
C13…C14 ⁱⁱⁱ	3.552 (4)	H7…H12 ^{iv}	2.839
C14…C13 ⁱⁱⁱ	3.552 (4)	H7…H15 ^v	3.399
Sn1…H11 ^{iv}	3.506	H7…H17 ^x	2.766
S2···H6 ^v	3.045	$H8 \cdots S2^{i}$	3.033
S2…H8 ⁱⁱ	3.033	H8…N1 ⁱ	3.266
S2…H12 ^{iv}	3.314	H8…N3 ⁱ	3.211

N1…H1 ⁱⁱ	2.970	$H8 \cdots N4^{i}$	3.554
N1…H3 ^{vi}	3.237	H8…C2 ^{viii}	3.542
N1…H7 ⁱⁱ	3.479	H8····C3 ^{viii}	3.306
N1····H8 ⁱⁱ	3.266	H8····C4 ⁱ	2.831
N2…H7 ⁱⁱ	3.568	H8…H4 ^{viii}	3.088
N3…H1 ⁱⁱ	3.208	H8…H6 ^{viii}	3.359
N3····H3 ^{vi}	3.419	H8…H8 ^{viii}	2.963
N3…H4 ⁱⁱ	3.420	H8…H9 ^{viii}	2.948
N3····H8 ⁱⁱ	3.211	H8…H17 ^x	3.395
N4…H4 ⁱⁱ	3.228	H9…N4 ^v	2.952
N4…H8 ⁱⁱ	3.554	H9…C11 ^v	3.458
N4…H9 ^v	2.952	H9…C12 ^v	3.354
C1···H11 ^{iv}	3,196	H9···H4 ^{viii}	2.926
C1···H14 ^{vii}	3.561	H9····H8 ^{viii}	2.948
C1···H19 ^{vii}	3.263	H9…H12 ^{iv}	3.379
C2···H8 ^{viii}	3.542	H9…H15 ^v	2.898
C2…H16 ^{ix}	2.985	H9…H17 ^x	3.426
C2H17 ^{ix}	3,386	H10····C5 ^{iv}	3.225
C3···H4 ^{viii}	3,360	H10····C6 ^{iv}	3.236
C3···H8 ^{viii}	3,306	H10····C7 ^{iv}	3.063
C3···H11 ^{iv}	3.247	H10····C8 ^{iv}	2.861
C3…H12 ^{iv}	3.441	H10····C9 ^{iv}	2.845
C3…H15 ^v	3.570	H10C10 ^{iv}	3.039
C3…H17 ^x	3.362	H10····C15 ^{xii}	3.136
C4···H1 ⁱⁱ	3.534	H10···H11 ^{iv}	3.592
C4…H8 ⁱⁱ	2.831	H10H12 ^{iv}	3.296
C5···H10 ^{xi}	3.225	$H10\cdots H13^{iv}$	3.276
C5…H18 ^{vii}	3.050	$H10\cdots H14^{iv}$	3.555
C6···H10 ^{xi}	3.236	H10…H18 ^{xii}	2.826
C6···H18 ^{xii}	3.168	H10…H18 ^{vii}	3.378
C6…H18 ^{vii}	2.919	$H11\cdots Sn1^{xi}$	3.506
C7···H2 ^{xi}	3.367	H11····C1 ^{xi}	3.196
C7···H7 ^{xi}	3.034	H11····C3 ^{xi}	3.247
C7···H10 ^{xi}	3.063	H11···H1 ^{xi}	3.464
C7···H18 ^{vii}	2.927	H11····H2 ^{xi}	2.532
C7···H20 ^{xi}	3.15 (3)	H11···H7 ^{xi}	2.499
C8····H7 ^{xi}	3.204	$H11\cdots H10^{xi}$	3.592
C8…H10 ^{xi}	2.861	H11H18 ^{vii}	3.386
C8····H15 ^{xiii}	3.308	$H11\cdots H20^{xi}$	3.079
C8····H18 ^{vii}	3.071	$H12\cdots S2^{xi}$	3.314
C8…H20 ^{xi}	3.02 (3)	H12C3 ^{xi}	3.441
C9H5 ^{vi}	3.202	H12····C12 ^{xiii}	3.368
C9H10 ^{xi}	2.845	H12H7 ^{xi}	2.839
C9···H16 ^{xiii}	3.361	H12····H9 ^{xi}	3.379
C9…H18 ^{vii}	3.188	H12···H10 ^{xi}	3.296
C10····H5 ^{vi}	3.345	H12····H15 ^{xiii}	2 558
C10···H10 ^{xi}	3.039	H12····H16 ^{xiii}	3 440
C10····H18 ^{vii}	3,189	H12····H18 ^{vii}	3 598
	0.107		5.570

C11····H4 ⁱⁱ	2.978	H12…H20 ^{xi}	2.853
С11…Н9 ^v	3.458	H13…C11 ^{vi}	2.907
C11····H13 ^{vii}	2.907	H13…C12 ^{vi}	2.830
C12····H4 ⁱⁱ	3.446	H13…C13 ^{vi}	2.956
С12…Н9 ^v	3.354	H13…C14 ^{vi}	3.152
C12····H12 ^{xiv}	3.368	H13…C15 ^{vi}	3.221
C12…H13 ^{vii}	2.830	H13…C16 ^{vi}	3.109
C12H16 ^{ix}	3.494	H13····H5 ^{vi}	2.719
C13····H4 ^{ix}	3.548	H13…H10 ^{xi}	3.276
C13····H5 ^{ix}	3.545	H13…H15 ^{vi}	3.266
C13H6 ^{ix}	3 499	H13H15 ^{xiii}	3 514
C13H13 ^{vii}	2 956	H13…H16 ^{vi}	3 444
C13…H17 ⁱⁱⁱ	3 596	H13H16 ^{xiii}	2 845
$C14\cdots H4^{ix}$	3,553	$H14\cdots C1^{vi}$	3 561
$C14\cdots H6^{ix}$	3 599	H14H1 ⁱⁱ	3 033
C14H13 ^{vii}	3 152	$H14\cdots H2^{ii}$	3 496
C14H16 ⁱⁱⁱ	3 450	H14 H2 $H14 H3^{vi}$	2 742
C15H10 ^{xv}	3 136	$H14H5^{vi}$	3 004
C15H13 ^{vii}	3 221	$H14H10^{xi}$	3 555
C15 III5 C16H2 ^{vi}	3.401	H15C3v	3.555
C16···H4 ⁱⁱ	3 232	H15 C3 $H15 C8^{xiv}$	3 308
C16H5 ⁱⁱ	3.521	H15H7v	3 300
C16H13 ^{vii}	3 100	H15H0v	2 808
U1N1i	2 070	$\mathbf{H15} \mathbf{H19} \\ \mathbf{H15} \dots \mathbf{H12} \\ \mathbf{xiv}$	2.898
111 N2 ⁱ	2.370	1115111 2 1115111 2vii	2.558
	3.208	L15L12xiv	3.200
	3.554	11151115 11151116ix	2 177
	2.464	$H15 \cdots H10$	2.085
	3.404	$H16C2^{m}$	2.965
	2,520		2 404
	3.529		5.494
	3.4//		5.450 2.021
	3.307		2.921
	3.401		2.676
	2.532		2.855
	3.496		3.440
	2.612		3.444
	3.237		2.845
H3····N3 ^{vii}	3.419		3.1//
	3.019		3.519
	2.742		3.386
H3…H19 ^v	3.247		3.362
$H4\cdots N3^{1}$	3.420	H17C13 ^m	3.596
	3.228	H17/H4 ^{1x}	2.931
H4····C3 ^{vm}	3.360	H17···H6 ^{1x}	3.057
H4…C11 ¹	2.978	$H17\cdots H7^{xv_1}$	2.766
H4···C12 ⁱ	3.446	H17····H8 ^{xvi}	3.395
H4…C13 ^{ix}	3.548	$H17 \cdots H9^{xvi}$	3.426
H4…C14 ^{ix}	3.553	H17····H20 ^{xv}	3.479

H4…C16 ⁱ	3.232	H18C5 ^{vi}	3.050
H4…H7 ^{viii}	3.565	H18····C6 ^{xv}	3.168
H4····H8 ^{viii}	3.088	H18····C6 ^{vi}	2.919
H4····H9 ^{viii}	2.926	H18····C7 ^{vi}	2.927
H4…H16 ^{ix}	2.921	H18····C8 ^{vi}	3.071
H4···H17 ^{ix}	2.931	H18····C9 ^{vi}	3,188
H4…H19 ⁱ	3.448	H18····C10 ^{vi}	3,189
H5···C9 ^{vii}	3 202	H18····H10 ^{xv}	2.826
H5···C10 ^{vii}	3 345	$H18 \cdots H10^{vi}$	3 378
H5···C13 ^{ix}	3 545	$H18 \cdots H11^{vi}$	3 386
H5···C16 ⁱ	3 521	H18····H12 ^{vi}	3 598
H5H13 ^{vii}	2 719	$H10 \cdot H2$	3 263
	2.717		3.205
115114 115116 ^{ix}	2.676		3.323
115H10i	2.070		2.477
	2.045		2.012
$H0\cdots S2^{n}$	3.045		3.247
	3.499		3.448
	3.599	H19····H5 ^{**}	3.532
	3.359		3.15 (3)
H6····H16 ^{ix}	2.855	$H20\cdots C8^{N}$	3.02 (3)
H6…H17 ^{1x}	3.057		3.079
H7…N1	3.479	H20····H12 ^{IV}	2.853
H7…N2 ⁱ	3.568	H20···H17 ^{xii}	3.479
H7····C7 ^{iv}	3.034		
S2—Sn1—C1	104.53 (9)	H1—C1—H2	109.5
S2-Sn1-C2	110.46 (7)	H1—C1—H3	109.5
S2— $Sn1$ — $C3$	98.40 (7)	H2—C1—H3	109.5
C1 = Sn1 = C2	112 56 (12)	Sn1-C2-H4	109.5
C1 - Sn1 - C3	116 40 (12)	Sn1—C2—H5	109.5
$C^2 = Sn1 = C^3$	113.04 (11)	Sn1 - C2 - H6	109.5
sn1— $s2$ — $C4$	100.97 (8)	H4-C2-H5	109.5
N2 N1 C4	100.97(0)	H4_C2_H6	109.5
N1N2C5	117.9(2) 120.7(2)	H5_C2_H6	109.5
NA N3 CA	120.7(2)	Sn1 C3 H7	109.5
N3 N4 C11	114.15 (19)	Sn1 - C3 - H8	109.5
$N_{2} = N_{4} = C_{11}$	114.20(19) 124.20(18)	Sn1 - C3 - H0	109.5
$S_2 = C_4 = N_1$	124.29 (18)	H7 C2 H8	109.5
S2-C4-N3	123.30(16)	$H/-C_{3}-H_{8}$	109.5
N1 - C4 - N3	112.1(2)	$H/-C_{3}-H_{9}$	109.5
N2 - C5 - C6	118.0(2)	H8-C3-H9	109.5
$N_2 - C_5 - C_{10}$	121.9 (2)	C_{2} C_{0} H_{10}	120.0
$C_0 - C_0 - C_1 U$	120.1 (2)	$C/-C_{0}$ -H10	120.0
$C_{0} = C_{0} = C_{1}$	120.0 (2)	C6-C/-H11	119.9
C6-C7-C8	120.2 (2)	C8—C7—H11	119.9
C ⁷ /C8C9	119.6 (2)	C/—C8—H12	120.2
C8—C9—C10	121.1 (2)	C9—C8—H12	120.2
C5—C10—C9	119.1 (2)	C8—C9—H13	119.5
N4—C11—C12	115.2 (2)	С10—С9—Н13	119.5

N4—C11—C16	1251(2)	C5-C10-H14	120.5
C12-C11-C16	1197(2)	C9-C10-H14	120.5
$C_{11} - C_{12} - C_{13}$	120.1 (2)	C11—C12—H15	119.9
C12—C13—C14	120.0 (2)	C13—C12—H15	119.9
C13—C14—C15	120.0 (2)	C12—C13—H16	120.0
C14—C15—C16	120.5 (2)	C14—C13—H16	120.0
C11—C16—C15	119.6 (2)	C13—C14—H17	120.0
N1—N2—H20	119 (2)	C15—C14—H17	120.0
C5—N2—H20	120 (2)	C14—C15—H18	119.7
Sn1—C1—H1	109.5	C16—C15—H18	119.7
Sn1—C1—H2	109.5	C11—C16—H19	120.2
Sn1—C1—H3	109.5	C15—C16—H19	120.2
C(1)— $Sn(1)$ — $S(2)$ — $C(4)$	-36.42 (13)	N(2)—C(5)—C(10)—C(9)	179.3 (2)
C(2)— $Sn(1)$ — $S(2)$ — $C(4)$	84.89 (12)	C(6)—C(5)—C(10)—C(9)	-0.0(3)
C(3)— $Sn(1)$ — $S(2)$ — $C(4)$	-156.59 (12)	C(10)—C(5)—C(6)—C(7)	0.1 (2)
Sn(1) - S(2) - C(4) - N(1)	108.4 (2)	C(5)—C(6)—C(7)—C(8)	-0.3 (3)
Sn(1) - S(2) - C(4) - N(3)	-74.7 (2)	C(6)—C(7)—C(8)—C(9)	0.4 (4)
N(2) - N(1) - C(4) - S(2)	-1.7 (3)	C(7)—C(8)—C(9)—C(10)	-0.3 (4)
N(2) - N(1) - C(4) - N(3)	-178.9 (2)	C(8)—C(9)—C(10)—C(5)	0.1 (3)
C(4) - N(1) - N(2) - C(5)	-174.5 (2)	N(4) - C(11) - C(12) - C(13)	178.3 (2)
N(1) - N(2) - C(5) - C(6)	-176.9 (2)	N(4)—C(11)—C(16)—C(15)	-178.3 (2)
N(1) - N(2) - C(5) - C(10)	3.8 (3)	C(12) - C(11) - C(16) - C(15)	0.1 (3)
N(4) - N(3) - C(4) - S(2)	4.5 (3)	C(16) - C(11) - C(12) - C(13)	-0.3 (3)
N(4) - N(3) - C(4) - N(1)	-178.3 (2)	C(11) - C(12) - C(13) - C(14)	0.4 (4)
C(4) - N(3) - N(4) - C(11)	178.29 (19)	C(12) - C(13) - C(14) - C(15)	-0.3 (4)
N(3) - N(4) - C(11) - C(12)	173.2 (2)	C(13) - C(14) - C(15) - C(16)	0.1 (3)
N(3)—N(4)—C(11)—C(16)	-8.3 (3)	C(14)—C(15)—C(16)—C(11)	-0.0 (3)
N(2)—C(5)—C(6)—C(7)	-179.2 (2)		

Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+2, -y, -z; (iv) -x+1/2, y+1/2, -z+1/2; (v) -x+1, -y+1, -z; (vi) -x+3/2, y-1/2, -z+1/2; (vii) -x+3/2, y+1/2, -z+1/2; (viii) -x+1, -y+2, -z-1/2; (vii) -x+3/2, y+1/2, -z+1/2; (viii) -x+1, -y+2, -z-1/2; (vii) -x+3/2, y+1/2, -z+1/2; (viii) x-1, y, z; (xiii) x-1/2, -y+1/2, z+1/2; (xiv) x+1, y-1, z; (xiv) x+1, y-1, z.