organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-oxo-8-trifluoromethyl-1,4dihydroquinoline-3-carboxylate

B. Garudachari,^a Arun M. Islor,^a M. N. Satyanarayan,^b Thomas Gerber,^c Eric Hosten^c and Richard Betz^c*

^aNational Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, ^bNational Institute of Technology-Karnataka, Department of Physics, Surathkal, Mangalore 575 025, India, and ^cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa

Correspondence e-mail: richard.betz@webmail.co.za

Received 25 October 2012; accepted 2 November 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.116; data-to-parameter ratio = 16.1.

The asymmetric unit of the title compound, $C_{13}H_{10}F_{3}NO_{3}$, contains two independent molecules with similar conformations. In the crystal, N-H···O hydrogen bonds link alternating independent molecules into chains in $[\overline{110}]$. In the chain, the quinoline planes of the independent molecules are almost perpendicular to each other, forming a dihedral angle of 89.8 (1)°. π - π interactions between the aromatic rings of quinoline bicycles related by inversion centres [for two independent centrosymmetric dimers, the shortest centroidcentroid distances are 3.495 (1) and 3.603 (1) Å] link the hydrogen-bonded chains into layers parallel to (110). Weak $C-H \cdots F$ and $C-H \cdots O$ interactions further consolidate the crystal packing.

Related literature

For background information about the pharmacological properties of quinoline derivatives, see: Holla et al. (2006); Bekhit et al. (2004); Kaur et al. (2010); Isloor et al. (2009); Vijesh et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the title compound, see: Thomas et al. (2011).

Experimental

Crystal data

α β

$C_{13}H_{10}F_{3}NO_{3}$	$\gamma = 74.059 \ (1)^{\circ}$
$M_r = 285.22$	V = 1201.67 (6) Å ³
Triclinic, P1	Z = 4
a = 9.8248 (3) Å	Mo $K\alpha$ radiation
b = 11.0222 (3) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 12.3450 (4) Å	$T = 200 { m K}$
$\alpha = 72.934 \ (1)^{\circ}$	$0.53 \times 0.38 \times 0.32 \text{ mm}$
$\beta = 74.167 \ (1)^{\circ}$	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$vR(F^2) = 0.116$	independent and constrained
S = 1.04	refinement
5963 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
371 parameters	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O21^{i}$ $N2 - H2 \cdots O11^{ii}$ $N2 - H2 \cdots O12^{ii}$ $C212 - H21B \cdots F22^{iii}$ $C204 - H204 \cdots O13^{iv}$	0.892 (19) 0.851 (18) 0.851 (18) 0.99 0.95	1.875 (19) 2.011 (17) 2.487 (17) 2.46 2.60	2.6588 (13) 2.7178 (13) 3.0380 (15) 3.0909 (18) 3.4691 (18)	145.5 (16) 139.9 (16) 123.2 (14) 121 153

21419 measured reflections 5963 independent reflections

 $R_{\rm int} = 0.016$

5051 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z; (iv) -x, -y, -z + 1

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5354).

References

- Bekhit, A. A., El-Sayed, O. A., Aboulmagd, E. & Park, J. Y. (2004). Eur. J. Med. Chem. 39, 249-255.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akbarali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047.

Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.

Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). *Eur. J. Med. Chem.* 45, 3245–3264.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thomas, K. D., Adhikari, A. V., Telkar, S., Chowdhury, I. H., Mahmood, R., Pal, N. K., Row, G. & Sumesh, E. (2011). *Eur. J. Med. Chem.* 46, 5283–5292.
- Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). *Eur. J. Med. Chem.* 46, 5591–5597.

supporting information

Acta Cryst. (2012). E68, o3304–o3305 [doi:10.1107/S1600536812045321]

Ethyl 4-oxo-8-trifluoromethyl-1,4-dihydroquinoline-3-carboxylate

B. Garudachari, Arun M. Islor, M. N. Satyanarayan, Thomas Gerber, Eric Hosten and Richard Betz

S1. Comment

Quinoline derivatives constitute an important class of compounds that are widely found in plants. A number of synthetic analogues have been developed over the years. Some of them exhibit remarkable effects such as antimicrobial, antiinflammatory and antimalarial (Holla *et al.*, 2006; Bekhit *et al.*, 2004; Kaur *et al.*, 2010). This follows a broader trend that shows nitrogen-containing heterocycles to be among pharmaceutically active and interesting compounds (Isloor *et al.*, 2009; Vijesh *et al.*, 2011) which justifies our continuing efforts in designing novel heterocyclic molecules of biological importance and study their respective molecular and crystal structure.

The title compound is a derivative of 1,4-dihydroquinoline and does not adopt its aromatic tautomeric form as a quinoline derivative. There are two independent molecules in the asymmetric unit (Fig. 1).

In the crystal, classical N—H···O hydrogen bonds (Table 1) link the alternating independent molecules into chains in [-110] (Fig. 2). In the chain, the quinoline planes of independent molecules are almost perpendicular to each other forming a dihedral angle of 89.8 (1)°. The π - π interactions between the aromatic rings of the quinoline bicycles related by inversion centres [for two independent centrosymmetric dimers the shortest intercentroid distances are 3.495 (1) and 3.603 (1) Å, respectively] link hydrogen-bonded chains into layers parallel to the (110) plane. Weak intermolecular C-H···F contacts are observed next to intermolecular C-H···O contacts (Table 1). In every case, the range of these contacts falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. While the C-H···O contacts stem from one of the hydrogen atoms on the phenyl moiety bearing the trifluoromethyl substituent and apply the ethereal oxygen atom as acceptor, the classical hydrogen bonds invariably have double bonded oxygen atoms as acceptors. These hydrogen bonds intermittently connect the two different molecules present in the asymmetric unit into chains along [-110] and show bifurcation between the two double bonded oxygen atoms in one case. In total, these contacts connect the molecules to planes parallel to *ab*. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for the classical hydrogen bonds is *DDD* on the unary level (taking into account the bifurcation). The descriptor for the C-H···O contacts is *D* while a $C^1_1(11)$ descriptor is found for the C-H···F contacts on the same level.

S2. Experimental

Diethyl($\{[3-(trifluoromethyl)phenyl]amino\}$ methylene)malonate (10.0 g, 0.030 mol) and Dowtherm (100 ml) were heated to 250 °C for 5 h. The reaction mixture was then cooled to 25 °C and stirred in *n*-hexane (150 ml) for 10 min. The solid product obtained was filtered, dried and recrystallized from ethanol, yield: 8.0 g (93.0%) (Thomas *et al.*, 2011).

S3. Refinement

C-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic and vinylic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}$ (C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008)), with U(H) set to $1.5U_{eq}$ (C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figure 1

Two independent molecules of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.

Figure 2

A portion of the crystal packing viewed down the *c* axis. Dashed lines denote classical N–H···O hydrogen bonds. Symmetry codes: (i) -*x*, -*y* + 1, -*z* + 1; (ii) -*x* + 1, -*y*, -*z* + 1.

Ethyl 4-oxo-8-trifluoromethyl-1,4-dihydroquinoline-3-carboxylate

Crystal data	
$C_{13}H_{10}F_{3}NO_{3}$	$\gamma = 74.059 \ (1)^{\circ}$
$M_r = 285.22$	V = 1201.67 (6) Å ³
Triclinic, $P\overline{1}$	Z = 4
Hall symbol: -P 1	F(000) = 584
a = 9.8248 (3) Å	$D_{\rm x} = 1.577 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.0222 (3) Å	Melting point = $570-568$ K
c = 12.3450 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 72.934 \ (1)^{\circ}$	Cell parameters from 9882 reflections
$\beta = 74.167 \ (1)^{\circ}$	$\theta = 2.5 - 28.3^{\circ}$

 $\mu = 0.14 \text{ mm}^{-1}$ T = 200 K

Data collection

Bruker APEXII CCD	21419 measured reflections
diffractometer	5963 independent reflections
Radiation source: fine-focus sealed tube	5051 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
φ and ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Bruker, 2008)	$k = -14 \rightarrow 14$
$T_{\min} = 0.928, \ T_{\max} = 0.956$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fo
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independer
5963 reflections	and constrained refinement
371 parameters	$w = 1/[\sigma^2(F^2) + (0.0503 P)^2 + 0.3846P]$

371 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Platelet, colourless $0.53 \times 0.38 \times 0.32$ mm

ourier nt $w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.3846P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F11	0.33975 (9)	0.25175 (8)	0.03791 (8)	0.0439 (2)
F12	0.44442 (10)	0.35929 (10)	0.09612 (10)	0.0568 (3)
F13	0.47655 (10)	0.37218 (10)	-0.08575 (9)	0.0631 (3)
F21	0.16132 (9)	0.25934 (8)	0.55061 (8)	0.0470 (2)
F22	0.05981 (10)	0.16771 (11)	0.71858 (8)	0.0581 (3)
F23	0.01521 (11)	0.13966 (11)	0.56807 (11)	0.0657 (3)
O11	-0.20937 (11)	0.70312 (9)	0.17938 (8)	0.0405 (2)
O12	-0.33287 (11)	0.58234 (11)	0.40381 (10)	0.0474 (3)
O13	-0.19356 (10)	0.39636 (9)	0.48120 (8)	0.0360 (2)
O21	0.71392 (13)	-0.18698 (10)	0.68194 (9)	0.0488 (3)
O22	0.83982 (11)	-0.07326 (11)	0.79574 (11)	0.0533 (3)
O23	0.69974 (11)	0.11050 (11)	0.84210 (9)	0.0445 (2)
N1	0.12165 (11)	0.38724 (9)	0.19918 (9)	0.0270 (2)
H1	0.190 (2)	0.3151 (18)	0.2098 (16)	0.046 (5)*
N2	0.38130 (11)	0.12577 (10)	0.69417 (9)	0.0276 (2)
H2	0.3130 (19)	0.1915 (17)	0.7026 (15)	0.039 (4)*
C101	0.13071 (12)	0.48491 (11)	0.09948 (10)	0.0248 (2)
C102	0.25053 (13)	0.47904 (12)	0.00530 (11)	0.0291 (2)
C103	0.25240 (14)	0.57880 (13)	-0.09286 (11)	0.0341 (3)
H103	0.3331	0.5743	-0.1560	0.041*
C104	0.13755 (15)	0.68645 (13)	-0.10101 (11)	0.0345 (3)
H104	0.1399	0.7543	-0.1695	0.041*

C105	0.02133 (14)	0.69401 (11)	-0.00978 (11)	0.0307 (2)
H105	-0.0566	0.7675	-0.0154	0.037*
C106	0.01622 (12)	0.59419 (11)	0.09183 (10)	0.0251 (2)
C107	0.37692 (14)	0.36615 (14)	0.01239 (12)	0.0372 (3)
C108	-0.11013 (12)	0.60598 (11)	0.18858 (10)	0.0269 (2)
C109	-0.10586 (12)	0.49925 (11)	0.28998 (10)	0.0255 (2)
C110	0.00998 (12)	0.39563 (11)	0.28906 (10)	0.0261 (2)
H110	0.0107	0.3260	0.3562	0.031*
C111	-0.22344 (12)	0.50028 (11)	0.39440 (10)	0.0281 (2)
C112	-0.29520 (15)	0.38902 (15)	0.59208 (11)	0.0383 (3)
H11A	-0.2959	0.2970	0.6318	0.046*
H11B	-0.3939	0.4329	0.5794	0.046*
C113	-0.25346 (18)	0.45247 (16)	0.66662 (13)	0.0459 (3)
H11C	-0.1546	0.4106	0.6770	0.069*
H11D	-0.3202	0.4435	0.7423	0.069*
H11E	-0.2583	0.5448	0.6292	0.069*
C201	0.36760 (13)	0.02791 (11)	0.65228 (10)	0.0278 (2)
C202	0.24340 (14)	0.03303 (13)	0.61281 (11)	0.0333 (3)
C203	0.23449 (18)	-0.07003 (15)	0.57567 (13)	0.0445 (3)
H203	0.1504	-0.0669	0.5502	0.053*
C204	0.3472 (2)	-0.17898 (15)	0.57496 (14)	0.0498 (4)
H204	0.3396	-0.2497	0.5494	0.060*
C205	0.46903 (18)	-0.18417 (13)	0.61103 (12)	0.0423 (3)
H205	0.5461	-0.2582	0.6093	0.051*
C206	0.48144 (14)	-0.08153 (11)	0.65054 (10)	0.0309 (3)
C207	0.12056 (14)	0.14904 (15)	0.61157 (12)	0.0390 (3)
C208	0.61343 (14)	-0.09151 (12)	0.69029 (10)	0.0322 (3)
C209	0.61215 (13)	0.01330 (12)	0.73845 (10)	0.0295 (2)
C210	0.49545 (13)	0.11609 (11)	0.73754 (10)	0.0277 (2)
H210	0.4959	0.1844	0.7697	0.033*
C211	0.73085 (13)	0.00904 (13)	0.79296 (11)	0.0341 (3)
C212	0.79490 (17)	0.11036 (17)	0.91340 (13)	0.0465 (4)
H21A	0.8003	0.2007	0.9067	0.056*
H21B	0.8936	0.0623	0.8857	0.056*
C213	0.74080 (19)	0.04817 (17)	1.03738 (13)	0.0484 (4)
H21C	0.6426	0.0950	1.0643	0.073*
H21D	0.8048	0.0511	1.0846	0.073*
H21E	0.7395	-0.0424	1.0444	0.073*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F11	0.0417 (4)	0.0334 (4)	0.0518 (5)	-0.0007 (3)	-0.0053 (4)	-0.0137 (4)
F12	0.0366 (4)	0.0627 (6)	0.0764 (7)	0.0050 (4)	-0.0282 (5)	-0.0237 (5)
F13	0.0424 (5)	0.0589 (6)	0.0598 (6)	0.0010 (4)	0.0196 (4)	-0.0110 (5)
F21	0.0428 (5)	0.0386 (4)	0.0502 (5)	-0.0027 (3)	-0.0098 (4)	-0.0021 (4)
F22	0.0385 (5)	0.0789 (7)	0.0411 (5)	0.0022 (4)	0.0011 (4)	-0.0130 (5)
F23	0.0512 (6)	0.0676 (7)	0.0894 (8)	-0.0103 (5)	-0.0422 (6)	-0.0120 (6)
F11 F12 F13 F21 F22 F23	$\begin{array}{c} 0.0417 (4) \\ 0.0366 (4) \\ 0.0424 (5) \\ 0.0428 (5) \\ 0.0385 (5) \\ 0.0512 (6) \end{array}$	0.0534 (4) 0.0627 (6) 0.0589 (6) 0.0386 (4) 0.0789 (7) 0.0676 (7)	$\begin{array}{c} 0.0518 (3) \\ 0.0764 (7) \\ 0.0598 (6) \\ 0.0502 (5) \\ 0.0411 (5) \\ 0.0894 (8) \end{array}$	$\begin{array}{c} -0.0007(3) \\ 0.0050(4) \\ 0.0010(4) \\ -0.0027(3) \\ 0.0022(4) \\ -0.0103(5) \end{array}$	$\begin{array}{c} -0.0033(4) \\ -0.0282(5) \\ 0.0196(4) \\ -0.0098(4) \\ 0.0011(4) \\ -0.0422(6) \end{array}$	$\begin{array}{c} -0.0137 (4) \\ -0.0237 (5) \\ -0.0110 (5) \\ -0.0021 (4) \\ -0.0130 (5) \\ -0.0120 (6) \end{array}$

011	0.0428 (5)	0.0338 (5)	0.0311 (5)	0.0145 (4)	-0.0083 (4)	-0.0078 (4)
O12	0.0306 (5)	0.0467 (6)	0.0462 (6)	0.0050 (4)	0.0015 (4)	-0.0042 (5)
013	0.0353 (5)	0.0409 (5)	0.0252 (4)	-0.0031 (4)	-0.0036 (3)	-0.0049 (4)
O21	0.0574 (6)	0.0394 (5)	0.0384 (5)	0.0243 (5)	-0.0201 (5)	-0.0154 (4)
O22	0.0336 (5)	0.0522 (6)	0.0669 (8)	0.0066 (5)	-0.0198 (5)	-0.0091 (5)
O23	0.0421 (5)	0.0527 (6)	0.0424 (6)	-0.0029 (4)	-0.0195 (4)	-0.0136 (5)
N1	0.0258 (5)	0.0247 (5)	0.0271 (5)	0.0029 (4)	-0.0081 (4)	-0.0061 (4)
N2	0.0264 (5)	0.0251 (5)	0.0278 (5)	0.0028 (4)	-0.0066 (4)	-0.0078 (4)
C101	0.0260 (5)	0.0251 (5)	0.0254 (5)	-0.0036 (4)	-0.0083 (4)	-0.0082 (4)
C102	0.0270 (5)	0.0310 (6)	0.0305 (6)	-0.0051 (4)	-0.0058 (4)	-0.0101 (5)
C103	0.0346 (6)	0.0402 (7)	0.0286 (6)	-0.0128 (5)	-0.0019 (5)	-0.0094 (5)
C104	0.0448 (7)	0.0322 (6)	0.0274 (6)	-0.0126 (5)	-0.0099 (5)	-0.0020 (5)
C105	0.0381 (6)	0.0250 (5)	0.0299 (6)	-0.0034 (4)	-0.0130 (5)	-0.0055 (4)
C106	0.0283 (5)	0.0241 (5)	0.0243 (5)	-0.0021 (4)	-0.0094 (4)	-0.0076 (4)
C107	0.0269 (6)	0.0407 (7)	0.0392 (7)	-0.0036 (5)	-0.0005 (5)	-0.0118 (6)
C108	0.0285 (5)	0.0263 (5)	0.0258 (5)	0.0023 (4)	-0.0099 (4)	-0.0094 (4)
C109	0.0253 (5)	0.0264 (5)	0.0251 (5)	-0.0016 (4)	-0.0079 (4)	-0.0079 (4)
C110	0.0274 (5)	0.0252 (5)	0.0248 (5)	-0.0017 (4)	-0.0090 (4)	-0.0050 (4)
C111	0.0260 (5)	0.0299 (5)	0.0291 (6)	-0.0049 (4)	-0.0063 (4)	-0.0086 (4)
C112	0.0366 (7)	0.0491 (8)	0.0279 (6)	-0.0163 (6)	-0.0004 (5)	-0.0061 (5)
C113	0.0509 (8)	0.0551 (9)	0.0326 (7)	-0.0138 (7)	-0.0049 (6)	-0.0128 (6)
C201	0.0341 (6)	0.0260 (5)	0.0197 (5)	-0.0044 (4)	-0.0050 (4)	-0.0026 (4)
C202	0.0383 (6)	0.0350 (6)	0.0250 (6)	-0.0102 (5)	-0.0082 (5)	-0.0010 (5)
C203	0.0595 (9)	0.0459 (8)	0.0352 (7)	-0.0221 (7)	-0.0159 (6)	-0.0045 (6)
C204	0.0807 (12)	0.0363 (7)	0.0400 (8)	-0.0201 (7)	-0.0168 (8)	-0.0093 (6)
C205	0.0650 (9)	0.0265 (6)	0.0319 (6)	-0.0031 (6)	-0.0107 (6)	-0.0074 (5)
C206	0.0424 (7)	0.0249 (5)	0.0202 (5)	-0.0009 (5)	-0.0062 (5)	-0.0038 (4)
C207	0.0313 (6)	0.0496 (8)	0.0348 (7)	-0.0095 (6)	-0.0103 (5)	-0.0042 (6)
C208	0.0381 (6)	0.0282 (6)	0.0200 (5)	0.0072 (5)	-0.0064 (4)	-0.0032 (4)
C209	0.0283 (5)	0.0296 (6)	0.0233 (5)	0.0018 (4)	-0.0053 (4)	-0.0029 (4)
C210	0.0279 (5)	0.0269 (5)	0.0247 (5)	-0.0012 (4)	-0.0046 (4)	-0.0057 (4)
C211	0.0295 (6)	0.0372 (6)	0.0282 (6)	-0.0037 (5)	-0.0066 (5)	0.0010 (5)
C212	0.0445 (8)	0.0630 (9)	0.0355 (7)	-0.0223 (7)	-0.0154 (6)	-0.0003 (6)
C213	0.0564 (9)	0.0523 (9)	0.0335 (7)	-0.0136 (7)	-0.0072 (6)	-0.0055 (6)

Geometric parameters (Å, °)

F11—C107	1.3341 (16)	C108—C109	1.4457 (16)	
F12—C107	1.3470 (17)	C109—C110	1.3735 (15)	
F13—C107	1.3310 (16)	C109—C111	1.4782 (16)	
F21—C207	1.3307 (17)	C110—H110	0.9500	
F22—C207	1.3437 (17)	C112—C113	1.498 (2)	
F23—C207	1.3285 (16)	C112—H11A	0.9900	
O11—C108	1.2351 (14)	C112—H11B	0.9900	
O12—C111	1.2029 (15)	C113—H11C	0.9800	
O13—C111	1.3464 (15)	C113—H11D	0.9800	
O13—C112	1.4529 (15)	C113—H11E	0.9800	
O21—C208	1.2370 (15)	C201—C206	1.4027 (16)	

022—C211	1,1994 (16)	C201—C202	1.4141 (17)
023-0211	1.3495 (18)	C202—C203	1.375 (2)
023 - C212	1.4479 (17)	C202—C207	1.4976 (19)
N1-C110	1.3355 (15)	C203—C204	1.393 (2)
N1-C101	1.3773 (15)	С203—Н203	0.9500
N1—H1	0.892 (19)	C_{204} C_{205}	1 368 (2)
N2-C210	1,3358(15)	C204—H204	0.9500
N2-C201	1 3763 (15)	$C_{205} - C_{206}$	1 4017 (18)
N2—H2	0.851 (18)	C205—H205	0.9500
C101—C106	1.4043 (15)	C206—C208	1.4737 (18)
C101—C102	1.4132 (16)	C208—C209	1.4420 (18)
C102 - C103	1 3765 (18)	$C_{209} - C_{210}$	1 3727 (15)
C102 - C103	1 4981 (17)	$C_{209} - C_{211}$	1.3727(13) 1 4815(17)
C102—C104	1.3956 (19)	C210—H210	0.9500
C103—H103	0.9500	C_{212} C_{213}	1 495 (2)
C104—C105	1 3712 (18)	C212—H21A	0 9900
C104—H104	0.9500	C212—H21B	0.9900
C105 - C106	1 4044 (16)	C213—H21C	0.9800
C105—H105	0.9500	C213—H21D	0.9800
C106-C108	1 4757 (16)	C213—H21E	0.9800
0100 0100	1.1757 (10)		0.9000
C111—O13—C112	117.59 (10)	H11C—C113—H11D	109.5
C211—O23—C212	117.55 (12)	C112—C113—H11E	109.5
C110—N1—C101	121.95 (10)	H11C—C113—H11E	109.5
C110—N1—H1	114.9 (12)	H11D—C113—H11E	109.5
C101—N1—H1	123.2 (12)	N2—C201—C206	118.05 (11)
C210—N2—C201	121.93 (10)	N2—C201—C202	122.66 (11)
C210—N2—H2	115.4 (11)	C206—C201—C202	119.28 (11)
C201—N2—H2	122.2 (11)	C203—C202—C201	119.74 (13)
N1—C101—C106	118.41 (10)	C203—C202—C207	119.36 (13)
N1—C101—C102	122.48 (10)	C201—C202—C207	120.90 (11)
C106—C101—C102	119.12 (10)	C202—C203—C204	120.80 (14)
C103—C102—C101	119.82 (11)	С202—С203—Н203	119.6
C103—C102—C107	119.71 (11)	С204—С203—Н203	119.6
C101—C102—C107	120.46 (11)	C205—C204—C203	120.02 (13)
C102—C103—C104	121.00 (12)	C205—C204—H204	120.0
C102—C103—H103	119.5	C203—C204—H204	120.0
C104—C103—H103	119.5	C204—C205—C206	120.81 (13)
C105—C104—C103	119.78 (11)	C204—C205—H205	119.6
C105—C104—H104	120.1	C206—C205—H205	119.6
C103—C104—H104	120.1	C205—C206—C201	119.33 (13)
C104—C105—C106	120.70 (11)	C205—C206—C208	119.22 (12)
C104—C105—H105	119.7	C201—C206—C208	121.44 (11)
C106—C105—H105	119.7	F23—C207—F21	106.70 (11)
C101—C106—C105	119.58 (11)	F23—C207—F22	106.69 (12)
C101—C106—C108	121.19 (10)	F21—C207—F22	105.13 (12)
C105—C106—C108	119.22 (10)	F23—C207—C202	112.96 (13)
F13—C107—F11	106.66 (11)	F21—C207—C202	113.00 (11)
			()

F13—C107—F12	106.61 (11)	F22—C207—C202	111.81 (11)
F11—C107—F12	105.45 (12)	O21—C208—C209	125.29 (13)
F13—C107—C102	112.78 (12)	O21—C208—C206	119.16 (12)
F11—C107—C102	113.23 (10)	C209—C208—C206	115.54 (10)
F12-C107-C102	111.58 (11)	C210—C209—C208	118.91 (11)
O11—C108—C109	124.72 (11)	C_{210} C_{209} C_{211}	119.79 (11)
O11—C108—C106	119.80 (11)	$C_{208} - C_{209} - C_{211}$	121.25 (11)
C109-C108-C106	115 48 (10)	N_{2} C210 C209	123.90(11)
$C_{110} - C_{109} - C_{108}$	119 21 (10)	N_{2} C210 H210	118.0
$C_{110} - C_{109} - C_{111}$	119.66 (10)	$C_{209} - C_{210} - H_{210}$	118.0
C108 - C109 - C111	121 13 (10)	022 - C211 - 023	123 44 (13)
N1-C110-C109	123.71(10)	022 - 0211 - 025	125.71(13) 125.73(13)
N1_C110_H110	118.1	022 - 0211 - 0209	120.75(10) 110.82(10)
C109-C110-H110	118.1	023 - C212 - C213	110.52(10)
012-0111-013	122 73 (11)	023 - C212 - H214	109.5
012 - 0111 - 013	122.73(11) 125.78(11)	$C_{213} = C_{212} = H_{21A}$	109.5
012 - 0111 - 0109	123.78(11) 111.49(10)	$C_{213} - C_{212} - H_{21R}$	109.5
013 - 0112 - 0113	111.49(10) 110.26(11)	$C_{23} = C_{212} = H_{21B}$	109.5
013 C112 H11A	100.6	1213 - 212 - 1121B	109.5
C112 C112 H11A	109.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1
C_{113} C_{112} H_{112}	109.0	$C_{212} = C_{213} = H_{210}$	109.5
	109.0	C_{212} — C_{213} — H_{21D}	109.5
	109.0	$H_2 IC - C_2 I3 - H_2 ID$	109.5
HIIA—CII2—HIIB	108.1	U212—U213—H21E	109.5
CII2—CII3—HIIC	109.5	H2IC-C2I3-H2IE	109.5
CII2—CII3—HIID	109.5	H21D-C213-H21E	109.5
C110 N1 C101 C106	-2.05(16)	C210 N2 C201 C206	-3 23 (17)
$C_{110} = N_1 = C_{101} = C_{100}$	2.03(10)	$C_{210} = N_2 = C_{201} = C_{202}$	3.23(17)
N1 = C101 = C102	177.08(10) 178.08(11)	$N_2 = C_2 O_1 = C_2 O_2 = C_2 O_2$	-177.70(12)
$C_{106} = C_{101} = C_{102} = C_{103}$	-1.00(17)	12-201-2202-2203	177.79(12) 1 25 (18)
$V_{100} = C_{101} = C_{102} = C_{103}$	-2.20(17)	$C_{200} - C_{201} - C_{202} - C_{203}$	1.33(18)
106 - 101 - 102 - 107	-2.20(17)	$N_2 = C_2 01 = C_2 02 = C_2 07$	1.01(10) -170.05(11)
$C_{100} = C_{101} = C_{102} = C_{104}$	1/7.75(11) 0.15(19)	$C_{200} - C_{201} - C_{202} - C_{207}$	-1/9.03(11)
C101 - C102 - C103 - C104	0.13(18)	$C_{201} - C_{202} - C_{203} - C_{204}$	-0.8(2)
C107 - C102 - C103 - C104	-1/8.0/(12)	$C_{207} - C_{202} - C_{203} - C_{204}$	1/9.55(15)
C102 - C103 - C104 - C103	0.33(19)	$C_{202} = C_{203} = C_{204} = C_{205} = C_{205}$	-0.3(2)
103 - 104 - 103 - 100	-178.71(10)	$C_{203} = C_{204} = C_{203} = C_{200} = C_{200}$	0.9(2)
102 - 101 - 106 - 105	-1/6./1(10)	$C_{204} = C_{205} = C_{206} = C_{201}$	-0.4(2)
102 - 101 - 106 - 103	1.55(10)	$C_{204} - C_{203} - C_{200} - C_{208}$	1/9.11(13) 178.44(11)
102 - 101 - 106 - 108	-178 04 (10)	$N_2 = C_2 01 = C_2 00 = C_2 03$	1/0.44(11) -0.74(18)
C102 - C101 - C106 - C108	-1/8.94(10)	$C_{202} - C_{201} - C_{200} - C_{203}$	-0.74(18)
C104 - C105 - C106 - C101	0.09(17)	102 - 0201 - 0200 - 0208	1.03(17)
C104 - C103 - C100 - C108	1/9.00(11) -4.70(19)	$C_{202} = C_{201} = C_{200} = C_{208} = C_{202} = C_{207} = C_{202} = C_{207} = C_{2$	1/9.//(11) -2.68 (19)
C103 - C102 - C107 - F13	-4.70(10)	C_{203} C_{202} C_{207} F_{23}	-2.08(18)
C101 - C102 - C107 - F13	1/0.48 (11)	$C_{201} - C_{202} - C_{207} - F_{23}$	1//./1(12)
C103 - C102 - C107 - F11	-125.94(13)	$C_{203} - C_{202} - C_{207} - F_{21}$	-123.94(14)
C101 - C102 - C107 - F11	55.24 (16) 115.27 (14)	$C_{201} - C_{202} - C_{207} - F_{21}^2$	50.40 (10)
C103 - C102 - C107 - F12	113.27 (14)	$C_{203} - C_{202} - C_{207} - F_{22}$	(1.02 (14)
C101—C102—C107—F12	-03.33 (13)	C201—C202—C207—F22	-01.92(16)

C101—C106—C108—O11 C105—C106—C108—O11 C101—C106—C108—C109 C105—C106—C108—C109 O11—C108—C109—C110 C106—C108—C109—C110 O11—C108—C109—C111 C106—C108—C109—C111 C106—C108—C109—C111 C101—N1—C110—C109	-179.90 (11) -0.19 (17) 0.70 (16) -179.60 (10) 179.19 (12) -1.43 (15) -1.12 (18) 178.25 (10) 1.34 (17)	C205—C206—C208—O21 C201—C206—C208—O21 C205—C206—C208—C209 C201—C206—C208—C209 O21—C208—C209—C210 C206—C208—C209—C211 C206—C208—C209—C211 C206—C208—C209—C211 C201—N2—C210—C209	3.99 (18) -176.53 (12) -175.03 (11) 4.46 (17) 177.19 (12) -3.86 (16) -5.5 (2) 173.49 (11) 3.95 (18)
C111—C109—C110—N1 C112—O13—C111—O12 C112—O13—C111—C109 C110—C109—C111—O12 C108—C109—C111—O12 C110—C109—C111—O13 C108—C109—C111—O13 C108—C109—C111—O13 C111—O13—C112—C113	-179.19 (10) -3.68 (18) 175.91 (10) -176.54 (12) 3.78 (19) 3.89 (15) -175.80 (10) -90.46 (14)	C211—C209—C210—N2 C212—O23—C211—O22 C212—O23—C211—C209 C210—C209—C211—O22 C208—C209—C211—O22 C210—C209—C211—O23 C208—C209—C211—O23 C208—C209—C211—O23 C211—O23—C212—C213	-177.50 (11) -7.8 (2) 171.24 (11) -177.47 (13) 5.2 (2) 3.55 (16) -173.77 (11) -91.90 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N1—H1····O21 ⁱ	0.892 (19)	1.875 (19)	2.6588 (13)	145.5 (16)
N2—H2…O11 ⁱⁱ	0.851 (18)	2.011 (17)	2.7178 (13)	139.9 (16)
N2—H2…O12 ⁱⁱ	0.851 (18)	2.487 (17)	3.0380 (15)	123.2 (14)
C212—H21 <i>B</i> ···F22 ⁱⁱⁱ	0.99	2.46	3.0909 (18)	121
C204—H204····O13 ^{iv}	0.95	2.60	3.4691 (18)	153

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*, -*y*, -*z*+1.