metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[μ -aqua-diaquabis(μ -furan-2,5dicarboxylato- $\kappa^2 O^2: O^5$)bis(1,10phenanthroline- $\kappa^2 N, N'$)dicopper(II)] N, N-dimethylformamide monosolvate]

Ya-Feng Li,* Xiao-Lin Qin, Yue Xu, Yong-Peng Yuan and Wen-Yuan Gao

School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China Correspondence e-mail: fly012345@sohu.com

Received 25 October 2012; accepted 7 November 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 15.8.

The asymmetric unit of the title compound, $\{[Cu_2(C_6H_2O_5)_2(C_{12}H_8N_2)_2(H_2O_3)] \cdot C_3H_7NO\}_n$, contains two Cu^{II} atoms, two furan-2,5-dicarboxylate (L) ligands, two 1,10phenanthroline (phen) ligands, three coordinating water molecules and one N.N-dimethylformamide solvent molecule. Each Cu^{II} atom is coordinated by two N atoms from one phen ligand, two O atoms from two L ligands and two water molecules in a distorted octahedral geometry. The main difference between the environments of the two independent Cu atoms is in the Cu $-O_{water}$ distances, which are 2.415 (2) and 2.639 (2) Å for one Cu^{II} atom and 2.3560 (19) and 2.911 (4) Å for the other. Ligands L and one independent water molecule bridge the Cu^{II} atoms, forming corrugated polymeric layers parallel to the *ab* plane. Intermolecular O- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds consolidate the crystal packing.

Related literature

For a related structure, see: Li et al. (2012).

 $\beta = 92.41 \ (3)^{\circ}$

Z = 4

 $V = 3884.6 (13) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.35 \times 0.20 \times 0.17 \ \text{mm}$

36308 measured reflections

8855 independent reflections

6642 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.17 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.047$

refinement $\Delta \rho_{\text{max}} = 0.65 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

 $[Cu_{2}(C_{6}H_{2}O_{5})_{2}(C_{12}H_{8}N_{2})_{2}-(H_{2}O_{3}]\cdot C_{3}H_{7}NO$ $M_{7} = 922.78$ Monoclinic, $P2_{1}/c$ a = 16.620 (3) Å b = 11.600 (2) Å c = 20.168 (4) Å

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.685, T_{\rm max} = 0.826$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ wR(F²) = 0.110 S = 1.05 8855 reflections 561 parameters 13 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1A···O5 ⁱ	0.84 (2)	1.88 (2)	2.715 (3)	170 (3)
$O1W-H1B\cdots O7$	0.85(2)	1.96 (2)	2.729 (3)	151 (3)
$O2W-H2A\cdots O10^{ii}$	0.88 (2)	1.98 (2)	2.729 (3)	143 (2)
$O2W - H2B \cdot \cdot \cdot O3W^{i}$	0.86(2)	1.89 (2)	2.726 (3)	163 (3)
$O3W-H3A\cdots O2$	0.85 (2)	2.14 (3)	2.694 (3)	123 (2)
O3W−H3B···O41 ⁱⁱⁱ	0.88(2)	1.88 (2)	2.758 (4)	178 (4)
$C3-H3\cdots O5^{i}$	0.93	2.53	3.424 (3)	161
$C4-H4\cdots O2^{i}$	0.93	2.44	3.287 (3)	152
$C9-H9\cdots O10^{iv}$	0.93	2.33	3.193 (3)	155
C10−H10···O7 ^{iv}	0.93	2.41	3.324 (3)	168
$C15-H15\cdots O8^{v}$	0.93	2.42	3.327 (4)	166
C18−H18···O5 ⁱⁱⁱ	0.93	2.56	3.416 (4)	154
C20−H20···O2 ⁱⁱⁱ	0.93	2.52	3.230 (4)	133
C21-H21···O41	0.93	2.54	3.349 (5)	146
$C33-H33\cdots O2W^{vi}$	0.93	2.59	3.402 (5)	146

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x, -y + 1, -z; (vi) -x + 2, -y + 1, -z + 1.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXL97*.

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5353).

References

- Brandenburg, K. (2000). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.
- Li, Y.-F., Xu, Y., Qin, X.-L., Gao, W.-Y. & Gao, Y. (2012). Acta Cryst. E68, m750.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1484-m1485 [doi:10.1107/S1600536812046041]

Poly[[μ -aqua-diaquabis(μ -furan-2,5-dicarboxylato- $\kappa^2 O^2: O^5$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)dicopper(II)] N, N-dimethylformamide monosolvate]

Ya-Feng Li, Xiao-Lin Qin, Yue Xu, Yong-Peng Yuan and Wen-Yuan Gao

S1. Comment

As the analogous structure of BDC (benzene-1,4-dicarboxyl acid), FDA (furan-2,5-dicarboxyl acid) attracts attention owing to the bond angle of two carboxyl groups about 126°. Recently, we utilized furan-2,5-dicarboxyl acid as the ligand to construct coordination polymers (Li *et al.*, 2012). As an extension of that work, herewith we present the crystal structure of the title compound, $[[CuL(H_2O)(phen)]_2:H_2O]_n \cdot nDMFA$ (L = furan-2,5-dicarboxylato, phen = 1,10phenanthroline, DMFA = *N*,*N*-dimethylformamide) (I).

The asymmetric unit of (I) contains two Cu^{II} cations, two anionic ligands *L*, two ligands phen, three coordinated water molecules and one DMFA solvent molecule (Fig.1). Each copper center is coordinated by two N atoms from one phen ligand, two O atoms from two ligands *L* and two water molecules in a distorted octahedral geometry. The main difference in environment of two independent Cu atoms is the difference in Cu—O_{water} distances, which are equal to 2.415 (2) and 2.639 (2) Å for one Cu atom and 2.3560 (19) and 2.911 (4) Å for another. Ligands *L* and one independent water molecule bridge copper centers into corrugated polymeric layers prallel to *ab* plane (Fig.2). Intermolecular O—H…O and C—H…O hydrogen bonds (Table 1) consolidate the crystal packing.

S2. Experimental

Furan-2,5-dicarboxyl acid (0.0156 g, 0.10 mmol), $Cu(NO_3)_2 3H_2O$ (0.0244 g, 0.10 mmol), and 1,10-phenanthroline (0.0180, 0.10 mmol) were dissolved in DMFA (5 ml, 75 mmol) under stirring. The mixture with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 ($Cu(NO_3)_2 3H_2O$): 1 (1,10-phenanthroline): 750 DMFA was layed under room temperature for 8 days. The blue block product was collected as a single phase.

S3. Refinement

Water H atoms were located in a difference Fourier map and refined with restraints O—H = 0.86 (2) Å, and $U_{iso}(H) = 1.2U_{eq}(O)$. C-bound H-atoms were placed in calculated positions (C—H 0.93–0.96 Å), and were included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2Ueq(C)$.

Figure 1

View of (I), showing the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level [symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 0.5 + y, 0.5 - z.]

Figure 2

A portion of the crystal packing of (I) viewed along the c axis and showing the coordination environment of Cu centers as polyhedron.

Poly[[μ -aqua-diaquabis(μ -furan-2,5-dicarboxylato- $\kappa^2 O^2: O^5$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)dicopper(II)] N, N-dimethylformamide monosolvate]

$[Cu_2(C_6H_2O_5)_2(C_{12}H_8N_2)_2(H_2O)_3] \cdot C_3H_7NO \qquad a = 16.620 \text{ (}$	(3) Å
$M_r = 922.78$ $b = 11.600$ ((2) Å
Monoclinic, $P2_1/c$ $c = 20.168$ (4) Å
Hall symbol: -P 2ybc $\beta = 92.41$ (3)	5)°

 $V = 3884.6 (13) \text{ Å}^3$ Z = 4F(000) = 1888 $D_{\rm x} = 1.578 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2000 reflections

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.00 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.685, T_{\rm max} = 0.826$

Refinement

Refinement on F^2

 $wR(F^2) = 0.110$

8855 reflections

561 parameters

direct methods

13 restraints

S = 1.05

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.041$

36308 measured reflections 8855 independent reflections 6642 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.047$ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$ $h = -20 \rightarrow 21$ $k = -15 \rightarrow 15$ $l = -26 \rightarrow 26$

 $\theta = 1.2 - 27.5^{\circ}$

 $\mu = 1.17 \text{ mm}^{-1}$

 $0.35 \times 0.20 \times 0.17 \text{ mm}$

T = 293 K

Block, blue

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0551P)^2 + 1.1821P]$ where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordin	ates and isotropic of	or equivalent isotropic	displacement	parameters ($(Å^2)$
				r	/

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.262045 (16)	0.46824 (3)	0.095417 (14)	0.03123 (9)	
Cu2	0.778317 (16)	0.54556(3)	0.415298 (14)	0.03424 (10)	
01	0.34174 (10)	0.45626 (16)	0.16869 (9)	0.0380 (4)	
O2	0.40602 (11)	0.62411 (17)	0.15533 (10)	0.0467 (5)	
03	0.51971 (10)	0.55941 (14)	0.25061 (8)	0.0325 (4)	
04	0.68947 (10)	0.49579 (18)	0.35584 (9)	0.0412 (4)	
05	0.64533 (13)	0.66569 (18)	0.31577 (12)	0.0610 (6)	
C1	0.39872 (14)	0.5275 (2)	0.17983 (11)	0.0313 (5)	
C2	0.46290 (13)	0.4827 (2)	0.22686 (11)	0.0298 (5)	

C3	0.47776 (14)	0.3759 (2)	0.25122 (12)	0.0350 (5)
Н3	0.4478	0.3095	0.2425	0.042*
C4	0.54854 (14)	0.3858 (2)	0.29291 (12)	0.0348 (5)
H4	0.5740	0.3267	0.3169	0.042*
C5	0.57159 (14)	0.4961 (2)	0.29108 (11)	0.0305 (5)
C6	0.64101 (15)	0.5605 (2)	0.32343 (12)	0.0345 (5)
06	0.17981 (10)	0.52844 (16)	0.15262 (9)	0.0369 (4)
07	0.10622 (13)	0.36742 (18)	0.15767 (12)	0.0588 (6)
08	0.00890 (10)	0.46740 (14)	0.24548 (8)	0.0315 (4)
09	-0.14260(11)	0.57111 (16)	0.34843 (10)	0.0405 (4)
010	-0.11593 (13)	0.39158 (18)	0.31678 (12)	0.0612 (6)
C7	0.12146 (14)	0.4682(2)	0.17212 (12)	0.0323(5)
C8	0.06639(13)	0.5318(2)	0.21566(12)	0.0329(5)
C9	0.00039(15) 0.05879(15)	0.6436(2)	0.23144(13)	0.0376 (6)
НО	0.0908	0.7041	0.2176	0.045*
C10	-0.00770(15)	0.6518(2)	0.27353(13)	0.0377 (6)
H10	-0.0277	0.7185	0.2924	0.045*
C11	-0.03577(13)	0.7185 0.5440 (2)	0.2924 0.28061 (11)	0.045 0.0207 (5)
C12	-0.10354(14)	0.3440(2) 0.4055(2)	0.23001(11) 0.31801(12)	0.0297(5)
N1	0.10334(14) 0.10202(12)	0.4933(2)	0.31801(12) 0.01174(11)	0.0323(3)
N1 N2	0.19302(12) 0.24224(12)	0.4938(2) 0.4163(2)	0.011/4(11) 0.02842(11)	0.0373(3) 0.0367(5)
NZ C12	0.34234(12) 0.11006(16)	0.4103(2)	0.02642(11) 0.00524(16)	0.0307(3)
U13	0.11990 (10)	0.5589 (5)	0.00324 (10)	0.0302 (7)
HI3 C14	0.0945	0.5650	0.0450	0.060*
U14	0.07967 (19)	0.5515 (3)	-0.05/10(18)	0.0649 (10)
HI4	0.0285	0.5841	-0.0602	0.078*
C15	0.1155 (2)	0.5162 (4)	-0.11220 (18)	0.0689 (10)
H15	0.0887	0.5234	-0.1534	0.083*
C16	0.1937 (2)	0.4683 (3)	-0.10785 (15)	0.0551 (8)
C17	0.2383 (3)	0.4298 (4)	-0.16290 (16)	0.0724 (11)
H17	0.2149	0.4340	-0.2055	0.087*
C18	0.3126 (3)	0.3879 (3)	-0.15429 (16)	0.0687 (10)
H18	0.3399	0.3637	-0.1911	0.082*
C19	0.35201 (19)	0.3792 (3)	-0.08942 (15)	0.0514 (7)
C20	0.4306 (2)	0.3379 (3)	-0.07688 (19)	0.0665 (10)
H20	0.4610	0.3124	-0.1116	0.080*
C21	0.4615 (2)	0.3356 (3)	-0.0137 (2)	0.0688 (10)
H21	0.5132	0.3073	-0.0050	0.083*
C22	0.41626 (16)	0.3754 (3)	0.03824 (16)	0.0526 (8)
H22	0.4388	0.3732	0.0812	0.063*
C23	0.31052 (16)	0.4169 (2)	-0.03446 (13)	0.0385 (6)
C24	0.23022 (17)	0.4602 (2)	-0.04374 (13)	0.0396 (6)
N3	0.70653 (14)	0.5346 (2)	0.49399 (11)	0.0441 (6)
N4	0.85693 (13)	0.6052 (2)	0.48709 (12)	0.0446 (5)
C25	0.63292 (18)	0.4888 (4)	0.49529 (17)	0.0615 (9)
H25	0.6080	0.4631	0.4559	0.074*
C26	0.5921 (2)	0.4784 (4)	0.5545 (2)	0.0810 (13)
H26	0.5412	0.4451	0.5542	0.097*
C27	0.6266 (3)	0.5165 (4)	0.6111 (2)	0.0846 (14)

H27	0.5987	0.5114	0.6500	0.101*
C28	0.7044 (3)	0.5642 (3)	0.61325 (16)	0.0701 (11)
C29	0.7473 (3)	0.6017 (4)	0.67048 (18)	0.0837 (14)
H29	0.7229	0.5989	0.7111	0.100*
C30	0.8223 (3)	0.6412 (3)	0.66776 (16)	0.0811 (14)
H30	0.8484	0.6674	0.7066	0.097*
C31	0.8645 (3)	0.6449 (3)	0.60622 (18)	0.0682 (10)
C32	0.9437 (3)	0.6788 (4)	0.5992 (2)	0.0887 (14)
H32	0.9738	0.7038	0.6364	0.106*
C33	0.9790 (3)	0.6765 (4)	0.5388 (3)	0.0861 (14)
H33	1.0323	0.6991	0.5351	0.103*
C34	0.9324 (2)	0.6387 (3)	0.48203 (19)	0.0639 (9)
H34	0.9554	0.6375	0.4408	0.077*
C35	0.8235 (2)	0.6091 (3)	0.54787 (13)	0.0497 (7)
C36	0.74293 (19)	0.5699 (3)	0.55125 (13)	0.0478 (7)
O1W	0.23887 (10)	0.26884 (16)	0.10600 (9)	0.0363 (4)
H1A	0.2766 (12)	0.245 (2)	0.1317 (12)	0.044*
H1B	0.1959 (11)	0.275 (3)	0.1272 (12)	0.044*
O2W	0.81807 (12)	0.34807 (19)	0.43587 (11)	0.0526 (5)
H2A	0.8410 (17)	0.3280 (17)	0.3991 (11)	0.063*
H2B	0.7755 (13)	0.3099 (16)	0.4451 (15)	0.063*
O3W	0.30778 (18)	0.6991 (3)	0.05478 (13)	0.0923 (10)
H3A	0.346 (2)	0.725 (2)	0.0796 (14)	0.111*
H3B	0.324 (2)	0.696 (2)	0.0140 (10)	0.111*
O41	0.6377 (2)	0.3137 (3)	0.07231 (14)	0.1025 (10)
C41	0.6527 (3)	0.2954 (4)	0.1319 (2)	0.0811 (12)
H41	0.6138	0.3170	0.1614	0.097*
N41	0.71914 (18)	0.2478 (3)	0.15731 (15)	0.0652 (8)
C42	0.7841 (3)	0.2158 (4)	0.1167 (2)	0.0884 (13)
H42A	0.7954	0.1352	0.1224	0.106*
H42B	0.8311	0.2599	0.1295	0.106*
H42C	0.7693	0.2309	0.0710	0.106*
C43	0.7313 (3)	0.2344 (5)	0.2284 (2)	0.1029 (17)
H43A	0.7728	0.2862	0.2444	0.123*
H43B	0.7471	0.1565	0.2384	0.123*
H43C	0.6821	0.2517	0.2497	0.123*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02015 (14)	0.04554 (19)	0.02800 (15)	0.00042 (11)	0.00089 (11)	-0.00221 (13)
Cu2	0.02092 (15)	0.0551 (2)	0.02665 (15)	-0.00089 (12)	0.00027 (11)	-0.00304 (13)
01	0.0264 (8)	0.0488 (11)	0.0381 (9)	-0.0065 (7)	-0.0071 (7)	0.0013 (8)
O2	0.0433 (10)	0.0450 (11)	0.0507 (11)	-0.0018 (9)	-0.0121 (9)	0.0099 (9)
O3	0.0292 (8)	0.0323 (9)	0.0350 (9)	-0.0030 (7)	-0.0098 (7)	0.0003 (7)
O4	0.0298 (9)	0.0540 (11)	0.0388 (10)	-0.0016 (8)	-0.0115 (8)	0.0034 (9)
O5	0.0560 (13)	0.0407 (12)	0.0833 (16)	-0.0055 (10)	-0.0351 (12)	-0.0044 (11)
C1	0.0266 (11)	0.0412 (14)	0.0259 (11)	0.0018 (10)	-0.0007 (9)	-0.0059 (10)

C2	0.0228 (10)	0.0384 (13)	0.0280 (11)	-0.0051 (9)	-0.0003 (9)	-0.0043 (10)
C3	0.0319 (12)	0.0349 (13)	0.0380 (13)	-0.0050 (10)	-0.0016 (10)	-0.0012 (11)
C4	0.0323 (12)	0.0369 (13)	0.0350 (12)	0.0014 (10)	-0.0027 (10)	0.0044 (11)
C5	0.0252 (11)	0.0370 (13)	0.0288 (11)	0.0002 (10)	-0.0050 (9)	-0.0004 (10)
C6	0.0302 (12)	0.0430 (15)	0.0296 (12)	-0.0007 (11)	-0.0058 (10)	-0.0038 (11)
06	0.0271 (8)	0.0448 (11)	0.0395 (9)	-0.0021 (7)	0.0106 (7)	-0.0035 (8)
07	0.0561 (13)	0.0419 (12)	0.0816 (16)	-0.0090 (10)	0.0394 (12)	-0.0160 (11)
08	0.0282 (8)	0.0338 (9)	0.0334 (8)	0.0005 (7)	0.0106 (7)	-0.0026(7)
09	0.0346 (9)	0.0388 (10)	0.0494 (11)	0.0030 (8)	0.0188 (8)	-0.0034(8)
010	0.0621 (13)	0.0383 (11)	0.0867 (16)	-0.0095(10)	0.0429 (13)	-0.0124(11)
C7	0.0280(11)	0.0409 (14)	0.0283 (11)	0.0035 (10)	0.0040 (9)	0.0012 (11)
C8	0.0229(10)	0.0362(13)	0.0313(11)	-0.0007(9)	0.0056 (9)	0.0054(10)
C9	0.0229(10) 0.0326(12)	0.0362(13) 0.0360(14)	0.0313(11) 0.0448(14)	-0.0007(10)	0.0086(11)	0.0062(11)
C10	0.0320(12) 0.0361(13)	0.0332(13)	0.0448(14)	0.0054(10)	0.0130(11)	-0.0002(11)
C11	0.0249(11)	0.0332(13) 0.0349(13)	0.0295(11)	0.0041 (9)	0.0130(11) 0.0043(9)	-0.0009(10)
C12	0.0219(11) 0.0268(11)	0.0376(14)	0.0299(11) 0.0328(12)	0.0001(10)	0.0045(10)	-0.0025(11)
N1	0.0280(11) 0.0281(10)	0.0370(11) 0.0477(13)	0.0320(12)	-0.0030(9)	-0.0001(9)	0.0023(11)
N2	0.0289(10)	0.0427(12)	0.0300(11) 0.0391(11)	-0.0007(9)	0.0001(9)	-0.0002(10)
C13	0.0209(10) 0.0308(13)	0.065(2)	0.0591(11) 0.0545(17)	0.0007(3)	-0.0026(12)	0.0002(10)
C14	0.0389(16)	0.005(2)	0.0515(17)	-0.0029(15)	-0.0200(12)	0.0159(19)
C15	0.053 (2)	0.009(3)	0.009(2)	-0.016(2)	-0.0246(17)	0.0209(19) 0.0140(19)
C16	0.003(2)	0.090(3)	0.0390(15)	-0.0121(16)	-0.002(10)(17)	0.0110(19) 0.0043(14)
C17	0.003(2) 0.102(3)	0.002(2)	0.0398(15)	-0.0121(10)	-0.0092(11)	-0.0045(16)
C18	0.102(3)	0.004(3)	0.0308(15) 0.0338(16)	-0.009(2)	0.0043(18)	-0.0112(16)
C19	0.090(3)	0.070(3) 0.0504(18)	0.0336(10) 0.0436(16)	-0.009(2)	0.0207(10)	-0.0066(13)
C20	0.064(2)	0.0504(10)	0.0490(10)	-0.0006(17)	0.0227(14) 0.0360(19)	-0.0154(18)
C21	0.001(2) 0.0406(17)	0.070(2)	0.005(2)	0.0000(17)	0.0205(17)	-0.012(2)
C22	0.0337(14)	0.067(2)	0.050(5)	0.0006(13)	0.0203(17) 0.0067(13)	-0.0044(16)
C22	0.0337(14) 0.0420(14)	0.007(2) 0.0387(14)	0.0372(10) 0.0354(13)	-0.0076(11)	0.0007(13) 0.0082(11)	-0.0020(11)
C24	0.0449(15)	0.0307(11) 0.0433(15)	0.0304(12)	-0.0112(12)	-0.0002(11)	0.0020(11)
N3	0.0367(12)	0.0621 (16)	0.0340(11)	0.0112(12) 0.0132(11)	0.0012(11)	0.0019(11) 0.0039(11)
N4	0.0307(12) 0.0375(12)	0.0021(10) 0.0483(14)	0.0310(11) 0.0468(13)	0.0132(11) 0.0019(10)	-0.0143(10)	-0.0010(11)
C25	0.0373(12) 0.0352(15)	0.0105(11)	0.0100(19)	0.0019(10) 0.0088(16)	0.0133(14)	0.0010(11)
C26	0.052(2)	0.091(3) 0.128(4)	0.0501(1))	0.0000(10)	0.0135(11) 0.0275(19)	0.022(2)
C27	0.052(2) 0.074(3)	0.120(1) 0.121(4)	0.003(2) 0.062(2)	0.020(2) 0.042(3)	0.0275(17)	0.022(2)
C28	0.071(3) 0.106(3)	0.121(1) 0.071(2)	0.002(2)	0.012(3) 0.039(2)	0.030(2) 0.0108(18)	0.013(2)
C29	0.125(4)	0.071(2)	0.0391(19)	0.035(2)	0.002(2)	-0.0051(19)
C30	0.123(1) 0.144(4)	0.000(3)	0.0391(19) 0.0304(16)	0.035(3) 0.027(3)	-0.026(2)	-0.0117(15)
C31	0.144(4) 0.095(3)	0.007(2)	0.0504(10)	0.027(3)	-0.035(2)	-0.0083(16)
C32	0.093(3) 0.123(4)	0.070(3)	0.057(2) 0.069(3)	-0.008(3)	-0.049(3)	-0.005(2)
C33	0.125(1) 0.065(2)	0.070(3)	0.009(3) 0.118(4)	-0.017(2)	-0.044(2)	0.003(2)
C34	0.005(2)	0.071(3)	0.075(2)	-0.017(2)	-0.0198(16)	0.003(3)
C35	0.073(2)	0.000(2)	0.073(2) 0.0330(14)	0.0157(15)	-0.0177(14)	-0.0012(10)
C36	0.075(2)	0.0508(17)	0.0318(13)	0.0197(15) 0.0207(15)	0.0177(11)	0.002/(12)
01W	0.0258 (8)	0.0385(10)	0.0445(10)	-0.0016(8)	0.0001(7)	0.0031 (8)
02W	0.0401(11)	0.0572(13)	0.0609(13)	-0.0075(9)	0.0050(10)	0.0044(11)
03W	0.087 (2)	0.128 (3)	0.0601 (16)	0.0616 (19)	-0.0142(14)	-0.0162(17)
041	0.115(2)	0.133 (3)	0.0584 (17)	0.014 (2)	-0.0119(16)	0.0129 (18)
	····· (-)			·····	()	

supporting information

C41	0.077 (3)	0.102 (3)	0.065 (2)	0.016 (2)	0.005 (2)	-0.004 (2)
N41	0.0630 (17)	0.074 (2)	0.0591 (17)	0.0050 (15)	0.0052 (14)	-0.0023 (15)
C42	0.085 (3)	0.072 (3)	0.111 (3)	-0.008(2)	0.033 (3)	-0.013 (3)
C43	0.090 (3)	0.149 (5)	0.069 (3)	0.038 (3)	-0.004 (2)	-0.002 (3)

Geometric parameters (Å, °)

Cu1—O1	1.9475 (18)	C17—C18	1.332 (6)
Cu1—O6	1.9542 (17)	C17—H17	0.9300
Cu1—N1	2.022 (2)	C18—C19	1.442 (5)
Cu1—N2	2.030 (2)	C18—H18	0.9300
Cu1—O1W	2.3560 (19)	C19—C23	1.400 (4)
Cu1—O3W	2.911 (4)	C19—C20	1.404 (5)
Cu2—O9 ⁱ	1.9449 (18)	C20—C21	1.353 (5)
Cu2—O4	1.9501 (18)	C20—H20	0.9300
Cu2—N3	2.029 (2)	C21—C22	1.394 (4)
Cu2—N4	2.031 (2)	C21—H21	0.9300
Cu2—O2W	2.415 (2)	C22—H22	0.9300
Cu2—O1W ⁱⁱ	2.639 (2)	C23—C24	1.431 (4)
O1—C1	1.270 (3)	N3—C25	1.335 (4)
O2—C1	1.232 (3)	N3—C36	1.345 (4)
O3—C2	1.369 (3)	N4—C34	1.321 (4)
O3—C5	1.375 (3)	N4—C35	1.368 (4)
O4—C6	1.263 (3)	C25—C26	1.403 (4)
O5—C6	1.233 (3)	C25—H25	0.9300
C1—O2	1.232 (3)	C26—C27	1.332 (6)
C1—C2	1.491 (3)	C26—H26	0.9300
C2—C3	1.352 (3)	C27—C28	1.405 (6)
C3—C4	1.422 (3)	С27—Н27	0.9300
С3—Н3	0.9300	C28—C29	1.400 (6)
C4—C5	1.337 (4)	C28—C36	1.430 (4)
C4—H4	0.9300	C29—C30	1.332 (6)
C5—C6	1.501 (3)	С29—Н29	0.9300
C6—O4	1.263 (3)	C30—C31	1.453 (6)
O6—C7	1.271 (3)	С30—Н30	0.9300
O7—C7	1.228 (3)	C31—C32	1.386 (6)
O8—C8	1.371 (3)	C31—C35	1.398 (4)
O8—C11	1.373 (3)	C32—C33	1.374 (6)
O9—C12	1.265 (3)	С32—Н32	0.9300
O10—C12	1.223 (3)	C33—C34	1.424 (5)
C7—O7	1.228 (3)	С33—Н33	0.9300
C7—C8	1.490 (3)	С34—Н34	0.9300
C8—C9	1.343 (4)	C35—C36	1.419 (5)
C9—C10	1.425 (3)	O1W—H1A	0.843 (16)
С9—Н9	0.9300	O1W—H1B	0.851 (16)
C10—C11	1.345 (4)	O2W—H2A	0.880 (16)
C10—H10	0.9300	O2W—H2B	0.862 (16)
C11—C12	1.491 (3)	O3W—H3A	0.846 (17)

N1—C13	1.324 (3)	O3W—H3B	0.878 (18)
N1—C24	1.358 (3)	041-041	1.236 (5)
N2-C22	1.324 (3)	C41—N41	1.319 (5)
N2—C23	1 353 (3)	C41—H41	0.9300
C13 - C14	1407(4)	N41—C42	1.431(5)
C13_H13	0.9300	N41_C43	1.431(5) 1 449(5)
$C_{13} - C_{15}$	1 347 (5)	C_{42} H42 A	0.9600
C14 H14	0.0300	$C_{42} = H_{42}R$	0.9600
C_{14}	1 413 (5)	C_{42} $H_{42}C$	0.9000
C15_H15	0.0300	$C_{42} = H_{42} C_{42}$	0.9000
C16 C24	1.408(4)	$C_{43} = H_{43} R$	0.9000
C16 - C17	1.400(4)	C43—H43B	0.9000
C10-C17	1.432 (3)	С43—п43С	0.9000
01—Cu1—O6	92.74 (8)	C16—C15—H15	119.8
O1—Cu1—N1	170.97 (8)	C24—C16—C15	116.3 (3)
06—Cu1—N1	93.10 (8)	C24—C16—C17	118.3 (3)
01—Cu1—N2	92.22 (8)	C15—C16—C17	125.4 (3)
06-Cu1-N2	174.04 (9)	C18 - C17 - C16	121.3(3)
N1-Cu1-N2	81 59 (9)	C18—C17—H17	119.3
01-Cu1-O1W	88 27 (7)	C16—C17—H17	119.3
06-Cu1-O1W	100.15(7)	C17 - C18 - C19	121.8 (3)
N1-Cu1-O1W	97 48 (8)	C17—C18—H18	119.1
N_2 —Cu1—O1W	83 30 (8)	C19 - C18 - H18	119.1
$\Omega_1 = Cu_1 = \Omega_3 W$	95 85 (8)	C_{23} C_{19} C_{20}	119.1 116.7(3)
06-Cu1-O3W	92.00 (7)	C_{23} C_{19} C_{20}	110.7(3) 118.5(3)
N1 - Cu1 - O3W	77.06 (8)	C_{20} C_{19} C_{18}	124.8(3)
$N_2 - C_{11} - O_3 W$	84 21 (8)	$C_{20} = C_{10} = C_{10}$	124.0(3) 1193(3)
$\Omega_1 W C u = \Omega_3 W$	166.08 (7)	$C_{21} = C_{20} = C_{12}$	120.3
O^{0i} Cu2 O4	07.76 (8)	$C_{21} = C_{20} = H_{20}$	120.3
O^{0i} Cu2 O^{4}	97.76 (8)	$C_{19} = C_{20} = C_{120}$	120.3
$0_{3} - Cu_{2} - 0_{4}$	97.70(8)	$C_{20} = C_{21} = C_{22}$	120.3 (3)
$O_4 = C_{12} = O_4$	$171 \ 30 \ (0)$	$C_{20} = C_{21} = H_{21}$	119.8
$O_{4} = Cu_{2} = N_{3}$	1/1.30(9)	$N_2 = C_{21} = M_{21}$	119.0 122.2(2)
O4 = Cu2 = N3	90.43 (9)	N2 C22 U22	122.2(3)
$O_4 - C_{12} - N_3$	90.43 (9)	$N_2 = C_{22} = \Pi_{22}$	118.9
$O_{4} = Cu_{2} = N_{4}$	90.52 (9)	$V_{21} = V_{22} = V_{10}$	110.9
O4 = Cu2 = N4	170.84 (9)	N2 C22 C24	125.7(5)
V4— $Cu2$ — $N4$	1/0.84 (9)	$N_2 = C_{23} = C_{24}$	110.7(2)
$N_3 - Cu_2 - N_4$	81.11 (10)	C19 - C23 - C24	119.6 (3)
$09 - Cu_2 - O_2 W$	94.34 (7)	N1 - C24 - C16	123.0(3)
04—Cu2—02W	91.11 (8)	$NI = C_2 4 = C_2 3$	116.6 (2)
04—Cu2—O2W	91.11 (8)	C16-C24-C23	120.5 (3)
N3—Cu2—O2W	88.39 (9)	$U_{25} = N_{3} = U_{36}$	118.9 (3)
N4— $Cu2$ — $U2W$	92.15 (9)	C_{23} —N3— C_{12}	127.6 (2)
$U9^{\mu}$ — $Cu2$ — $U1W^{\mu}$	/9.01 (7)	C36—N3—Cu2	113.2 (2)
$U4$ — $Cu2$ — $U1W^{\mu}$	96.69 (7)	C34—N4—C35	118.8 (3)
$O4$ — $Cu2$ — $O1W^{n}$	96.69 (7)	C34—N4—Cu2	129.0 (2)
N3—Cu2—O1W ⁿ	97.21 (8)	C35—N4—Cu2	112.15 (19)
N4—Cu2—O1W ⁱⁱ	81.01 (8)	N3—C25—C26	121.8 (4)

O2W—Cu2—O1W ⁱⁱ	170.34 (6)	N3—C25—H25	119.1
C1—O1—Cu1	124.47 (16)	С26—С25—Н25	119.1
C2—O3—C5	105.45 (18)	C27—C26—C25	119.7 (4)
C6—O4—Cu2	126.33 (18)	С27—С26—Н26	120.2
O2—C1—O1	127.3 (2)	С25—С26—Н26	120.2
O2—C1—O1	127.3 (2)	C26—C27—C28	121.3 (3)
O2—C1—C2	119.5 (2)	С26—С27—Н27	119.4
O2—C1—C2	119.5 (2)	С28—С27—Н27	119.4
01—C1—C2	113.2 (2)	C29—C28—C27	125.7 (4)
$C_3 - C_2 - O_3$	110.8 (2)	C29—C28—C36	118.4 (4)
$C_{3}-C_{2}-C_{1}$	131.7 (2)	C_{27} C_{28} C_{36}	115.9 (3)
03-C2-C1	117 4 (2)	C_{30} C_{29} C_{28}	121 2 (4)
$C_2 - C_3 - C_4$	106.0(2)	C_{30} C_{29} H_{29}	119.4
$C_2 = C_3 = H_3$	127.0	C_{28} C_{29} H_{29}	119.4
$C_4 - C_3 - H_3$	127.0	$C_{20} = C_{20} = C_{31}$	112.7 (3)
$C_{4} = C_{3} = 115$	127.0 107.0(2)	$C_{29} = C_{30} = C_{31}$	122.2 (3)
$C_{5} = C_{4} = C_{5}$	107.0 (2)	$C_{29} = C_{30} = H_{30}$	118.9
$C_3 = C_4 = H_4$	120.3	C_{22} C_{21} C_{25}	116.9
$C_3 = C_4 = H_4$	120.3	$C_{32} = C_{31} = C_{33}$	113.4 (4)
C4 - C5 - O3	110.8 (2)	$C_{32} = C_{31} = C_{30}$	126.2 (4)
C4 - C5 - C6	132.9 (2)	$C_{35} = C_{31} = C_{30}$	118.3 (4)
03-05-06	116.3 (2)	$C_{33} = C_{32} = C_{31}$	121.8 (4)
05	127.9 (2)	С33—С32—Н32	119.1
O5—C6—O4	127.9 (2)	C31—C32—H32	119.1
O5—C6—C5	119.1 (2)	C32—C33—C34	118.7 (4)
O4—C6—C5	113.0 (2)	С32—С33—Н33	120.6
O4—C6—C5	113.0 (2)	С34—С33—Н33	120.6
C7—O6—Cu1	123.21 (16)	N4—C34—C33	120.9 (4)
C8—O8—C11	106.02 (18)	N4—C34—H34	119.5
C12—O9—Cu2 ⁱⁱⁱ	127.33 (17)	С33—С34—Н34	119.5
O7—C7—O6	127.0 (2)	N4—C35—C31	124.2 (3)
O7—C7—O6	127.0 (2)	N4—C35—C36	116.9 (2)
O7—C7—C8	119.0 (2)	C31—C35—C36	118.9 (3)
O7—C7—C8	119.0 (2)	N3—C36—C35	116.6 (2)
O6—C7—C8	113.9 (2)	N3—C36—C28	122.3 (3)
C9—C8—O8	110.3 (2)	C35—C36—C28	121.0 (3)
C9—C8—C7	133.2 (2)	Cu1—O1W—H1A	105 (2)
08-C8-C7	116.5 (2)	Cu1—O1W—H1B	96 (2)
C8-C9-C10	106.8 (2)	H1A—O1W—H1B	110(2)
C8-C9-H9	126.6	Cu2-O2W-H2A	103 (14)
C10-C9-H9	126.6	Cu2 = 0.2W = H2R	107.6(14)
$C_{11} - C_{10} - C_{9}$	1064(2)	$H_2A = O_2W = H_2B$	116 (2)
C11_C10_H10	126.8	Cu1 = O3W = H3A	110(2) 1113(17)
C9_C10_H10	126.8	Cu1 = O3W = H3R	108.4(16)
C_{10} C_{11} C_{10}	110 5 (2)	$H_{3} = 03W = H_{3}B$	108.7(10)
$C_{10} - C_{11} - C_{12}$	110.3(2) 132.6(2)	$\begin{array}{cccc} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} M$	100(2)
C_{10} C_{11} C_{12}	152.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.0 (4)
00 - 011 - 012	117.0(2) 127.1(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/.2 117.2
010 - 012 - 09	127.1(2)	$1N41 - U41 - \Pi41$	11/.2
U10-U12-U11	119.4 (2)	C41-IN41-C42	121.7 (4)

O9—C12—C11	113.5 (2)	C41—N41—C43	120.6 (3)
C13—N1—C24	118.6 (2)	C42—N41—C43	117.5 (4)
C13—N1—Cu1	128.8 (2)	N41—C42—H42A	109.5
C24—N1—Cu1	112.57 (17)	N41—C42—H42B	109.5
C22—N2—C23	117.8 (2)	H42A—C42—H42B	109.5
C22—N2—Cu1	129.7 (2)	N41—C42—H42C	109.5
C23 - N2 - Cu1	112.34 (17)	H42A - C42 - H42C	109.5
N1—C13—C14	122.0(3)	H42B— $C42$ — $H42C$	109.5
N1—C13—H13	119.0	N41—C43—H43A	109.5
C14—C13—H13	119.0	N41—C43—H43B	109.5
C_{15} C_{14} C_{13}	119.7 (3)	H43A - C43 - H43B	109.5
C_{15} C_{14} H_{14}	120.2	N41-C43-H43C	109.5
C13 - C14 - H14	120.2	H43A - C43 - H43C	109.5
C_{14} C_{15} C_{16}	120.2 120.4(3)	H43B - C43 - H43C	109.5
$C_{14} = C_{15} = H_{15}$	119.8		107.5
	117.0		
06-01-01-01	-101.97(19)	C_{13} C_{14} C_{15} C_{16}	-1.0(6)
$N_2 - C_{11} - O_1 - C_1$	74 7 (2)	C_{14} C_{15} C_{16} C_{24}	0.1(5)
01W - Cu1 - 01 - C1	157.95(19)	$C_{14} = C_{15} = C_{16} = C_{17}$	-1788(4)
$O_{1}^{3}W = Cu_{1}^{3} = O_{1}^{3} = C_{1}^{3}$	-9.7(2)	$C_{14} = C_{15} = C_{10} = C_{17}$	-0.4(6)
O_{3}^{o} C_{12}^{o} O_{4}^{o} O_{4}^{o}	9.7(2)	$C_{15} = C_{16} = C_{17} = C_{18}$	1785(4)
$N_3 = C_{11}^2 = O_4 = O_4$	0.00(13)	$C_{16} = C_{17} = C_{18} = C_{19}$	170.5(+)
$\begin{array}{c} \text{N3} \\ \text{Cu2} \\ \text{Cu2}$	0.00(12)	$C_{10} = C_{17} = C_{18} = C_{19}$	-0.5(5)
02 w - Cu 2 - 04 - 04	0.00(12)	C17 - C18 - C19 - C23	-1780(4)
$O_1^{ii} = C_{12}^{ii} = O_4^{ii} = O_4^{ii}$	-822(2)	$C_{17} = C_{18} = C_{19} = C_{20}$	-1/0.9(4)
$09 - Cu_2 - 04 - Co_3$	-63.2(2)	$C_{23} = C_{19} = C_{20} = C_{21}$	0.3(3)
$V_{4} = C_{12} = 04 = C_{0}$	0(17)	$C_{18} = C_{19} = C_{20} = C_{21}$	1/0.9(4)
$N_{3} = Cu_{2} = 04 = C0$	93.9(2)	C19 - C20 - C21 - C22	-0.9(0)
02 w - Cu 2 - 04 - Co	-1/7.7(2)	C_{23} N2 C_{22} C_{21}	1.0(3) 175(2(2))
$01w^{-}-Cu^{-}-04-Co^{-}$	-3.4(2)	Cu1 - N2 - C22 - C21	1/5.2(5)
02 - 02 - 01 - 01	0.0 (2)	$C_{20} = C_{21} = C_{22} = N_2$	0.2 (6)
02-02-01-02	0.0(3)	C_{22} N2 C_{23} C_{19}	-1.4(4)
Cu1 = 01 = C1 = 02	13.8 (4)	Cu1 - N2 - C23 - C19	-1/6.6(2)
Cul=01=Cl=02	13.8 (4)	C_{22} N2 C_{23} C_{24}	1/9.3 (3)
Cu1 = 01 = C1 = C2	-164.53(15)	Cu1 - N2 - C23 - C24	4.1 (3)
$C_{5} = 0_{3} = C_{2} = C_{3}$	0.2 (3)	C_{20} — C_{19} — C_{23} — N_{2}	0.7 (4)
$C_{5} = 0_{3} = C_{2} = C_{1}$	-178.82 (19)	C18 - C19 - C23 - N2	-17/.8(3)
02-C1-C2-C3	-166.5 (3)	C20—C19—C23—C24	179.9 (3)
02	-166.5 (3)	C18—C19—C23—C24	1.4 (4)
01-C1-C2-C3	11.9 (4)	C13—N1—C24—C16	-1.8 (4)
02-C1-C2-O3	12.3 (3)	Cu1—N1—C24—C16	179.2 (2)
O2—C1—C2—O3	12.3 (3)	C13—N1—C24—C23	177.2 (3)
01	-169.3 (2)	Cu1—N1—C24—C23	-1.8 (3)
O3—C2—C3—C4	-0.1 (3)	C15—C16—C24—N1	1.3 (4)
C1—C2—C3—C4	178.7 (2)	C17—C16—C24—N1	-179.7 (3)
C2—C3—C4—C5	0.0 (3)	C15—C16—C24—C23	-177.6 (3)
C3—C4—C5—O3	0.2 (3)	C17—C16—C24—C23	1.4 (4)
C3—C4—C5—C6	-179.4 (3)	N2—C23—C24—N1	-1.6 (4)
C2	-0.2 (3)	C19—C23—C24—N1	179.1 (3)

C2—O3—C5—C6	179.4 (2)	N2-C23-C24-C16	177.4 (3)
O4—O4—C6—O5	0.0 (2)	C19—C23—C24—C16	-1.9 (4)
Cu2—O4—C6—O5	10.0 (4)	O4—Cu2—N3—C25	9.8 (3)
Cu2O4C6O4	0 (100)	O4—Cu2—N3—C25	9.8 (3)
O4—O4—C6—C5	0.00 (13)	N4—Cu2—N3—C25	-173.8(3)
Cu2—O4—C6—C5	-170.59 (15)	O2W—Cu2—N3—C25	-81.3 (3)
C4—C5—C6—O5	-176.0 (3)	O1W ⁱⁱ —Cu2—N3—C25	106.6 (3)
O3—C5—C6—O5	4.5 (4)	O4—Cu2—N3—C36	-176.3 (2)
C4—C5—C6—O4	4.5 (4)	O4—Cu2—N3—C36	-176.3(2)
O3—C5—C6—O4	-175.0 (2)	N4—Cu2—N3—C36	0.2 (2)
C4—C5—C6—O4	4.5 (4)	O2W—Cu2—N3—C36	92.6 (2)
O3—C5—C6—O4	-175.0 (2)	O1W ⁱⁱ —Cu2—N3—C36	-79.5 (2)
O1—Cu1—O6—C7	-104.07(19)	O9 ⁱ —Cu2—N4—C34	-3.3 (3)
N1—Cu1—O6—C7	82.8 (2)	N3—Cu2—N4—C34	179.1 (3)
O1W—Cu1—O6—C7	-15.3 (2)	O2W—Cu2—N4—C34	91.1 (3)
O3W—Cu1—O6—C7	159.97 (19)	O1W ⁱⁱ —Cu2—N4—C34	-82.1(3)
O7—O7—C7—O6	0.0 (3)	O9 ⁱ —Cu2—N4—C35	176.79 (19)
O7—O7—C7—C8	0.0 (2)	N3—Cu2—N4—C35	-0.81(19)
Cu1—O6—C7—O7	-2.0 (4)	O2W—Cu2—N4—C35	-88.8(2)
Cu1—O6—C7—O7	-2.0(4)	O1W ⁱⁱ —Cu2—N4—C35	98.01 (19)
Cu1—O6—C7—C8	179.69 (15)	C36—N3—C25—C26	1.1 (5)
C11—O8—C8—C9	0.3 (3)	Cu2—N3—C25—C26	174.8 (3)
C11—O8—C8—C7	-177.9 (2)	N3—C25—C26—C27	1.0 (6)
07—C7—C8—C9	-167.6 (3)	C25—C26—C27—C28	-1.8(7)
O7—C7—C8—C9	-167.6 (3)	C26—C27—C28—C29	-176.9 (4)
O6—C7—C8—C9	10.9 (4)	C26—C27—C28—C36	0.5 (6)
O7—C7—C8—O8	10.1 (4)	C27—C28—C29—C30	177.0 (4)
O7—C7—C8—O8	10.1 (4)	C36—C28—C29—C30	-0.3 (6)
O6—C7—C8—O8	-171.4 (2)	C28—C29—C30—C31	-1.8(7)
O8—C8—C9—C10	-0.3 (3)	C29—C30—C31—C32	-176.4 (4)
C7—C8—C9—C10	177.5 (3)	C29—C30—C31—C35	2.2 (6)
C8—C9—C10—C11	0.2 (3)	C35—C31—C32—C33	-0.3 (6)
C9—C10—C11—O8	0.0 (3)	C30—C31—C32—C33	178.4 (4)
C9—C10—C11—C12	-180.0 (3)	C31—C32—C33—C34	0.4 (6)
C8—O8—C11—C10	-0.2 (3)	C35—N4—C34—C33	1.0 (5)
C8—O8—C11—C12	179.8 (2)	Cu2—N4—C34—C33	-178.9 (3)
Cu2 ⁱⁱⁱ —O9—C12—O10	12.0 (4)	C32—C33—C34—N4	-0.7 (6)
Cu2 ⁱⁱⁱ —O9—C12—C11	-167.91 (16)	C34—N4—C35—C31	-1.0(5)
C10-C11-C12-O10	-179.1 (3)	Cu2—N4—C35—C31	178.9 (2)
O8—C11—C12—O10	0.9 (4)	C34—N4—C35—C36	-178.6 (3)
C10—C11—C12—O9	0.8 (4)	Cu2—N4—C35—C36	1.3 (3)
O8—C11—C12—O9	-179.1 (2)	C32—C31—C35—N4	0.7 (5)
O6—Cu1—N1—C13	1.5 (3)	C30—C31—C35—N4	-178.1 (3)
N2—Cu1—N1—C13	-175.8 (3)	C32—C31—C35—C36	178.2 (3)
O1W—Cu1—N1—C13	102.2 (3)	C30—C31—C35—C36	-0.6 (5)
O3W—Cu1—N1—C13	-89.8 (3)	C25—N3—C36—C35	175.0 (3)
O6—Cu1—N1—C24	-179.65 (18)	Cu2—N3—C36—C35	0.4 (3)
N2—Cu1—N1—C24	3.06 (18)	C25—N3—C36—C28	-2.4 (4)

O1W—Cu1—N1—C24	-78.98 (18)	Cu2—N3—C36—C28	-177.0 (2)
O3W—Cu1—N1—C24	89.01 (18)	N4—C35—C36—N3	-1.2 (4)
O1—Cu1—N2—C22	8.2 (3)	C31—C35—C36—N3	-178.9 (3)
N1—Cu1—N2—C22	-178.4 (3)	N4—C35—C36—C28	176.3 (3)
O1W—Cu1—N2—C22	-79.8 (3)	C31—C35—C36—C28	-1.5 (4)
O3W—Cu1—N2—C22	103.9 (3)	C29—C28—C36—N3	179.3 (3)
O1—Cu1—N2—C23	-177.29 (18)	C27—C28—C36—N3	1.6 (5)
N1—Cu1—N2—C23	-3.90 (18)	C29—C28—C36—C35	2.0 (5)
O1W—Cu1—N2—C23	94.72 (18)	C27—C28—C36—C35	-175.7 (3)
O3W—Cu1—N2—C23	-81.63 (18)	O41—O41—C41—N41	0.0 (3)
C24—N1—C13—C14	0.9 (4)	O41—C41—N41—C42	2.6 (7)
Cu1—N1—C13—C14	179.6 (2)	O41—C41—N41—C43	177.8 (5)
N1-C13-C14-C15	0.5 (5)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
O1W—H1 A ···O5 ^{iv}	0.84 (2)	1.88 (2)	2.715 (3)	170 (3)
O1 <i>W</i> —H1 <i>B</i> ···O7	0.85 (2)	1.96 (2)	2.729 (3)	151 (3)
O2W—H2A···O10 ⁱ	0.88 (2)	1.98 (2)	2.729 (3)	143 (2)
$O2W$ — $H2B$ ···· $O3W^{iv}$	0.86 (2)	1.89 (2)	2.726 (3)	163 (3)
O3 <i>W</i> —H3 <i>A</i> ···O2	0.85 (2)	2.14 (3)	2.694 (3)	123 (2)
O3 <i>W</i> —H3 <i>B</i> ···O41 ^v	0.88 (2)	1.88 (2)	2.758 (4)	178 (4)
C3—H3…O5 ^{iv}	0.93	2.53	3.424 (3)	161
C4—H4····O2 ^{iv}	0.93	2.44	3.287 (3)	152
C9—H9…O10 ^{vi}	0.93	2.33	3.193 (3)	155
C10—H10…O7 ^{vi}	0.93	2.41	3.324 (3)	168
C15—H15…O8 ^{vii}	0.93	2.42	3.327 (4)	166
C18—H18····O5 ^v	0.93	2.56	3.416 (4)	154
C20—H20···O2 ^v	0.93	2.52	3.230 (4)	133
C21—H21···O41	0.93	2.54	3.349 (5)	146
С33—Н33…О2 <i>W</i> viii	0.93	2.59	3.402 (5)	146

Symmetry codes: (i) x+1, y, z; (iv) -x+1, y-1/2, -z+1/2; (v) -x+1, -y+1, -z; (vi) -x, y+1/2, -z+1/2; (vii) -x, -y+1, -z; (viii) -x+2, -y+1, -z+1.