metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)ruthenium(II) bis(perchlorate)

Mariana Kozlowska, Pawel Rodziewicz, Diana Malgorzata Brus, Justyna Czyrko and Krzysztof Brzezinski*

Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland Correspondence e-mail: k.brzezinski@uwb.edu.pl

Received 14 November 2012; accepted 26 November 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.010 Å; disorder in solvent or counterion; R factor = 0.071; wR factor = 0.218; data-to-parameter ratio = 12.6.

The asymmetric unit of the title compound, $[Ru(C_{12}H_8N_2)_3](ClO_4)_2$, contains one octahedrally coordinated Ru^{II} cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions: two, denoted A and B, are located on the twofold axis while another, denoted C, is positioned in the proximity of the twofold screw axis. Perchlorate anions B and C are severely disordered. The occupancies of the two major conformers of anion B refined to 0.302 (6) and 0.198 (6). Perchlorate ion C was modeled in two alternate conformations which refined to occupancies of 0.552 (10) and 0.448 (10).

Related literature

For the preparation of phenanthroline complexes with transition metals, see: Burstall & Nyholm (1952). For the structures of salts of complexes of ruthenium with phenanthroline, see: Breu & Stoll (1996); Maloney & MacDonnell (1997); Otsuka *et al.* (2001); Wu *et al.* (2001); Ghazzali *et al.* (2008). For background to the properties and applications of phenanthroline complexes, see: Juris *et al.* (1988); D'Angelantonio *et al.* (1991); Balzani *et al.* (1996); Mills & Williams (1997); Yang *et al.* (1997); Miyasaka *et al.* (2001); Plonska *et al.* (2002); Winkler *et al.* (2006).

Experimental

Crystal data $[\operatorname{Ru}(C_{12}\operatorname{H_8N_2})_3](\operatorname{ClO_4})_2$ $M_r = 840.57$ Monoclinic, C2/c a = 35.408 (7) Å b = 16.106 (3) Å c = 12.056 (2) Å $\beta = 102.22$ (3)°

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.859, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.218$ S = 1.046867 reflections 545 parameters Mo $K\alpha$ radiation $\mu = 0.69 \text{ mm}^{-1}$ T = 100 K $0.22 \times 0.19 \times 0.10 \text{ mm}$

 $V = 6720 (2) \text{ Å}^3$

Z = 8

28067 measured reflections 6867 independent reflections 5365 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$

181 restraints H-atom parameters constrained $\Delta \rho_{max} = 2.55$ e Å⁻³ $\Delta \rho_{min} = -1.22$ e Å⁻³

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXD* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

This work was supported by the HOMING PLUS project of the Foundation for Polish Science (MK and PR). The X-ray diffractometer was funded by the EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project: POPW.01.03.00–20–034/09–00.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2430).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). *Chem. Rev.* **96**, 759–772.
- Breu, J. & Stoll, A. J. (1996). Acta Cryst. C52, 1174-1177.
- Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570-3579.
- D'Angelantonio, M., Mulazzani, Q. G., Venturi, M., Ciano, M. & Hoffman, M. Z. (1991). J. Phys. Chem. 95, 5121–5129.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ghazzali, M., Öhrström, L., Lincoln, P. & Langer, V. (2008). Acta Cryst. C64, m243-m245.
- Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zalewsky, A. (1988). Coord. Chem. Rev. 84, 85–99.

- Maloney, D. J. & MacDonnell, F. M. (1997). Acta Cryst. C53, 705-707.
- Mills, A. & Williams, F. C. (1997). Thin Solid Films, 306, 163–170.
- Miyasaka, H., Clearc, R., Campos-Fernandez, C. S. & Dunbar, K. R. (2001). *Inorg. Chem.* **40**, 1663–1669.
- Otsuka, T., Sekine, A., Fujigasaki, N., Ohashi, Y. & Kaizu, Y. (2001). *Inorg. Chem.* **40**, 3406–3412.
- Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77– 84.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). *Electrochim. Acta*, **51**, 4544–4553.
- Wu, J. Z., Zhou, Z.-Y. & Ji, L. N. (2001). Cryst. Res. Technol. 36, 101-105.
- Yang, G., Wu, J. Z., Wang, L., Ji, L. N. & Tian, X. (1997). J. Inorg. Biochem. 66, 141–144.

supporting information

Acta Cryst. (2012). E68, m1570-m1571 [doi:10.1107/S1600536812048428]

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)ruthenium(II) bis(perchlorate)

Mariana Kozlowska, Pawel Rodziewicz, Diana Malgorzata Brus, Justyna Czyrko and Krzysztof Brzezinski

S1. Comment

1,10-Phenanthroline (phen), forms complexes with most of transition metals. The polyimine complexes of divalent transition metal cations, such as [Ru^{II}(phen)₃](ClO₄)₂ or [Ru^{II}(bpy)₃](ClO₄)₂ (bpy-2,2'-bipyridine), are well known potent photosensitizers (Juris *et al.*, 1988). These compounds reveal also other interesting properties due to their redox (Plonska *et al.*, 2002; Winkler *et al.*, 2006) and magnetic properties (Miyasaka *et al.*, 2001), excited-state reactivity (D'Angelantonio *et al.*, 1991), and emission and lifetime characteristics (Juris *et al.*, 1988; Balzani *et al.*, 1996). A high photostability, long excited-state lifetimes and high quantum yields of luminescence, enabled to use them as oxygen optical sensors (Mills *et al.*, 1997). A binding of these complexes to calf thymus DNA has been also investigated (Yang *et al.*, 1997).

The asymmetric unit contains one divalent cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions (Fig. 1). The half-ion of perchlorate A is located on the twofold axis and the complete anion is generated by the symmetry operation. Perchlorate anions, B and C are disordered and each one of them is modeled in two alternative conformations. The occupancy of two major conformers is refined to 0.302 (6) and 0.198 (6) or 0.552 (10) and 0.448 (10) for anion B or C, respectively. Conformers of perchlorate ion B are located on the twofold axis.

S2. Experimental

The transition metal complex salt, $[Ru^{II}(phen)_3](ClO_4)_2$ was prepared according to the procedure described by Burstall *et al.*, 1952 and was recrystallized from methanol.

S3. Refinement

The solvent/anion region is highly disordered and the final difference minimum and maximum (-1.15 and 2.62 e Å⁻³) indicate an its imperfect modeling. The highest difference peak corresponds to solvent accessible void in the crystal lattice. The disordered perchlorate anion B and C are modeled in two alternative conformations with geometric restraints (*DFIX* and *SADI* instructions). Additionally, displacement parameter restraints (*DELU* and *ISOR* instructions) are applied for anion B. Due to a serious disorder of perchlorate anion C, its oxygen atoms are refined isotropically. All H atoms were located in electron density difference maps. C-bonded hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95 Å and $1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. For clarity, labels for atoms in the disordered perchlorate anions B and C are omitted.

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)ruthenium(II) bis(perchlorate)

$V = 6720 (2) Å^3$
Z = 8
F(000) = 3392
$D_{\rm x} = 1.662 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 28661 reflections
$\theta = 2.6 - 26.3^{\circ}$
$\mu = 0.69 \text{ mm}^{-1}$

T = 100 KPlate, red

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer	$T_{\min} = 0.859, T_{\max} = 1.000$ 28067 measured reflections
Radiation source: SuperNova (Mo) X-ray Source	6867 independent reflections 5365 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.039$
Detector resolution: 10.4052 pixels mm ⁻¹	$\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 2.8^\circ$
ω scans	$h = -44 \rightarrow 44$
Absorption correction: multi-scan	$k = -20 \rightarrow 20$
(CrysAlis PRO; Agilent, 2011)	$l = -14 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.071$	Hydrogen site location: inferred from
$wR(F^2) = 0.218$	neighbouring sites
S = 1.04	H-atom parameters constrained
6867 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1194P)^2 + 53.7304P]$
545 parameters	where $P = (F_o^2 + 2F_c^2)/3$
181 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 2.55 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.22 \text{ e } \text{\AA}^{-3}$

 $0.22\times0.19\times0.10~mm$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
ClA	0.5000	0.08518 (12)	1.2500	0.0409 (4)	
O1A	0.4920 (2)	0.0360 (6)	1.1532 (7)	0.137 (4)	
O2A	0.53245 (17)	0.1346 (4)	1.2483 (7)	0.098 (2)	
ClBA	0.49125 (14)	0.4508 (3)	0.7332 (5)	0.0377 (19)	0.302 (6)
O1BA	0.45000 (16)	0.4625 (5)	0.7094 (9)	0.048 (3)	0.302 (6)
O2BA	0.5065 (3)	0.4809 (5)	0.6390 (9)	0.062 (5)	0.302 (6)
O3BA	0.5000	0.3639 (3)	0.7500	0.060 (3)	0.605 (13)
O4BA	0.5085 (3)	0.4961 (5)	0.8342 (8)	0.064 (5)	0.302 (6)
ClBB	0.5000	0.4583 (5)	0.7500	0.032 (2)	0.395 (13)
O1BB	0.5200 (4)	0.5161 (10)	0.8333 (10)	0.046 (4)	0.198 (6)
O2BB	0.4835 (3)	0.3927 (7)	0.8057 (11)	0.035 (4)	0.198 (6)
O3BB	0.5266 (3)	0.4238 (8)	0.6871 (10)	0.044 (4)	0.198 (6)
O4BB	0.4697 (3)	0.5022 (12)	0.6740 (12)	0.047 (4)	0.198 (6)
ClCA	0.26318 (8)	0.5086 (2)	0.4468 (2)	0.0435 (11)	0.552 (10)

O1CA	0.2538 (2)	0.5648 (4)	0.3520 (5)	0.064 (3)*	0.552 (10)
O2CA	0.23054 (19)	0.5010 (6)	0.4998 (7)	0.277 (19)*	0.552 (10)
O3CA	0.2726 (3)	0.4284 (3)	0.4073 (7)	0.091 (4)*	0.552 (10)
O4CA	0.29584 (19)	0.5403 (5)	0.5278 (6)	0.092 (4)*	0.552 (10)
ClCB	0.2615 (2)	0.5258 (6)	0.4462 (7)	0.166 (5)	0.448 (10)
O1CB	0.2576 (6)	0.6144 (5)	0.4546 (17)	0.149 (9)*	0.448 (10)
O2CB	0.2292 (2)	0.4858 (6)	0.4795 (8)	0.049 (3)*	0.448 (10)
O3CB	0.2619 (4)	0.5039 (12)	0.3306 (8)	0.212 (14)*	0.448 (10)
O4CB	0.2969 (2)	0.4984 (13)	0.5192 (13)	0.117 (6)*	0.448 (10)
Ru1	0.379433 (12)	0.21680 (3)	0.62688 (4)	0.03927 (19)	
N8	0.42571 (13)	0.2140 (3)	0.7640 (4)	0.0407 (11)	
N36	0.33253 (14)	0.2267 (3)	0.4936 (5)	0.0455 (12)	
N29	0.40257 (13)	0.2905 (3)	0.5175 (4)	0.0404 (11)	
N22	0.35194 (13)	0.1363 (4)	0.7156 (4)	0.0475 (12)	
C26	0.33993 (17)	-0.0117 (5)	0.7393 (6)	0.0522 (16)	
N1	0.36793 (14)	0.3206 (4)	0.7139 (5)	0.0515 (13)	
C31	0.44900 (18)	0.3752 (4)	0.4513 (6)	0.0509 (15)	
H31	0.4740	0.3998	0.4661	0.061*	
C25	0.31696 (19)	0.0092 (5)	0.8174 (6)	0.0602 (19)	
H25	0.3044	-0.0332	0.8510	0.072*	
C17	0.42222 (17)	0.0127 (4)	0.4478 (5)	0.0454 (13)	
H17	0.4373	0.0055	0.3921	0.054*	
C7	0.42374 (17)	0.2736 (4)	0.8443 (5)	0.0468 (15)	
C16	0.41419 (14)	0.0922 (4)	0.4812 (4)	0.0360 (11)	
H16	0.4239	0.1385	0.4470	0.043*	
N15	0.39328 (12)	0.1058 (3)	0.5599 (4)	0.0367 (10)	
C35	0.33975 (18)	0.2702 (4)	0.4047 (6)	0.0510 (16)	
C30	0.43730 (16)	0.3264 (3)	0.5347 (5)	0.0403 (12)	
H30	0.4547	0.3187	0.6056	0.048*	
C27	0.3471 (2)	-0.0933 (5)	0.7063 (6)	0.0586 (18)	
H27	0.3358	-0.1384	0.7386	0.070*	
C11	0.4786 (2)	0.2177 (4)	0.9732 (5)	0.0539 (17)	
H11	0.4967	0.2179	1.0437	0.065*	
C37	0.29761 (16)	0.1926 (4)	0.4833 (7)	0.0560 (17)	
H37	0.2924	0.1608	0.5448	0.067*	
C39	0.2751 (2)	0.2466 (6)	0.2965 (8)	0.077 (2)	
H39	0.2554	0.2533	0.2301	0.093*	
C12	0.4499 (2)	0.2781 (4)	0.9494 (6)	0.0521 (17)	
C40	0.3120 (2)	0.2835 (5)	0.3033 (7)	0.066 (2)	
C21	0.35678 (15)	0.0539 (4)	0.6894 (5)	0.0441 (13)	
C41	0.3230 (3)	0.3303 (6)	0.2160 (8)	0.084 (3)	
H41	0.3045	0.3397	0.1476	0.101*	
C18	0.40855 (18)	-0.0547 (4)	0.4948 (6)	0.0501 (15)	
H18	0.4141	-0.1092	0.4724	0.060*	
C14	0.4168 (2)	0.4011 (5)	0.9966 (7)	0.067 (2)	
H14	0.4150	0.4452	1.0476	0.080*	
C2	0.33910 (19)	0.3754 (5)	0.6835 (8)	0.063 (2)	
H2	0.3223	0.3709	0.6111	0.076*	

C4	0.3582 (2)	0.4498 (5)	0.8596 (8)	0.071 (2)
H4	0.3542	0.4937	0.9083	0.086*
C9	0.45398 (16)	0.1585 (4)	0.7900 (5)	0.0444 (13)
H9	0.4562	0.1173	0.7354	0.053*
C13	0.4454 (2)	0.3449 (5)	1.0251 (6)	0.063 (2)
H13	0.4628	0.3493	1.0964	0.075*
C6	0.39295 (17)	0.3319 (4)	0.8162 (6)	0.0493 (15)
C19	0.38602 (16)	-0.0429 (4)	0.5768 (5)	0.0451 (14)
C20	0.37928 (14)	0.0384 (4)	0.6065 (5)	0.0380 (12)
C38	0.26831 (19)	0.2015 (5)	0.3861 (8)	0.067 (2)
H38	0.2438	0.1764	0.3825	0.081*
C24	0.31276 (18)	0.0892 (5)	0.8445 (6)	0.0612 (19)
H24	0.2978	0.1032	0.8985	0.073*
C42	0.3588 (3)	0.3619 (6)	0.2264 (8)	0.079 (2)
H42	0.3651	0.3920	0.1649	0.095*
C33	0.3874 (2)	0.3510 (4)	0.3275 (6)	0.0586 (17)
C23	0.33056 (17)	0.1525 (5)	0.7930 (6)	0.0581 (18)
H23	0.3273	0.2085	0.8137	0.070*
C28	0.3692 (2)	-0.1095 (4)	0.6305 (6)	0.0595 (18)
H28	0.3738	-0.1655	0.6123	0.071*
C5	0.3892 (2)	0.3961 (5)	0.8918 (6)	0.0566 (17)
C10	0.48045 (17)	0.1579 (4)	0.8934 (5)	0.0486 (15)
H10	0.4998	0.1161	0.9087	0.058*
C32	0.4242 (2)	0.3874 (4)	0.3480 (7)	0.0584 (17)
H32	0.4319	0.4201	0.2911	0.070*
C34	0.37750 (17)	0.3047 (4)	0.4163 (6)	0.0481 (14)
C3	0.3336 (2)	0.4388 (5)	0.7571 (8)	0.074 (2)
H3	0.3122	0.4752	0.7354	0.088*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
ClA	0.0410 (10)	0.0385 (10)	0.0390 (10)	0.000	-0.0006 (8)	0.000
01A	0.106 (5)	0.182 (9)	0.104 (5)	0.037 (6)	-0.021 (4)	-0.086 (6)
O2A	0.059 (3)	0.079 (4)	0.161 (7)	-0.008 (3)	0.035 (4)	0.029 (4)
ClBA	0.045 (3)	0.035 (3)	0.029 (3)	-0.007 (2)	-0.002 (3)	0.001 (2)
O1BA	0.040 (5)	0.052 (7)	0.055 (7)	0.002 (5)	0.012 (5)	-0.014 (6)
O2BA	0.053 (7)	0.079 (8)	0.060 (7)	-0.014 (7)	0.027 (6)	0.010 (6)
O3BA	0.068 (6)	0.043 (4)	0.055 (6)	0.000	-0.017 (5)	0.000
O4BA	0.053 (8)	0.074 (8)	0.066 (7)	-0.010 (7)	0.012 (6)	-0.033 (7)
ClBB	0.050 (4)	0.026 (3)	0.016 (3)	0.000	-0.004 (3)	0.000
O1BB	0.050 (6)	0.043 (6)	0.043 (5)	-0.009 (4)	0.008 (4)	-0.007 (4)
O2BB	0.033 (6)	0.035 (5)	0.036 (6)	0.002 (4)	0.008 (4)	0.002 (4)
O3BB	0.043 (6)	0.046 (6)	0.045 (6)	-0.007 (4)	0.015 (4)	-0.007 (4)
O4BB	0.051 (6)	0.045 (6)	0.043 (5)	0.007 (4)	0.005 (4)	0.006 (4)
ClCA	0.0446 (18)	0.0573 (19)	0.0324 (15)	-0.0289 (13)	0.0166 (12)	-0.0096 (11)
ClCB	0.112 (7)	0.231 (10)	0.155 (8)	-0.029 (7)	0.029 (6)	-0.011 (7)
Ru1	0.0236 (3)	0.0438 (3)	0.0511 (3)	-0.00316 (17)	0.00957 (19)	-0.0083 (2)

N8	0.029 (2)	0.052 (3)	0.044 (3)	-0.011 (2)	0.0141 (19)	-0.007(2)
N36	0.027 (2)	0.046 (3)	0.062 (3)	0.0037 (19)	0.006 (2)	-0.009(2)
N29	0.031 (2)	0.036 (2)	0.055 (3)	0.0039 (18)	0.011 (2)	-0.005(2)
N22	0.027 (2)	0.062 (3)	0.054 (3)	-0.011 (2)	0.011 (2)	-0.008(3)
C26	0.033 (3)	0.069 (4)	0.052 (4)	-0.009(3)	0.005 (3)	0.012 (3)
N1	0.033 (2)	0.054 (3)	0.072 (4)	-0.006 (2)	0.022 (2)	-0.015 (3)
C31	0.044 (3)	0.036 (3)	0.076 (4)	0.002 (2)	0.020 (3)	-0.001 (3)
C25	0.041 (3)	0.083 (5)	0.056 (4)	-0.019 (3)	0.010 (3)	0.008 (4)
C17	0.039 (3)	0.049 (3)	0.047 (3)	0.009 (3)	0.008 (2)	0.002 (3)
C7	0.036 (3)	0.057 (4)	0.053 (3)	-0.020 (3)	0.021 (3)	-0.013 (3)
C16	0.029 (2)	0.039 (3)	0.038 (3)	0.001 (2)	0.003 (2)	-0.001 (2)
N15	0.026 (2)	0.041 (2)	0.042 (2)	0.0037 (18)	0.0020 (18)	0.001 (2)
C35	0.033 (3)	0.045 (3)	0.070 (4)	0.010 (2)	0.001 (3)	-0.008 (3)
C30	0.035 (3)	0.033 (3)	0.054 (3)	0.001 (2)	0.011 (2)	-0.006 (2)
C27	0.048 (4)	0.059 (4)	0.067 (4)	-0.008 (3)	0.008 (3)	0.021 (3)
C11	0.053 (4)	0.074 (5)	0.037 (3)	-0.026 (3)	0.014 (3)	0.002 (3)
C37	0.025 (3)	0.053 (4)	0.085 (5)	0.003 (3)	0.002 (3)	-0.018 (3)
C39	0.041 (4)	0.076 (5)	0.098 (6)	0.019 (4)	-0.021 (4)	-0.015 (4)
C12	0.053 (4)	0.063 (4)	0.045 (3)	-0.030 (3)	0.023 (3)	-0.009 (3)
C40	0.044 (4)	0.062 (5)	0.080 (5)	0.011 (3)	-0.010 (4)	0.012 (4)
C21	0.028 (3)	0.054 (4)	0.049 (3)	-0.006 (2)	0.004 (2)	0.001 (3)
C41	0.071 (5)	0.087 (6)	0.079 (6)	0.010 (5)	-0.022 (4)	0.013 (5)
C18	0.043 (3)	0.043 (3)	0.063 (4)	0.011 (3)	0.006 (3)	0.005 (3)
C14	0.080 (5)	0.068 (5)	0.065 (5)	-0.034 (4)	0.044 (4)	-0.024 (4)
C2	0.039 (3)	0.058 (4)	0.098 (6)	-0.005 (3)	0.026 (3)	-0.023 (4)
C4	0.063 (5)	0.065 (5)	0.097 (6)	-0.023 (4)	0.043 (4)	-0.035 (4)
C9	0.034 (3)	0.055 (4)	0.046 (3)	-0.008 (3)	0.012 (2)	0.003 (3)
C13	0.067 (4)	0.076 (5)	0.052 (4)	-0.028 (4)	0.025 (3)	-0.021 (4)
C6	0.041 (3)	0.056 (4)	0.059 (4)	-0.016 (3)	0.027 (3)	-0.016 (3)
C19	0.036 (3)	0.042 (3)	0.053 (3)	0.006 (2)	0.001 (2)	0.010 (3)
C20	0.026 (2)	0.043 (3)	0.042 (3)	-0.004 (2)	0.000 (2)	0.000 (2)
C38	0.031 (3)	0.062 (4)	0.101 (6)	0.011 (3)	-0.005 (3)	-0.018 (4)
C24	0.035 (3)	0.094 (6)	0.058 (4)	-0.019 (3)	0.019 (3)	-0.007 (4)
C42	0.081 (6)	0.078 (6)	0.071 (5)	0.015 (5)	0.002 (4)	0.022 (4)
C33	0.057 (4)	0.052 (4)	0.065 (4)	0.012 (3)	0.007 (3)	0.006 (3)
C23	0.032 (3)	0.079 (5)	0.066 (4)	-0.014 (3)	0.018 (3)	-0.020 (4)
C28	0.053 (4)	0.046 (4)	0.074 (5)	0.004 (3)	0.000 (3)	0.014 (3)
C5	0.051 (4)	0.060 (4)	0.069 (4)	-0.017 (3)	0.038 (3)	-0.018 (3)
C10	0.041 (3)	0.065 (4)	0.040 (3)	-0.016 (3)	0.007 (2)	0.008 (3)
C32	0.060 (4)	0.047 (4)	0.072 (5)	0.002 (3)	0.022 (4)	0.008 (3)
C34	0.037 (3)	0.041 (3)	0.062 (4)	0.007 (2)	0.004 (3)	0.001 (3)
C3	0.049 (4)	0.059 (4)	0.123 (7)	0.001 (3)	0.040 (4)	-0.027 (5)

Geometric parameters (Å, °)

CIA—O1A	1.389 (6)	C16—N15	1.339 (7)
ClA—O1A ⁱ	1.389 (6)	C16—H16	0.9500
ClA—O2A	1.402 (6)	N15—C20	1.363 (7)

ClA—O2A ⁱ	1.402 (6)	C35—C40	1.413 (10)
ClBA—O4BA	1.4398 (8)	C35—C34	1.427 (9)
ClBA—O1BA	1.4399 (8)	С30—Н30	0.9500
ClBA—O3BA	1.4400 (8)	C27—C28	1.350 (11)
ClBA—O2BA	1.4401 (8)	С27—Н27	0.9500
ClBB—O1BB	1.4399 (8)	C11—C10	1.373 (10)
ClBB—O3BB	1.4399 (8)	C11—C12	1.393 (11)
ClBB—O2BB	1.4401 (8)	C11—H11	0.9500
ClBB—O4BB	1.4402 (11)	C37—C38	1.399 (10)
CICA—O2CA	1.4399 (8)	С37—Н37	0.9500
ClCA—O4CA	1.4402 (9)	C39—C38	1.366 (13)
CICA—O3CA	1.4405 (8)	C39—C40	1.421 (12)
CICA—O1CA	1.4407 (8)	С39—Н39	0.9500
CICB—O4CB	1.4400 (11)	C12—C13	1.440 (10)
CICB—O1CB	1.4400 (8)	C40—C41	1.415 (13)
CICB—O2CB	1.4400 (8)	$C_{21} - C_{20}$	1.426 (8)
CICB-O3CB	1 4403 (8)	C41 - C42	1.347(13)
Ru1—N22	2.053 (5)	C41—H41	0.9500
Ru1—N36	2,058 (5)	C18 - C19	1 409 (9)
Ru1—N1	2,059 (5)	C18—H18	0.9500
Ru1—N15	2.063 (5)	C14—C13	1.347(12)
Ru1—N8	2.067 (5)	C14—C5	1.426 (11)
Ru1—N29	2.068 (5)	C14—H14	0.9500
N8—C9	1.329 (8)	C2-C3	1.393 (10)
N8—C7	1.376 (8)	C2—H2	0.9500
N36—C37	1.334 (8)	C4—C3	1.365 (12)
N36—C35	1.349 (9)	C4—C5	1.387 (11)
N29—C30	1.335 (7)	C4—H4	0.9500
N29—C34	1.368 (8)	C9—C10	1.392 (8)
N22—C23	1.346 (8)	С9—Н9	0.9500
N22—C21	1.383 (8)	С13—Н13	0.9500
C26—C25	1.410 (10)	C6—C5	1.403 (9)
C26—C21	1.410 (9)	C19—C20	1.392 (8)
C26—C27	1.410 (11)	C19—C28	1.444 (9)
N1—C2	1.340 (9)	С38—Н38	0.9500
N1—C6	1.370 (8)	C24—C23	1.409 (10)
C31—C32	1.378 (10)	C24—H24	0.9500
C31—C30	1.406 (9)	C42—C33	1.421 (11)
C31—H31	0.9500	C42—H42	0.9500
C25—C24	1.346 (11)	C33—C32	1.401 (10)
С25—Н25	0.9500	C33—C34	1.409 (10)
C17—C18	1.361 (9)	С23—Н23	0.9500
C17—C16	1.388 (8)	C28—H28	0.9500
С17—Н17	0.9500	C10—H10	0.9500
C7—C12	1.405 (9)	С32—Н32	0.9500
С7—С6	1.424 (10)	С3—Н3	0.9500
O1A—ClA—O1A ⁱ	110.5 (9)	С31—С30—Н30	118.9

O1A—ClA—O2A	109.5 (6)	C28—C27—C26	122.4 (6)
O1A ⁱ —ClA—O2A	108.3 (4)	С28—С27—Н27	118.8
O1A—ClA—O2A ⁱ	108.3 (4)	С26—С27—Н27	118.8
O1A ⁱ —ClA—O2A ⁱ	109.5 (6)	C10-C11-C12	119.2 (6)
O2A—ClA—O2A ⁱ	110.8 (6)	C10-C11-H11	120.4
O4BA—ClBA—O1BA	109.48 (6)	C12—C11—H11	120.4
O4BA—ClBA—O3BA	109.49 (6)	N36—C37—C38	122.9 (8)
O1BA—ClBA—O3BA	109.48 (6)	N36—C37—H37	118.5
O4BA—ClBA—O2BA	109.48 (6)	С38—С37—Н37	118.5
O1BA—ClBA—O2BA	109.47 (6)	C38—C39—C40	119.4 (7)
O3BA—ClBA—O2BA	109.44 (6)	С38—С39—Н39	120.3
O1BB—C1BB—O3BB	109.7 (2)	С40—С39—Н39	120.3
O1BB—C1BB—O2BB	109.7 (2)	C11—C12—C7	117.5 (6)
O3BB—C1BB—O2BB	109.7 (2)	C11—C12—C13	124.4 (7)
O1BB—C1BB—O4BB	108.4 (12)	C7—C12—C13	118.0 (7)
O3BB—C1BB—O4BB	109.7 (2)	C35—C40—C41	118.4 (7)
O2BB—C1BB—O4BB	109.7 (3)	C35—C40—C39	116.7 (8)
O2CA—CICA—O4CA	109.52 (6)	C41—C40—C39	125.0 (8)
O2CA—CICA—O3CA	109.50 (6)	N22—C21—C26	122.5 (6)
O4CA—ClCA—O3CA	109.46 (6)	N22—C21—C20	116.3 (5)
O2CA—CICA—O1CA	109.49 (6)	C26—C21—C20	121.1 (6)
04CA—ClCA—O1CA	109.44 (6)	C42—C41—C40	122.2 (7)
O3CA—CICA—O1CA	109.43 (6)	C42—C41—H41	118.9
O4CB—C1CB—O1CB	110.1 (15)	C40—C41—H41	118.9
O4CB—C1CB—O2CB	109.4 (3)	C17—C18—C19	119.2 (6)
O1CB—C1CB—O2CB	109.4 (3)	C17—C18—H18	120.4
O4CB—ClCB—O3CB	109.3 (3)	C19—C18—H18	120.4
O1CB—C1CB—O3CB	109.3 (3)	C13—C14—C5	121.6 (7)
O2CB—ClCB—O3CB	109.3 (3)	C13—C14—H14	119.2
N22—Ru1—N36	93.6 (2)	C5—C14—H14	119.2
N22—Ru1—N1	94.6 (2)	N1—C2—C3	120.6 (8)
N36—Ru1—N1	96.9 (2)	N1—C2—H2	119.7
N22—Ru1—N15	80.5 (2)	С3—С2—Н2	119.7
N36—Ru1—N15	88.90 (18)	C3—C4—C5	119.2 (7)
N1—Ru1—N15	172.6 (2)	C3—C4—H4	120.4
N22—Ru1—N8	87.27 (19)	C5—C4—H4	120.4
N36—Ru1—N8	176.5 (2)	N8—C9—C10	123.2 (6)
N1—Ru1—N8	79.6 (2)	N8—C9—H9	118.4
N15—Ru1—N8	94.60 (18)	С10—С9—Н9	118.4
N22—Ru1—N29	172.08 (19)	C14—C13—C12	121.3 (7)
N36—Ru1—N29	79.7 (2)	C14—C13—H13	119.4
N1—Ru1—N29	90.4 (2)	C12—C13—H13	119.4
N15—Ru1—N29	95.09 (18)	N1—C6—C5	123.4 (6)
N8—Ru1—N29	99.70 (19)	N1—C6—C7	116.3 (5)
C9—N8—C7	116.8 (5)	C5—C6—C7	120.3 (6)
C9—N8—Ru1	129.3 (4)	C20—C19—C18	117.4 (6)
C7—N8—Ru1	113.4 (4)	C20—C19—C28	118.3 (6)
C37—N36—C35	117.9 (6)	C18—C19—C28	124.3 (6)

C37—N36—Ru1	128.2 (5)	N15—C20—C19	123.1 (5)
C35—N36—Ru1	113.8 (4)	N15-C20-C21	117.1 (5)
C30—N29—C34	117.9 (5)	C19—C20—C21	119.8 (5)
C30—N29—Ru1	128.8 (4)	C39—C38—C37	119.6 (7)
C34—N29—Ru1	113.3 (4)	С39—С38—Н38	120.2
C23—N22—C21	117.3 (6)	С37—С38—Н38	120.2
C23—N22—Ru1	129.6 (5)	C25—C24—C23	120.2 (7)
C21—N22—Ru1	113.0 (4)	C25—C24—H24	119.9
C25—C26—C21	117.5 (7)	C23—C24—H24	119.9
C25—C26—C27	125.0 (7)	C41—C42—C33	121.3 (8)
C21—C26—C27	117.5 (6)	C41—C42—H42	119.4
C2—N1—C6	117.9 (6)	C33—C42—H42	119.4
C2—N1—Ru1	128.1 (5)	C32—C33—C34	117.3 (6)
C6—N1—Ru1	114.0 (4)	C32—C33—C42	124.5 (8)
C32—C31—C30	119.8 (6)	C34—C33—C42	118.1 (7)
С32—С31—Н31	120.1	N22—C23—C24	122.4 (7)
С30—С31—Н31	120.1	N22—C23—H23	118.8
C24—C25—C26	120.0 (7)	С24—С23—Н23	118.8
С24—С25—Н25	120.0	C27—C28—C19	120.9 (7)
С26—С25—Н25	120.0	С27—С28—Н28	119.6
C18—C17—C16	120.2 (6)	C19—C28—H28	119.6
C18—C17—H17	119.9	C4—C5—C6	117.1 (7)
С16—С17—Н17	119.9	C4—C5—C14	124.4 (7)
N8—C7—C12	123.3 (6)	C6—C5—C14	118.5 (7)
N8—C7—C6	116.3 (6)	C11—C10—C9	119.9 (7)
С12—С7—С6	120.4 (6)	C11—C10—H10	120.0
N15—C16—C17	122.3 (5)	С9—С10—Н10	120.0
N15—C16—H16	118.9	C31—C32—C33	119.4 (7)
C17—C16—H16	118.9	С31—С32—Н32	120.3
C16—N15—C20	117.7 (5)	С33—С32—Н32	120.3
C16—N15—Ru1	129.2 (4)	N29—C34—C33	123.2 (6)
C20—N15—Ru1	113.1 (4)	N29—C34—C35	116.1 (6)
N36—C35—C40	123.5 (6)	C33—C34—C35	120.7 (6)
N36—C35—C34	117.1 (6)	C4—C3—C2	121.5 (8)
C40—C35—C34	119.4 (7)	С4—С3—Н3	119.2
N29—C30—C31	122.2 (6)	С2—С3—Н3	119.2
N29—C30—H30	118.9		

Symmetry code: (i) -x+1, y, -z+5/2.