

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ_2 -ethanolato-octamethylbis(μ -4methyl-5-sulfanylidene-4,5-dihydro-1*H*-1,2,4-triazol-1-ido- $\kappa^2 N^1:N^2$)di- μ_3 -oxidotetratin(IV)

Ezzatollah Najafi,^a Mostafa M. Amini^a and Seik Weng Ng^b*

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 17 November 2012; accepted 20 November 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.026; wR factor = 0.065; data-to-parameter ratio = 24.1.

The tetranuclear title compound, $[Sn_4(CH_3)_8(C_2H_5O)_2O_2(C_3H_4N_3S)_2]$, lies about a center of inversion; the molecule features a three-rung-staircase Sn_4O_4 core in which two Sn^{IV} atoms are bridged by the 4-methyl-5-sulfanylidene-4,5-dihydro-1*H*-1,2,4-triazol-1-ide group. The negatively charged N atom of the group binds to the terminal Sn^{IV} atom at a shorter distance [Sn-N = 2.240 (3) Å] compared with the neutral N atom that binds to the central Sn^{IV} atom $[Sn \leftarrow N = 2.641 (3) \text{ Å}]$. The terminal Sn^{IV} atom is five-coordinate in a *cis*- C_2SnNO_2 trigonal-bipyramidal geometry $[C-Sn-C = 127.5 (2)^\circ]$, whereas the central Sn^{IV} atom is six-coordinate in a C_2SnNO_3 skew-trazepoidal bipyramidal geometry $[C-Sn-C = 145.0 (2)^\circ]$.

Related literature

For the $[Sn_2O(CH_3)_4(CH_3O)(C_3H_4N_3S)]_2$ homolog, see: Najafi *et al.* (2011).

Experimental

Crystal data

 $\begin{bmatrix} Sn_4(CH_3)_8(C_2H_5O)_2O_2 \\ (C_3H_4N_3S)_2 \end{bmatrix} \\ M_r = 945.46 \\ Monoclinic, P2_1/n \\ a = 9.3965 (4) \\ A \\ b = 17.8939 (7) \\ A \\ c = 9.9084 (4) \\ A \\ \end{bmatrix}$

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{\rm min} = 0.447, T_{\rm max} = 0.567$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.065$ S = 1.043743 reflections $\beta = 103.036 \text{ (4)}^{\circ}$ $V = 1623.06 \text{ (11) } \text{Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 3.20 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.25 \times 0.20 \text{ mm}$

15728 measured reflections 3743 independent reflections 3280 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

 $\begin{array}{l} 155 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.75 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.67 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/ SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6863).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m242.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2012). E68, m1545 [doi:10.1107/S1600536812047708]

Di- μ_2 -ethanolato-octamethylbis(μ -4-methyl-5-sulfanylidene-4,5-dihydro-1*H*-1,2,4-triazol-1-ido- $\kappa^2 N^1$: N^2)di- μ_3 -oxido-tetratin(IV)

Ezzatollah Najafi, Mostafa M. Amini and Seik Weng Ng

S1. Comment

The title compound (Scheme I, Fig. 1), a distannoxane, was the unexpected product from an attempt at synthesizing a dimethyltin 4-methyl-4H-1,2,4-triazol-3-thiolate that possesses a tin-sulfur linkage. In the reaction of diorganotin oxides with organic acids (particularly carboxylic acids), tetranuclear distannoxanes are sometimes formed; these compounds have four organic groups. In the present reaction, two of the four organic groups are replaced by ethoxide groups.

Tetranuclear $Sn_4O_2(CH_3)_8(C_2H_5O)_2(C_3H_4N_3S)_2$ lies about a center-of-inversion; the molecule features a three-rungstaircase Sn_4O_4 core in which two Sn atoms are bridged by the $C_3H_4N_3S$ triazolate group. The negatively-charged N atom of the group binds to the terminal Sn atom at a shorter distance [Sn–N 2.240 (3) Å] compared with the neutral N atom that binds to the central Sn atom [Sn \leftarrow N 2.641 (3) Å]. The terminal Sn atom is five-coordinate in a *cis*-C₃SnNO trigonal bipyramid whereas the central Sn atom is six-coordinate in a C₂SnNO₃ skew-trazepoidal bipyramidal geometry.

S2. Experimental

Dimethyltin diisothiocyanate (1 mmol), 4-methyl-4*H*-1,2,4-triazole-3-thiol (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube; several drops of triethylamine were added. The tube was filled with dry ethanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, $U_{iso}(H)$ 1.2 to 1.5 $U_{eq}(C)$] and were included in the refinement in the riding model approximation.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $Sn_4O_2(CH_3)_8(C_2H_5O)_2(C_3H_4N_3S)_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

$\text{Di}-\mu_2$ -ethanolato-octamethylbis(μ -4-methyl-5-sulfanylidene-4,5-dihydro- 1*H*-1,2,4-triazolido- $\kappa^2 N^1$: N^2)di- μ_3 -oxido- tetratin(IV)

Crystal data

$[Sn_{4}(CH_{3})_{8}(C_{2}H_{5}O)_{2}O_{2}(C_{3}H_{4}N_{3}S)_{2}]$ $M_{r} = 945.46$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 9.3965 (4) Å b = 17.8939 (7) Å c = 9.9084 (4) Å $\beta = 103.036$ (4)° V = 1623.06 (11) Å ³ Z = 2	F(000) = 912 $D_x = 1.935 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6388 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 3.20 \text{ mm}^{-1}$ T = 100 K Prism, colorless $0.30 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹	ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012) $T_{min} = 0.447, T_{max} = 0.567$ 15728 measured reflections 3743 independent reflections

3280 reflections with $I > 2\sigma(I)$	$h = -11 \rightarrow 12$
$R_{\rm int} = 0.037$	$k = -23 \rightarrow 21$
$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$	$l = -11 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.065$	neighbouring sites
S = 1.04	H-atom parameters constrained
3743 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0302P)^2 + 2.3203P]$
155 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.37077 (2)	0.436391 (12)	0.49959 (2)	0.01497 (7)	
Sn2	0.70638 (2)	0.467990 (13)	0.80539 (2)	0.01507 (7)	
S 1	0.69104 (11)	0.33447 (6)	1.09067 (10)	0.0342 (2)	
01	0.5639 (2)	0.48179 (13)	0.6221 (2)	0.0182 (5)	
O2	0.7909 (3)	0.55849 (14)	0.7058 (2)	0.0200 (5)	
N1	0.4168 (3)	0.36557 (17)	0.7393 (3)	0.0224 (6)	
N2	0.5475 (3)	0.37949 (17)	0.8347 (3)	0.0199 (6)	
N3	0.4324 (3)	0.29205 (17)	0.9189 (3)	0.0233 (6)	
C1	0.4547 (4)	0.3342 (2)	0.4438 (4)	0.0253 (8)	
H1A	0.5373	0.3442	0.4012	0.038*	
H1B	0.3782	0.3076	0.3777	0.038*	
H1C	0.4877	0.3034	0.5268	0.038*	
C2	0.2100 (4)	0.4864 (2)	0.5902 (4)	0.0265 (8)	
H2A	0.2210	0.5408	0.5902	0.040*	
H2B	0.2221	0.4686	0.6857	0.040*	
H2C	0.1125	0.4727	0.5366	0.040*	
C3	0.8781 (4)	0.3928 (2)	0.7987 (4)	0.0276 (8)	
H3A	0.9637	0.4208	0.7859	0.041*	
H3B	0.8469	0.3579	0.7214	0.041*	
H3C	0.9034	0.3647	0.8858	0.041*	
C4	0.6810 (4)	0.5344 (2)	0.9736 (3)	0.0247 (8)	
H4A	0.7441	0.5785	0.9803	0.037*	
H4B	0.7081	0.5054	1.0594	0.037*	
H4C	0.5789	0.5504	0.9595	0.037*	
C5	0.3523 (4)	0.3131 (2)	0.7935 (3)	0.0236 (7)	
H5	0.2603	0.2921	0.7505	0.028*	
C6	0.4001 (5)	0.2340 (2)	1.0099 (4)	0.0343 (9)	
H6A	0.3039	0.2124	0.9699	0.051*	
H6B	0.3999	0.2555	1.1008	0.051*	
H6C	0.4747	0.1948	1.0204	0.051*	
C7	0.5556 (4)	0.3356 (2)	0.9450 (3)	0.0212 (7)	

C8	0.9254 (4)	0.5956 (2)	0.7578 (4)	0.0239 (7)	
H8A	0.9841	0.5950	0.6864	0.029*	
H8B	0.9809	0.5685	0.8400	0.029*	
С9	0.9025 (5)	0.6751 (2)	0.7972 (5)	0.0381 (10)	
H9A	0.9974	0.6990	0.8327	0.057*	
H9B	0.8458	0.6758	0.8689	0.057*	
H9C	0.8493	0.7024	0.7155	0.057*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01475 (12)	0.01498 (13)	0.01399 (11)	-0.00248 (8)	0.00072 (8)	0.00005 (8)
Sn2	0.01482 (12)	0.01626 (13)	0.01265 (11)	0.00072 (8)	-0.00002 (8)	-0.00025 (8)
S 1	0.0269 (5)	0.0421 (6)	0.0294 (5)	0.0007 (4)	-0.0028 (4)	0.0170 (4)
01	0.0186 (12)	0.0190 (12)	0.0146 (11)	-0.0030 (10)	-0.0011 (9)	0.0042 (9)
O2	0.0177 (12)	0.0203 (13)	0.0190 (12)	-0.0075 (10)	-0.0018 (9)	0.0009 (9)
N1	0.0239 (16)	0.0221 (16)	0.0198 (14)	-0.0062 (13)	0.0017 (11)	-0.0017 (11)
N2	0.0179 (14)	0.0235 (16)	0.0154 (13)	-0.0038 (12)	-0.0021 (10)	0.0026 (11)
N3	0.0275 (17)	0.0184 (16)	0.0251 (15)	-0.0027 (13)	0.0083 (12)	0.0011 (12)
C1	0.031 (2)	0.022 (2)	0.0214 (17)	0.0031 (16)	0.0031 (14)	-0.0010 (14)
C2	0.0229 (19)	0.036 (2)	0.0215 (17)	0.0055 (16)	0.0056 (14)	-0.0044 (15)
C3	0.0238 (19)	0.025 (2)	0.034 (2)	0.0090 (16)	0.0073 (15)	0.0025 (15)
C4	0.029 (2)	0.027 (2)	0.0198 (17)	-0.0050 (16)	0.0076 (14)	-0.0073 (14)
C5	0.0273 (19)	0.0212 (19)	0.0222 (17)	-0.0050 (15)	0.0056 (14)	-0.0048 (13)
C6	0.043 (2)	0.024 (2)	0.039 (2)	-0.0082 (18)	0.0167 (18)	0.0084 (16)
C7	0.0218 (18)	0.0180 (18)	0.0242 (17)	0.0023 (14)	0.0062 (13)	0.0017 (13)
C8	0.0184 (17)	0.025 (2)	0.0285 (18)	-0.0033 (15)	0.0049 (14)	-0.0017 (14)
C9	0.030 (2)	0.030 (2)	0.050 (3)	-0.0106 (18)	0.0016 (18)	-0.0093 (18)

Geometric parameters (Å, °)

Sn1—O1 ⁱ	2.076 (2)	C1—H1B	0.9800
Sn1—O1	2.106 (2)	C1—H1C	0.9800
Sn1—C1	2.114 (4)	C2—H2A	0.9800
Sn1—C2	2.121 (4)	C2—H2B	0.9800
Sn1—O2 ⁱ	2.250 (2)	C2—H2C	0.9800
Sn1—N1	2.641 (3)	С3—НЗА	0.9800
Sn2—O1	2.013 (2)	C3—H3B	0.9800
Sn2—C4	2.105 (3)	С3—Н3С	0.9800
Sn2—C3	2.114 (4)	C4—H4A	0.9800
Sn2—O2	2.140 (2)	C4—H4B	0.9800
Sn2—N2	2.240 (3)	C4—H4C	0.9800
S1—C7	1.695 (4)	C5—H5	0.9500
O1—Sn1 ⁱ	2.076 (2)	С6—Н6А	0.9800
O2—C8	1.418 (4)	C6—H6B	0.9800
O2—Sn1 ⁱ	2.250 (2)	С6—Н6С	0.9800
N1C5	1.297 (5)	C8—C9	1.503 (6)
N1—N2	1.393 (4)	C8—H8A	0.9900

N2—C7	1.334 (4)	C8—H8B	0.9900
N3—C5	1.353 (4)	С9—Н9А	0.9800
N3—C7	1.371 (5)	С9—Н9В	0.9800
N3—C6	1.452 (5)	С9—Н9С	0.9800
C1—H1A	0.9800		
O1 ⁱ —Sn1—O1	74.55 (9)	H1A—C1—H1C	109.5
O1 ⁱ —Sn1—C1	106.36 (12)	H1B—C1—H1C	109.5
O1—Sn1—C1	99.22 (12)	Sn1—C2—H2A	109.5
O1 ⁱ —Sn1—C2	106.31 (13)	Sn1—C2—H2B	109.5
O1—Sn1—C2	101.36 (12)	H2A—C2—H2B	109.5
C1—Sn1—C2	144.96 (16)	Sn1—C2—H2C	109.5
$O1^{i}$ —Sn1— $O2^{i}$	70.95 (8)	H2A—C2—H2C	109.5
O1—Sn1—O2 ⁱ	145.49 (9)	H2B—C2—H2C	109.5
C1—Sn1—O2 ⁱ	90.83 (12)	Sn2—C3—H3A	109.5
$C2$ — $Sn1$ — $O2^{i}$	88.04 (12)	Sn2—C3—H3B	109.5
O1 ⁱ —Sn1—N1	148.36 (9)	НЗА—СЗ—НЗВ	109.5
O1-Sn1-N1	73.83 (9)	Sn2—C3—H3C	109.5
C1-Sn1-N1	79.92 (12)	H3A—C3—H3C	109.5
C2-Sn1-N1	79.00 (12)	H3B—C3—H3C	109.5
$O2^{i}$ —Sn1—N1	140.66 (9)	Sn2—C4—H4A	109.5
O1-Sn2-C4	118.29 (13)	Sn2—C4—H4B	109.5
O1-Sn2-C3	114.01 (12)	H4A - C4 - H4B	109.5
C4— $Sn2$ — $C3$	127 46 (15)	Sn2—C4—H4C	109.5
O1-Sn2-O2	74.44 (9)	H4A - C4 - H4C	109.5
C4— $Sn2$ — $O2$	93.32 (12)	H4B—C4—H4C	109.5
$C_3 = Sn_2 = O_2$	95.86 (13)	N1—C5—N3	111.5 (3)
O1— $Sn2$ — $N2$	82.92 (9)	N1-C5-H5	124.3
C4— $Sn2$ — $N2$	95 66 (13)	N3—C5—H5	124.3
C3 = Sn2 = N2	95.15(14)	N3—C6—H6A	109.5
Ω^2 Sn2 N2 Ω^2 Sn2 N2	157 27 (9)	N3-C6-H6B	109.5
$Sn2 = O1 = Sn1^{i}$	112,77(11)	H6A—C6—H6B	109.5
sn2 = 01 = sn1 sn2 = 01 = sn1	141.62 (12)	N3-C6-H6C	109.5
$Sn1^{i}$ $O1$ $Sn1$	105 45 (9)	Н6 — С6—Н6С	109.5
$C8-O2-Sn^2$	125 4 (2)	H6B—C6—H6C	109.5
$C8-O2-Sn1^{i}$	123.1(2) 132.4(2)	N2-C7-N3	106.8 (3)
$Sn2-O2-Sn1^{i}$	101.70(9)	$N_2 - C_7 - S_1$	126.7(3)
C5-N1-N2	105.8 (3)	N3-C7-S1	126.7(3) 126.4(3)
C5-N1-Sn1	136.2(2)	$\Omega^2 - C^8 - C^9$	1117(3)
N2-N1-Sn1	130.2(2) 117.7(2)	$\Omega^2 - C8 - H8A$	109.3
C7 - N2 - N1	109.2(3)	C9 - C8 - H8A	109.3
C7 = N2 = Sn2	103.2(3) 1273(2)	Ω^2 —C8—H8B	109.3
N1 - N2 - Sn2	127.5(2) 123 4 (2)	C9 - C8 - H8B	109.3
$C_{5}-N_{3}-C_{7}$	1067(3)	H8A - C8 - H8B	108.0
C5-N3-C6	128 2 (3)	C8-C9-H9A	109.5
C7 - N3 - C6	125.2 (3)	C8-C9-H9B	109.5
Sn1—C1—H1A	109 5	H9A - C9 - H9B	109.5
Sn1—C1—H1B	109.5	C8—C9—H9C	109.5

H1A—C1—H1B	109.5	Н9А—С9—Н9С	109.5
Sn1—C1—H1C	109.5	H9B—C9—H9C	109.5
C4—Sn2—O1—Sn1 i	88.55 (16)	O1 ⁱ —Sn1—N1—N2	-9.0 (3)
C3—Sn2—O1—Sn1 ⁱ	-86.31 (16)	O1—Sn1—N1—N2	-6.9 (2)
O2—Sn2—O1—Sn1 ⁱ	3.23 (10)	C1—Sn1—N1—N2	95.9 (3)
N2—Sn2—O1—Sn1 ⁱ	-178.81 (13)	C2—Sn1—N1—N2	-112.3 (3)
C4—Sn2—O1—Sn1	-96.9 (2)	O2 ⁱ —Sn1—N1—N2	174.7 (2)
C3—Sn2—O1—Sn1	88.2 (2)	C5—N1—N2—C7	-1.2 (4)
O2—Sn2—O1—Sn1	177.8 (2)	Sn1—N1—N2—C7	-176.1 (2)
N2—Sn2—O1—Sn1	-4.3 (2)	C5—N1—N2—Sn2	-177.7(2)
O1 ⁱ —Sn1—O1—Sn2	-174.8 (3)	Sn1—N1—N2—Sn2	7.5 (3)
C1—Sn1—O1—Sn2	-70.2 (2)	O1—Sn2—N2—C7	-179.2 (3)
C2—Sn1—O1—Sn2	81.3 (2)	C4—Sn2—N2—C7	-61.3 (3)
O2 ⁱ —Sn1—O1—Sn2	-175.41 (15)	C3—Sn2—N2—C7	67.2 (3)
N1—Sn1—O1—Sn2	6.38 (19)	O2—Sn2—N2—C7	-174.1 (3)
$O1^{i}$ — $Sn1$ — $O1$ — $Sn1^{i}$	0.0	O1—Sn2—N2—N1	-3.4 (3)
$C1$ — $Sn1$ — $O1$ — $Sn1^i$	104.54 (13)	C4—Sn2—N2—N1	114.5 (3)
$C2$ — $Sn1$ — $O1$ — $Sn1^i$	-103.98 (14)	C3—Sn2—N2—N1	-117.0 (3)
$O2^{i}$ —Sn1—O1—Sn1 ⁱ	-0.7 (2)	O2—Sn2—N2—N1	1.7 (4)
N1—Sn1—O1—Sn1 ⁱ	-178.86 (13)	N2—N1—C5—N3	0.3 (4)
O1—Sn2—O2—C8	-175.8 (3)	Sn1—N1—C5—N3	173.6 (2)
C4—Sn2—O2—C8	65.7 (3)	C7—N3—C5—N1	0.7 (4)
C3—Sn2—O2—C8	-62.5 (3)	C6—N3—C5—N1	-178.0 (4)
N2—Sn2—O2—C8	178.9 (3)	N1—N2—C7—N3	1.7 (4)
$O1$ — $Sn2$ — $O2$ — $Sn1^i$	-2.81 (9)	Sn2—N2—C7—N3	177.9 (2)
C4—Sn2—O2—Sn1 i	-121.28 (13)	N1—N2—C7—S1	-177.6 (3)
$C3$ — $Sn2$ — $O2$ — $Sn1^i$	110.52 (13)	Sn2—N2—C7—S1	-1.3 (5)
$N2$ — $Sn2$ — $O2$ — $Sn1^i$	-8.1 (3)	C5—N3—C7—N2	-1.5 (4)
Ol ⁱ —Sn1—N1—C5	178.2 (3)	C6—N3—C7—N2	177.3 (3)
O1—Sn1—N1—C5	-179.7 (4)	C5—N3—C7—S1	177.8 (3)
C1—Sn1—N1—C5	-76.9 (4)	C6—N3—C7—S1	-3.4 (5)
C2—Sn1—N1—C5	75.0 (4)	Sn2—O2—C8—C9	-112.7 (3)
O2 ⁱ —Sn1—N1—C5	1.9 (4)	Sn1 ⁱ —O2—C8—C9	76.5 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.