metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethyl(1,10-phenanthroline- $\kappa^2 N, N'$)bis(thiocyanato- κN)tin(IV)

Ezzatollah Najafi,^a Mostafa M. Amini^a and Seik Weng Ng^{b,c}*

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 17 November 2012; accepted 20 November 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.010 Å; R factor = 0.039; wR factor = 0.106; data-to-parameter ratio = 20.0.

The Sn^{IV} atom in the title compound, $[Sn(CH_3)_2(NCS)_2(C_{12}H_8N_2)]$, is located on a twofold rotation axis in a distorted octahedral environment. The methyl groups are *trans* to each other $[C-Sn-C = 175.7 (3)^{\circ}]$, whereas the thiocyanate groups are *cis* to each other.

Related literature

For dimethyltin dithiothiocyanate, see: Britton (2006). For the 4,4'-bipyridine adduct, see: Najafi *et al.* (2011).

Experimental

Crystal data

 $\begin{bmatrix} Sn(CH_3)_2(NCS)_2(C_{12}H_8N_2) \end{bmatrix} \\ M_r = 445.12 \\ Orthorhombic, Pccn \\ a = 6.8218 (7) Å \\ b = 12.9272 (13) Å \\ c = 20.746 (2) Å$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{min} = 0.641, T_{max} = 0.923$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 1.012116 reflections $V = 1829.5 (3) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.63 \text{ mm}^{-1}$ T = 295 K $0.30 \times 0.15 \times 0.05 \text{ mm}$

10262 measured reflections 2116 independent reflections 1368 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.055$

106 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.63 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/ SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6862).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Britton, D. (2006). Acta Cryst. C62, m93–m94.
Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m350.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2012). E68, m1544 [doi:10.1107/S1600536812047691]

Dimethyl(1,10-phenanthroline- $\kappa^2 N, N'$)bis(thiocyanato- κN)tin(IV)

Ezzatollah Najafi, Mostafa M. Amini and Seik Weng Ng

S1. Comment

Few amine adducts of dimethyltin dithiocyanate, which exists as a weakly bridged polymeric chain (Britton, 2006), have been reported. The 4,4'-bipyridine adduct is polymeric (Najafi *et al.*, 2011). In the 1,10-phenanthroline adduct (Scheme I, Fig. 1), the Sn^{IV} atom is located on a twofold rotation axis in an octahedral environment. The methyl groups are *trans* to each other whereas the thiocyanate groups are *cis* to each other.

S2. Experimental

Dimethyltin dithiocyanate (0.27 g, 1 mmol) and 1,10-phenanthroline hydrate (0.19 g, 1 mmol) were loaded into a convection tube; the tube was filled with ethyl alcohol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $(CH_3)_2Sn(NCS)_2(C_{12}H_8N_2)$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Dimethyl(1,10-phenanthroline- $\kappa^2 N, N'$)bis(thiocyanato- κN)tin(IV)

Crystal data

 $[Sn(CH_3)_2(NCS)_2(C_{12}H_8N_2)]$ $M_r = 445.12$ Orthorhombic, *Pccn* Hall symbol: -P 2ab 2ac a = 6.8218 (7) Å b = 12.9272 (13) Å c = 20.746 (2) Å V = 1829.5 (3) Å³ Z = 4

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.641, \ T_{\max} = 0.923$
diffractometer with an Atlas detector	10262 measured reflections
Radiation source: SuperNova (Mo) X-ray	2116 independent reflections
Source	1368 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.055$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$
ωscan	$h = -6 \rightarrow 8$
Absorption correction: multi-scan	$k = -16 \rightarrow 16$
(CrysAlis PRO; Agilent, 2012)	$l = -27 \rightarrow 24$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 1.012116 reflections 106 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 880 $D_x = 1.616 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1757 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 1.63 \text{ mm}^{-1}$ T = 295 KPrism, colorless $0.30 \times 0.15 \times 0.05 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.5974P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.51 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.63 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0024 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.7500	0.2500	0.243352 (18)	0.04816 (19)	
S1	0.3311 (2)	0.45584 (12)	0.09896 (7)	0.0957 (6)	
N1	0.5798 (5)	0.3037 (3)	0.33508 (16)	0.0515 (8)	
N2	0.5246 (7)	0.3231 (4)	0.1785 (2)	0.1073 (18)	
C1	0.5903 (7)	0.1114 (4)	0.2395 (2)	0.0746 (14)	
H1A	0.6337	0.0710	0.2034	0.112*	
H1B	0.4533	0.1267	0.2349	0.112*	
H1C	0.6109	0.0731	0.2786	0.112*	
C2	0.4146 (7)	0.3576 (4)	0.3337 (3)	0.0736 (14)	
H2	0.3600	0.3748	0.2941	0.088*	
C3	0.3208 (10)	0.3891 (5)	0.3898 (4)	0.107 (2)	
H3	0.2060	0.4276	0.3875	0.128*	

C4	0.3969 (12)	0.3635 (6)	0.4470 (4)	0.115 (3)	
H4	0.3327	0.3832	0.4846	0.138*	
C5	0.5721 (10)	0.3073 (5)	0.4510 (3)	0.0882 (18)	
C6	0.6600 (6)	0.2783 (3)	0.3924 (2)	0.0556 (11)	
C7	0.6688 (15)	0.2767 (9)	0.5097 (3)	0.142 (5)	
H7	0.6135	0.2956	0.5490	0.170*	
C8	0.4443 (7)	0.3778 (4)	0.1449 (2)	0.0644 (12)	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0574 (3)	0.0459 (3)	0.0411 (3)	0.00503 (18)	0.000	0.000
0.1188 (12)	0.0817 (11)	0.0866 (11)	0.0168 (9)	-0.0541 (9)	-0.0028 (8)
0.056 (2)	0.043 (2)	0.055 (2)	0.0032 (17)	0.0090 (16)	-0.0054 (17)
0.127 (4)	0.085 (4)	0.110 (4)	0.010 (3)	-0.058 (3)	0.019 (3)
0.081 (4)	0.065 (3)	0.078 (4)	-0.010 (3)	-0.014 (2)	-0.009 (3)
0.062 (3)	0.054 (3)	0.105 (4)	0.005 (2)	0.023 (3)	-0.010 (3)
0.085 (4)	0.075 (4)	0.161 (7)	-0.002 (3)	0.061 (5)	-0.028 (5)
0.137 (6)	0.096 (5)	0.113 (6)	-0.044 (5)	0.087 (5)	-0.050 (5)
0.123 (5)	0.082 (4)	0.059 (3)	-0.039 (4)	0.038 (3)	-0.022 (3)
0.071 (3)	0.052 (3)	0.044 (2)	-0.021 (2)	0.014 (2)	-0.008(2)
0.225 (15)	0.156 (12)	0.044 (3)	-0.092 (10)	0.035 (4)	-0.019 (4)
0.071 (3)	0.068 (3)	0.054 (3)	-0.001 (3)	-0.015 (2)	-0.009 (2)
	0.0574 (3) 0.1188 (12) 0.056 (2) 0.127 (4) 0.081 (4) 0.062 (3) 0.085 (4) 0.137 (6) 0.123 (5) 0.071 (3) 0.225 (15) 0.071 (3)	0.0574 (3) 0.0459 (3) 0.1188 (12) 0.0817 (11) 0.056 (2) 0.043 (2) 0.127 (4) 0.085 (4) 0.081 (4) 0.065 (3) 0.062 (3) 0.054 (3) 0.085 (4) 0.075 (4) 0.137 (6) 0.096 (5) 0.123 (5) 0.082 (4) 0.071 (3) 0.052 (3) 0.225 (15) 0.156 (12) 0.071 (3) 0.068 (3)	0.0574(3) $0.0459(3)$ $0.0411(3)$ $0.1188(12)$ $0.0817(11)$ $0.0866(11)$ $0.056(2)$ $0.043(2)$ $0.055(2)$ $0.127(4)$ $0.085(4)$ $0.110(4)$ $0.081(4)$ $0.065(3)$ $0.078(4)$ $0.062(3)$ $0.054(3)$ $0.105(4)$ $0.085(4)$ $0.105(4)$ $0.161(7)$ $0.137(6)$ $0.096(5)$ $0.113(6)$ $0.123(5)$ $0.082(4)$ $0.059(3)$ $0.071(3)$ $0.052(3)$ $0.044(2)$ $0.225(15)$ $0.156(12)$ $0.054(3)$	0.0574(3) $0.0459(3)$ $0.0411(3)$ $0.00503(18)$ $0.1188(12)$ $0.0817(11)$ $0.0866(11)$ $0.0168(9)$ $0.056(2)$ $0.043(2)$ $0.055(2)$ $0.0032(17)$ $0.127(4)$ $0.085(4)$ $0.110(4)$ $0.010(3)$ $0.081(4)$ $0.065(3)$ $0.078(4)$ $-0.010(3)$ $0.062(3)$ $0.054(3)$ $0.105(4)$ $0.005(2)$ $0.085(4)$ $0.075(4)$ $0.161(7)$ $-0.002(3)$ $0.137(6)$ $0.096(5)$ $0.113(6)$ $-0.044(5)$ $0.123(5)$ $0.082(4)$ $0.059(3)$ $-0.039(4)$ $0.071(3)$ $0.052(3)$ $0.044(2)$ $-0.092(10)$ $0.225(15)$ $0.156(12)$ $0.054(3)$ $-0.001(3)$	0.0574(3) $0.0459(3)$ $0.0411(3)$ $0.00503(18)$ 0.000 $0.1188(12)$ $0.0817(11)$ $0.0866(11)$ $0.0168(9)$ $-0.0541(9)$ $0.056(2)$ $0.043(2)$ $0.055(2)$ $0.0032(17)$ $0.0090(16)$ $0.127(4)$ $0.085(4)$ $0.110(4)$ $0.010(3)$ $-0.058(3)$ $0.081(4)$ $0.065(3)$ $0.078(4)$ $-0.010(3)$ $-0.014(2)$ $0.062(3)$ $0.054(3)$ $0.105(4)$ $0.005(2)$ $0.023(3)$ $0.085(4)$ $0.075(4)$ $0.161(7)$ $-0.002(3)$ $0.061(5)$ $0.137(6)$ $0.096(5)$ $0.113(6)$ $-0.039(4)$ $0.038(3)$ $0.071(3)$ $0.052(3)$ $0.044(2)$ $-0.021(2)$ $0.014(2)$ $0.225(15)$ $0.156(12)$ $0.044(3)$ $-0.092(10)$ $0.035(4)$ $0.071(3)$ $0.068(3)$ $0.054(3)$ $-0.001(3)$ $-0.015(2)$

Geometric parameters (Å, °)

Sn1—C1	2.098 (5)	C1—H1C	0.9600
Sn1—C1 ⁱ	2.098 (5)	C2—C3	1.388 (8)
Sn1—N2 ⁱ	2.251 (4)	С2—Н2	0.9300
Sn1—N2	2.251 (4)	C3—C4	1.337 (10)
Sn1—N1	2.335 (3)	С3—Н3	0.9300
Sn1—N1 ⁱ	2.335 (3)	C4—C5	1.401 (9)
S1—C8	1.588 (5)	C4—H4	0.9300
N1-C2	1.326 (5)	C5—C6	1.405 (6)
N1-C6	1.350 (5)	С5—С7	1.442 (9)
N2—C8	1.134 (5)	$C6-C6^{i}$	1.430 (9)
C1—H1A	0.9600	$C7 - C7^{i}$	1.31 (2)
C1—H1B	0.9600	С7—Н7	0.9300
C1—Sn1—C1 ⁱ	175 7 (3)	Sn1—C1—H1C	109 5
$C1$ — $Sn1$ — $N2^{i}$	88.48 (19)	H1A—C1—H1C	109.5
C1 ⁱ —Sn1—N2 ⁱ	88.94 (18)	H1B—C1—H1C	109.5
C1—Sn1—N2	88.94 (18)	N1—C2—C3	121.9 (6)
C1 ⁱ —Sn1—N2	88.48 (19)	N1—C2—H2	119.1
N2 ⁱ —Sn1—N2	106.6 (3)	C3—C2—H2	119.1
C1—Sn1—N1	91.51 (16)	C4—C3—C2	119.5 (7)
C1 ⁱ —Sn1—N1	92.01 (15)	C4—C3—H3	120.2
N2 ⁱ —Sn1—N1	162.09 (16)	С2—С3—Н3	120.2

N2—Sn1—N1	91.30 (17)	C3—C4—C5	120.7 (6)
C1—Sn1—N1 ⁱ	92.01 (15)	C3—C4—H4	119.6
$C1^{i}$ — $Sn1$ — $N1^{i}$	91.51 (16)	C5—C4—H4	119.6
N2 ⁱ —Sn1—N1 ⁱ	91.30 (17)	C4—C5—C6	116.9 (6)
N2—Sn1—N1 ⁱ	162.09 (16)	C4—C5—C7	125.6 (6)
N1—Sn1—N1 ⁱ	70.80 (18)	C6—C5—C7	117.6 (7)
C2—N1—C6	119.4 (4)	N1—C6—C5	121.6 (5)
C2—N1—Sn1	124.2 (3)	N1C6C6 ⁱ	118.2 (2)
C6—N1—Sn1	116.4 (3)	C5-C6-C6 ⁱ	120.2 (4)
C8—N2—Sn1	163.6 (5)	C7 ⁱ —C7—C5	122.2 (4)
Sn1—C1—H1A	109.5	C7 ⁱ —C7—H7	118.9
Sn1—C1—H1B	109.5	С5—С7—Н7	118.9
H1A—C1—H1B	109.5	N2	178.8 (5)
C1—Sn1—N1—C2	-89.4 (4)	Sn1—N1—C2—C3	-178.9 (4)
C1 ⁱ —Sn1—N1—C2	88.1 (4)	N1—C2—C3—C4	-0.9 (9)
N2 ⁱ —Sn1—N1—C2	-179.2 (5)	C2—C3—C4—C5	1.4 (10)
N2—Sn1—N1—C2	-0.5 (4)	C3—C4—C5—C6	-1.1 (9)
N1 ⁱ —Sn1—N1—C2	179.0 (4)	C3—C4—C5—C7	179.2 (8)
C1—Sn1—N1—C6	91.6 (3)	C2—N1—C6—C5	0.2 (6)
C1 ⁱ —Sn1—N1—C6	-90.9 (3)	Sn1—N1—C6—C5	179.3 (3)
N2 ⁱ —Sn1—N1—C6	1.8 (6)	$C2-N1-C6-C6^{i}$	-178.9 (4)
N2—Sn1—N1—C6	-179.5 (3)	Sn1-N1-C6-C6 ⁱ	0.1 (6)
N1 ⁱ —Sn1—N1—C6	0.0 (2)	C4C5C6N1	0.3 (7)
C1—Sn1—N2—C8	-167.4 (17)	C7—C5—C6—N1	-180.0 (6)
C1 ⁱ —Sn1—N2—C8	9.2 (17)	C4C5C6 ⁱ	179.4 (5)
N2 ⁱ —Sn1—N2—C8	-79.3 (17)	C7-C5-C6-C6 ⁱ	-0.8 (9)
N1—Sn1—N2—C8	101.1 (17)	$C4-C5-C7-C7^{i}$	179.3 (13)
N1 ⁱ —Sn1—N2—C8	99.4 (17)	C6-C5-C7-C7 ⁱ	-0.5 (19)
C6—N1—C2—C3	0.0 (7)		

Symmetry code: (i) -x+3/2, -y+1/2, z.