metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -4,6-dimethylpyrimidine-2-thiolato)- $\kappa^3 N$,S:S; $\kappa^3 S$:N,S-bis[(triphenyl-phosphane- κP)silver(I)]

Yupa Wattanakanjana,* Chaveng Pakawatchai, Sukanya Kowittheeraphong and Ruthairat Nimthong

Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand Correspondence e-mail: yupa.t@psu.ac.th

Received 7 November 2012; accepted 24 November 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.088; data-to-parameter ratio = 20.9.

The dinuclear title complex, $[Ag_2(C_6H_7N_2S)_2(C_{18}H_{15}P)_2]$, comprises two inversion-related $[Ag(C_6H_7N_2S)(C_{18}H_{15}P)]$ units. The pyrimidinethiolate anion acts both as a bridging and a chelating ligand. The Ag^I ions are linked *via* two μ_2 -S donor atoms, which generate a strictly planar Ag_2S_2 core with an $Ag \cdots Ag$ separation of 2.9569 (4) Å. The Ag^I ion presents a distorted tetrahedral coordination geometry. In the crystal, weak $C-H \cdots N$ and $C-H \cdots S$ hydrogen bonds link the complex molecules into a two-dimensional network parallel to (010).

Related literature

For the structures of metal(I) coordination compounds and their potential applications, see: Aslanidis *et al.* (1997); McFarlane *et al.* (1998); Nawaz *et al.* (2011); Hameau *et al.* (2012); Nimthong *et al.* (2012); Pakawatchai *et al.* (2012). For relevant examples of discrete complexes, see: Cox *et al.* (2000); Lobana *et al.* (2008); Isab *et al.* (2010).

Experimental

Crystal data	
$[Ag_{2}(C_{6}H_{7}N_{2}S)_{2}(C_{18}H_{15}P)_{2}]$	a = 11.7050 (5) Å
$M_r = 1018.67$ Monoclinic, $P2_1/n$	b = 15.3084 (7) A c = 12.5331 (6) Å

 $\beta = 97.483 (1)^{\circ}$ $V = 2226.62 (18) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\rm min} = 0.793, \ T_{\rm max} = 0.909$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.088$ S = 1.045568 reflections 266 parameters

4798 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

 $\mu = 1.08 \text{ mm}^{-1}$

 $0.29 \times 0.18 \times 0.09 \text{ mm}$

26686 measured reflections

5568 independent reflections

T = 293 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.54 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

3.756 (4)

151

Table 1Hydrogen-bond geometry (Å, °).

 $C35 - H35 \cdots N2^{iii}$

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y, -z; (iii) x, y, z + 1.

0.93

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

2.93

We are grateful to the Department of Chemistry, and the Graduate School, Prince of Songkla University, for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2464).

References

- Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). *Inorg. Chim. Acta*, 254, 277–284.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615–1620.
- Hameau, A., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2012). *Inorg. Chim. Acta*, 388, 60–70.
- Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1251–1256.
- Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). *Inorg. Chim. Acta*, **281**, 121–125.
- Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). *Polyhedron*, **30**, 1502–1506.
- Nimthong, R., Pakawatchai, C. & Wattanakanjana, Y. (2012). Acta Cryst. E68, m645.

Pakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773–m774.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.

supporting information

Acta Cryst. (2012). E68, m1572-m1573 [doi:10.1107/S1600536812048210]

Bis(μ -4,6-dimethylpyrimidine-2-thiolato)- $\kappa^3 N$,S:S; $\kappa^3 S$:N,S-bis[(triphenyl-phosphane- κP)silver(I)]

Yupa Wattanakanjana, Chaveng Pakawatchai, Sukanya Kowittheeraphong and Ruthairat Nimthong

S1. Comment

In recent years, a large number of structural reports on metal(I) complexes containing heterocyclic thiones as ligands or mixed-ligands with triphenylphosphane have been studied (Aslanidis *et al.*, 1997; McFarlane *et al.*, 1998; Pakawatchai *et al.*, 2012; Nimthong *et al.*, 2012) because of not only their potential applications due to their antimicrobial activities (Nawaz *et al.*, 2011), but also strongly luminescent properties (Hameau *et al.*, 2012).

The structure of the title dinuclear mixed-ligand complex displays the distorted tetrahedral coordination of each Ag¹ center, which exhibits a planar Ag₂S₂ moiety in which each of the doubly S-bridged Ag¹ centers is surrounded by the one P atom of phosphane ligand and one N atom of the dmpymtH ligands (Fig. 1). The Ag—Ag distance of 2.9569 (4) Å in the four-membered Ag₂S₂ ring is shorter than in [Ag₂X₂(1-S-pySH)₂(PPh₃)₂] (X = Cl and Br), 3.8425 (8) and 3.8211 (4) Å, respectively (Lobana *et al.*, 2008) and also shorter than the sum of the covalent radii of two Ag¹ centers (3.44 Å). Focusing on the comparison of bond distances and bond angles around the Ag¹ ion, the Ag—S bond lengths [2.5492 (6)–2.7897 (6) Å] are in good agreement with values reported for other silver(I) complexes with heterocyclic thione ligands, such as 2.5548 (9) Å for [Ag(PPh₃)(pymtH)Br]₂ (Cox *et al.*, 2000) and 2.537 (2) Å for [Ag(Ph₃P)(Diaz)₂]₂(NO₃)₂ (Nawaz *et al.*, 2011). The Ag1—P1 bond length of 2.4088 (6) Å is similar to that found in [Ag(PPh₃)(thiourea)(NO₃)]₂.[Ag(PPh₃) (thiourea)]₂(NO₃)₂ [2.4029 (10)–2.4157 (10) Å] (Isab *et al.*, 2010). The two S1–Ag1–P1 angles of 116.81 (2) and 123.56 (2)° are larger than the normal tetrahedral value of 109.5°. In the crystal, the intermolecular interactions C14(*sp*²) —H14…N2 [H14…N2 = 2.686 (4) Å, C14(*sp*²)…N2 = 3.471 (4) Å and C14(*sp*²)—H14…N2 = 142.52 (8)°] and C14(*sp*²) —H14…S1 = [H14…S1 = 2.942 (3) Å, C14(*sp*²)…N2 = 3.801 (3) Å and C14(*sp*²)—H14…S1 = 154.18 (9)°] form chains (Fig. 2). Moreover, secondary interactions C35(*sp*²)—H35…N2 = 2.928 (4) Å, C35(*sp*²)…N2 = 3.756 (4) Å and C35(*sp*²)—H35…N2 = 150.48 (7)°] are also observed, which form the two-dimensional layer network (Fig. 3).

S2. Experimental

Triphenylphosphane (0.31 g, 1.18 mmol) was dissolved in 30 cm³ of ethanol at 335 K. Silver acetate (0.10 g, 0.60 mmol) was added and the mixture was stirred for 3 h. 4,6-Dimethylpyrimidine-2(1H)-thione (0.18 g, 0.46 mmol) was added and the new reaction mixture was refluxed for 2 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solid, which was deposited upon standing for several days, was filtered off and dried under reduced pressure.

S3. Refinement

The H atoms bonded to C atoms were constrained to ride on their parent atoms with C—H bond lengths of 0.93 Å [aryl CH, $U_{iso}(H) = 1.2U_{eq}(C)$] and 0.96 Å [methyl CH₃, $U_{iso}(H) = 1.5U_{eq}(C)$] except for H3, which was located in a difference

map and refined isotropically.

Figure 1

The molecular structure with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Part of the crystal structure with C—H···N and C—H···S hydrogen bonds interactions showed as dashed lines.

Figure 3

The packing diagram viewed down the b axis. The dashed lines represent intermolecular C—H…N and C—H…S interactions.

Bis(μ -4,6-dimethylpyrimidine-2-thiolato)- $\kappa^3 N$,S:S; $\kappa^3 S:N$,S-bis[(triphenylphosphane- κP)silver(I)]

Crystal data	
$[Ag_{2}(C_{6}H_{7}N_{2}S)_{2}(C_{18}H_{15}P)_{2}]$ $M_{r} = 1018.67$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 11.7050 (5) Å b = 15.3084 (7) Å c = 12.5331 (6) Å $\beta = 97.483$ (1)° V = 2226.62 (18) Å ³ Z = 2	F(000) = 1032 $D_x = 1.519 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8845 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 1.08 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.29 \times 0.18 \times 0.09 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003) $T_{\min} = 0.793, T_{\max} = 0.909$	26686 measured reflections 5568 independent reflections 4798 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -15 \rightarrow 15$ $k = -20 \rightarrow 20$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
wR(F ²) = 0.088	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
5568 reflections	and constrained refinement
266 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 0.8969P]$
0 restraints	where $P = (F^2 + 2F^2)/(3$
0 constraints	where $F = (F_0^2 + 2F_c^2)/5$ (Δ/σ) _{max} = 0.003
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.54$ e Å ⁻³ $\Delta ho_{ m min} = -0.29$ e Å ⁻³

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.64391 (17)	0.09032 (14)	-0.12789 (17)	0.0376 (4)
C2	0.6887 (2)	0.20334 (17)	-0.2336 (2)	0.0512 (6)
C3	0.6524 (3)	0.26179 (17)	-0.1622 (2)	0.0578 (7)
C4	0.6137 (2)	0.23054 (15)	-0.07073 (19)	0.0457 (5)
C5	0.7338 (4)	0.2323 (2)	-0.3350 (3)	0.0798 (10)
H5A	0.7548	0.1820	-0.3739	0.120*
H5B	0.8003	0.2687	-0.3168	0.120*
H5C	0.6752	0.2647	-0.3790	0.120*
C6	0.5799 (3)	0.28888 (19)	0.0155 (2)	0.0673 (8)
H6A	0.5556	0.2540	0.0721	0.101*
H6B	0.5177	0.3261	-0.0141	0.101*
H6C	0.6446	0.3241	0.0440	0.101*
C21	0.69001 (19)	0.17384 (14)	0.30847 (17)	0.0390 (4)
C22	0.5829 (2)	0.21344 (18)	0.3033 (2)	0.0525 (6)
H22	0.5174	0.1845	0.2712	0.063*
C23	0.5735 (3)	0.2965 (2)	0.3463 (2)	0.0662 (8)
H23	0.5015	0.3229	0.3427	0.079*
C24	0.6690 (3)	0.33977 (17)	0.3938 (2)	0.0654 (8)
H24	0.6618	0.3951	0.4230	0.079*
C25	0.7747 (3)	0.30172 (18)	0.3984 (2)	0.0620 (7)
H25	0.8396	0.3314	0.4304	0.074*
C26	0.7861 (2)	0.21889 (17)	0.3557 (2)	0.0533 (6)
H26	0.8587	0.1936	0.3588	0.064*
C31	0.66300 (17)	-0.00663 (15)	0.36218 (17)	0.0384 (4)
C32	0.6224 (2)	-0.08985 (19)	0.3347 (2)	0.0581 (6)
H32	0.6112	-0.1070	0.2630	0.070*
C33	0.5986 (3)	-0.1472 (2)	0.4139 (3)	0.0799 (10)
H33	0.5735	-0.2035	0.3955	0.096*
C34	0.6118 (3)	-0.1213 (3)	0.5202 (3)	0.0781 (10)
H34	0.5955	-0.1602	0.5732	0.094*
C35	0.6487 (3)	-0.0385 (2)	0.5481 (2)	0.0698 (9)
H35	0.6559	-0.0207	0.6196	0.084*
C36	0.6751 (2)	0.0184 (2)	0.4697 (2)	0.0530 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H36	0.7013	0.0743	0.4890	0.064*	
N1	0.60828 (16)	0.14406 (12)	-0.05384 (15)	0.0397 (4)	
N2	0.68507 (17)	0.11646 (13)	-0.21745 (15)	0.0452 (4)	
Н3	0.665 (3)	0.318 (2)	-0.173 (2)	0.064 (8)*	
C11	0.84851 (19)	0.04687 (14)	0.2463 (2)	0.0406 (5)	
C12	0.8906 (3)	0.0742 (2)	0.1534 (2)	0.0591 (7)	
H12	0.8425	0.1018	0.0987	0.071*	
C13	1.0069 (3)	0.0597 (2)	0.1432 (3)	0.0782 (11)	
H13	1.0360	0.0783	0.0815	0.094*	
C14	1.0778 (3)	0.0188 (2)	0.2223 (4)	0.0801 (11)	
H14	1.1547	0.0093	0.2143	0.096*	
C15	1.0368 (2)	-0.0081 (2)	0.3123 (3)	0.0726 (9)	
H15	1.0858	-0.0362	0.3658	0.087*	
C16	0.9221 (2)	0.00566 (18)	0.3264 (2)	0.0531 (6)	
H16	0.8950	-0.0127	0.3892	0.064*	
Ag1	0.570898 (16)	0.048363 (12)	0.086830 (13)	0.04660 (8)	
P1	0.69618 (5)	0.06407 (4)	0.25410 (4)	0.03501 (12)	
S 1	0.35819 (5)	0.02130 (4)	0.09946 (5)	0.04512 (14)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0319 (9)	0.0395 (11)	0.0411 (11)	0.0003 (8)	0.0034 (8)	0.0072 (9)
C2	0.0592 (15)	0.0507 (14)	0.0446 (12)	-0.0067 (11)	0.0096 (11)	0.0118 (11)
C3	0.083 (2)	0.0362 (13)	0.0531 (15)	-0.0049 (12)	0.0057 (13)	0.0099 (11)
C4	0.0538 (13)	0.0383 (11)	0.0436 (12)	0.0023 (10)	0.0012 (10)	0.0032 (9)
C5	0.113 (3)	0.070 (2)	0.0621 (18)	-0.0094 (19)	0.0349 (18)	0.0209 (16)
C6	0.097 (2)	0.0480 (15)	0.0575 (16)	0.0074 (15)	0.0102 (16)	-0.0049 (12)
C21	0.0473 (11)	0.0363 (10)	0.0345 (10)	0.0001 (9)	0.0090 (9)	0.0024 (8)
C22	0.0541 (14)	0.0543 (14)	0.0499 (13)	0.0089 (11)	0.0103 (11)	0.0040 (11)
C23	0.082 (2)	0.0571 (16)	0.0636 (17)	0.0293 (16)	0.0268 (16)	0.0113 (14)
C24	0.108 (2)	0.0344 (12)	0.0598 (16)	0.0041 (14)	0.0351 (17)	0.0037 (11)
C25	0.084 (2)	0.0435 (14)	0.0615 (16)	-0.0152 (14)	0.0203 (15)	-0.0097 (12)
C26	0.0585 (15)	0.0439 (13)	0.0584 (15)	-0.0052 (11)	0.0108 (12)	-0.0087 (11)
C31	0.0330 (10)	0.0453 (12)	0.0378 (10)	0.0022 (9)	0.0075 (8)	0.0037 (9)
C32	0.0635 (16)	0.0516 (15)	0.0603 (16)	-0.0116 (13)	0.0116 (13)	0.0003 (12)
C33	0.083 (2)	0.0578 (18)	0.100 (3)	-0.0168 (16)	0.019 (2)	0.0209 (18)
C34	0.0669 (19)	0.090 (2)	0.081 (2)	0.0028 (17)	0.0261 (17)	0.041 (2)
C35	0.0621 (17)	0.105 (3)	0.0443 (14)	0.0128 (17)	0.0149 (13)	0.0211 (15)
C36	0.0534 (14)	0.0641 (16)	0.0412 (12)	0.0022 (12)	0.0047 (11)	0.0015 (11)
N1	0.0436 (9)	0.0373 (9)	0.0383 (9)	0.0003 (8)	0.0061 (7)	0.0036 (7)
N2	0.0486 (10)	0.0472 (11)	0.0415 (10)	-0.0010 (9)	0.0118 (8)	0.0043 (8)
C11	0.0376 (11)	0.0377 (11)	0.0481 (12)	-0.0057 (8)	0.0120 (9)	-0.0107 (9)
C12	0.0602 (16)	0.0659 (16)	0.0554 (15)	-0.0148 (13)	0.0236 (13)	-0.0094 (13)
C13	0.071 (2)	0.087 (2)	0.087 (2)	-0.0274 (18)	0.047 (2)	-0.0282 (19)
C14	0.0470 (15)	0.071 (2)	0.129 (3)	-0.0104 (15)	0.036 (2)	-0.039 (2)
C15	0.0417 (14)	0.0596 (18)	0.116 (3)	0.0051 (13)	0.0075 (16)	-0.0152 (18)
C16	0.0423 (12)	0.0517 (14)	0.0653 (16)	0.0035 (11)	0.0071 (11)	-0.0039 (12)

supporting information

Ag1 P1 S1	0.05306 (12) 0.0351 (3) 0.0448 (3)	0.05106 (12) 0.0382 (3) 0.0354 (3)	0.03463 (10) 0.0317 (3) 0.0576 (3)	-0.01141 (8) -0.0029 (2) 0.0031 (2)	0.00173 (8) 0.0043 (2) 0.0160 (3)	0.00047 (7) -0.0018 (2) 0.0063 (2)
Geome	tric parameters (Å,	, <i>°</i>)				
C1—N	2	1.339 (3)	C3	51—P1	1.	815 (2)
C1—N	1	1.346 (3)	C3	32—C33	1.	380 (4)
C1—S	1 ⁱ	1.746 (2)	C3	52—H32	0.	9300
C2—N	2	1.347 (3)	C3	3-C34	1.	379 (5)
С2—С	3	1.372 (4)	C3	3—Н33	0.	9300
С2—С	5	1.505 (3)	C3	64—C35	1.1	370 (5)
С3—С	4	1.373 (3)	C3	64—H34	0.	9300
С3—Н	3	0.89 (3)	C3	5—C36	1.	377 (4)
C4—N	1	1.343 (3)	C3	5—H35	0.	9300
C4—C	6	1.495 (4)	C3	6—H36	0.	9300
С5—Н	5A	0.9600	NI	—Ag1	2.	3763 (18)
С5—Н	5B	0.9600	Cl	1—C12	1.	386 (3)
С5—Н	5C	0.9600	Cl	1—C16	1.	387 (4)
С6—Н	6A	0.9600	Cl	1—P1	1.	818 (2)
С6—Н	6B	0.9600	Cl	2—C13	1.4	401 (4)
С6—Н	6C	0.9600	Cl	2—H12	0.	9300
C21—	C26	1.385 (3)	Cl	3—C14	1.	360 (6)
C21—	C22	1.387 (3)	Cl	3—Н13	0.	9300
C21—	P1	1.818 (2)	Cl	4—C15	1.	346 (5)
C22—	C23	1.391 (4)	Cl	4—H14	0.	9300
C22—1	H22	0.9300	Cl	5—C16	1.	393 (4)
C23—	C24	1.367 (5)	Cl	5—H15	0.	9300
C23—	H23	0.9300	Cl	6—H16	0.	9300
C24—	C25	1.362 (5)	Ag	g1—P1	2	4088 (6)
C24—	H24	0.9300	Ag	g1—S1	2.	5492 (6)
C25—	C26	1.390 (4)	Ag	g1—S1 ⁱ	2.	7897 (6)
C25—	H25	0.9300	Ag	g1—Ag1 ⁱ	2.	9569 (4)
C26—	H26	0.9300	S1	—C1 ⁱ	1.	746 (2)
C31—	C32	1.387 (4)	S1	—Ag1 ⁱ	2.	7897 (6)
C31—	C36	1.390 (3)				
N2—C	21—N1	125.0 (2)	C3	35—C34—C33	12	20.3 (3)
N2—C	1-S1 ⁱ	118.66 (1	7) C3	5—С34—Н34	11	9.9
N1—C	1-S1 ⁱ	116.31 (1	5) C3	3—С34—Н34	11	9.9
N2—C	2—C3	121.8 (2)	C3	34—C35—C36	11	9.7 (3)
N2—C	2—C5	116.1 (3)	C3	94—C35—H35	12	20.2
С3—С	2—С5	122.1 (3)	C3	6—С35—Н35	12	20.2
С2—С	3—C4	118.8 (2)	C3	5—C36—C31	12	20.9 (3)
С2—С	3—Н3	117.6 (19)) C3	5—С36—Н36	11	9.6
C4—C	3—Н3	123 (2)	C3	31—С36—Н36	11	9.6
N1—C	4—C3	120.1 (2)	C4	-N1-C1	11	7.93 (19)
N1—C	4—C6	116.9 (2)	C4	-N1-Ag1	13	67.84 (16)

C3—C4—C6	122.9 (2)	C1—N1—Ag1	103.78 (13)
С2—С5—Н5А	109.5	C1—N2—C2	116.3 (2)
С2—С5—Н5В	109.5	C12—C11—C16	119.3 (2)
H5A—C5—H5B	109.5	C12—C11—P1	117.4 (2)
С2—С5—Н5С	109.5	C16—C11—P1	123.23 (18)
H5A—C5—H5C	109.5	C11—C12—C13	119.0 (3)
H5B—C5—H5C	109.5	C11—C12—H12	120.5
C4—C6—H6A	109.5	С13—С12—Н12	120.5
C4—C6—H6B	109.5	C14—C13—C12	120.9 (3)
H6A—C6—H6B	109.5	C14—C13—H13	119.5
С4—С6—Н6С	109.5	С12—С13—Н13	119.5
Н6А—С6—Н6С	109.5	C15—C14—C13	120.1 (3)
H6B—C6—H6C	109.5	C15—C14—H14	120.0
C26—C21—C22	118.8 (2)	C13—C14—H14	120.0
C26—C21—P1	123.42 (18)	C14—C15—C16	121.0 (3)
C22—C21—P1	117.80 (19)	C14—C15—H15	119.5
C21—C22—C23	119.9 (3)	C16—C15—H15	119.5
C21—C22—H22	120.1	C11—C16—C15	119.7 (3)
C23—C22—H22	120.1	C11—C16—H16	120.2
C24—C23—C22	120.7 (3)	C15—C16—H16	120.2
С24—С23—Н23	119.7	N1—Ag1—P1	115.73 (5)
С22—С23—Н23	119.7	N1—Ag1—S1	114.96 (5)
C25—C24—C23	119.8 (3)	P1—Ag1—S1	116.81 (2)
C25—C24—H24	120.1	N1—Ag1—S1 ⁱ	60.73 (5)
C23—C24—H24	120.1	P1—Ag1—S1 ⁱ	123.56 (2)
C24—C25—C26	120.4 (3)	S1—Ag1—S1 ⁱ	112.912 (15)
C24—C25—H25	119.8	N1—Ag1—Ag1 ⁱ	84.41 (5)
С26—С25—Н25	119.8	P1—Ag1—Ag1 ⁱ	155.550 (17)
C21—C26—C25	120.4 (3)	S1—Ag1—Ag1 ⁱ	60.342 (16)
C21—C26—H26	119.8	S1 ⁱ —Ag1—Ag1 ⁱ	52.570 (14)
С25—С26—Н26	119.8	C31—P1—C11	105.11 (10)
C32—C31—C36	118.8 (2)	C31—P1—C21	104.39 (10)
C32—C31—P1	117.53 (18)	C11—P1—C21	103.96 (10)
C36—C31—P1	123.68 (19)	C31—P1—Ag1	115.14 (7)
C33—C32—C31	120.0 (3)	C11—P1—Ag1	115.39 (8)
С33—С32—Н32	120.0	C21—P1—Ag1	111.66 (7)
С31—С32—Н32	120.0	C1 ⁱ —S1—Ag1	102.21 (7)
C34—C33—C32	120.3 (3)	C1 ⁱ —S1—Ag1 ⁱ	79.07 (7)
С34—С33—Н33	119.9	Ag1—S1—Ag1 ⁱ	67.088 (15)
С32—С33—Н33	119.9		

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C14—H14…S1 ⁱⁱ	0.93	2.94	3.801 (3)	154

			supportin	supporting informatio		
C14—H14…N2 ⁱⁱⁱ	0.93	2.69	3.471 (4)	143		
C35—H35…N2 ^{iv}	0.93	2.93	3.756 (4)	151		

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) –*x*+2, –*y*, –*z*; (iv) *x*, *y*, *z*+1.