

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[O-propan-2-yl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S.S'$ inickel(II)

Shirveen Sewpersad and Werner E. Van Zyl*

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: vanzylw@ukzn.ac.za

Received 19 October 2012; accepted 31 October 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.065; data-to-parameter ratio = 19.9.

The title compound, $[Ni(C_{11}H_{16}O_2PS_2)_2]$, is a neutral fourcoordinate mononuclear complex with a square-planar geometry. The complex lies on an inversion center. The metal atom is surrounded by two chelating isobidentate O-propan-2yl (4-ethoxyphenyl)dithiophosphonate ligands in a trans configuration binding through the S-donor atoms. The Ni-S bond lengths are 2.2328 (5) and 2.2369 (5) Å, an insignificant difference to be considered anisobidentate. The Ni...P separation is 2.8224 (5) Å and the S-P bond lengths are 2.0035 (7) and 2.0053 (7) Å. The S-Ni-S (chelating) and S-Ni-S (trans) bond angles are 88.321 (18) and 180° . The Ni-S–P bond angles are 83.26 (2) and 83.33 (2) $^{\circ}$, indicating a very minor distortion from ideal square-planar geometry for the Ni atom. The P atom, however, is distorted quite significantly from an ideal tetrahedral geometry, as reflected by the S-P-S and O-P-C bond angles of 101.93 (3) and 100.70 $(7)^{\circ}$, respectively.

Related literature

For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010). For examples of nickel(II) dithiophosphonate complexes, see: Liu et al. (2004); Gray et al. (2004); Aragoni et al. (2007); Arca et al. (1997); Malatesta & Pizzotti (1945); Hartung (1967).

Experimental

Crystal data

3062 reflections

5	
$\begin{bmatrix} \text{Ni}(\text{C}_{11}\text{H}_{16}\text{O}_2\text{PS}_2)_2 \end{bmatrix}$ $M_r = 609.37$ Triclinic, $P\overline{1}$ a = 7.8893 (6) Å b = 8.4178 (7) Å c = 11.4825 (10) Å $\alpha = 109.530$ (4)° $\beta = 101.959$ (4)°	$\gamma = 93.913 (5)^{\circ}$ $V = 695.22 (10) \text{ Å}^{3}$ Z = 1 Mo K α radiation $\mu = 1.14 \text{ mm}^{-1}$ T = 173 K $0.39 \times 0.26 \times 0.14 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.665, T_{max} = 0.857$	14410 measured reflections 3062 independent reflections 2381 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.065$ S = 1.02 3062 reflections	154 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{-3} = -0.31 \text{ e } \text{\AA}^{-3}$

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

 $\Delta \rho_{\rm min} = -0.31$ e Å⁻³

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2460).

References

- Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Soddu, S. & Verani, G. (2007). Dalton Trans. pp. 2127-2134.
- Arca, M., Cornia, A., Devillanova, F. A., Fabretti, A. C., Isaia, F., Lippolis, V. & Verani, G. (1997). Inorg. Chim. Acta, 262, 81-84.
- Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477-2486.
- Hartung, H. (1967). Z. Chem. 7, 241.
- Liu, H.-L., Mao, H.-Y., Xu, C., Zhang, H.-Y., Hou, H.-W., Wu, Q., Zhu, Y., Ye, B.-X. & Yuan, L.-J. (2004). Polyhedron, 23, 1799-1804.
- Malatesta, L. & Pizzotti, R. (1945). Chim. Ind. (Milan), 27, 6-9.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van Zvl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.
- Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117-132.

supporting information

Acta Cryst. (2012). E68, m1457 [doi:10.1107/S1600536812045114]

Bis[O-propan-2-yl (4-ethoxyphenyl)dithiophosphonato- $\kappa^2 S_r S'$]nickel(II)

Shirveen Sewpersad and Werner E. Van Zyl

S1. Comment

The phosphor-1,1,-dithiolate class of compounds is the heavier and softer congener of the more popular phosphonate derivatives. It contains the S₂P functionality as a common feature and several sub-categories are known which include the dithiophosphato $[S_2P(OR')_2]^-$, (typically, R' = alkyl), dithiophosphinato $[S_2PR_2]^-$ (R = alkyl or aryl), and dithiophosphonato $[S_2PR(OR')]^-$, (typically, R = aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed. Amongst all metals involved in the coordination chemistry of dithiophosphonato ligands, however, nickel(II) is by far the best represented (Aragoni *et al.*, 2007; Arca *et al.*, 1997; Liu *et al.*, 2004; Gray *et al.*, 2004), with the first example dating back to 1945 (Malatesta & Pizzotti, 1945) whilst the first X-ray structural report of a nickel(II) dithiophosphonate complex reported more than 2 decades later (Hartung, 1967). The complex in the present study was formed from the reaction between NiCl₂.6H₂O and the ammonium salt of $[S_2P(O'Pr)(4-C_6H_4OEt)]$ (molar ratio 1:2) in an aqueous/methanolic solution, the NH₄Cl by-product was dissolved and the precipitated product filtered off and washed with water. General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000; Van Zyl, 2010).

S2. Experimental

A colorless methanol (40 ml) solution of NH₄[S₂P(OⁱPr)(4-C₆H₄OEt)] (982 mg, 3.347 mmol) was prepared. A second green solution of NiCl₂.6H₂O (399 mg, 1.679 mmol) in deionized water (20 ml) was prepared, and added to the colorless solution with stirring over a period of 5 min. This resulted in a purple precipitate indicating the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 × 10 ml) and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing purple powder. Purple crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 761 mg, 75%. *M*.p. $168-169^{\circ}$ C.

³¹P NMR (CDCl₃): *δ* (p.p.m.): 97.96. ¹H NMR (CDCl₃): *δ* (p.p.m.): 7.96 (2*H*, dd, *o*-ArH), 6.95 (2*H*, dd, *m*-ArH), 5.19 (1*H*, d quart, OCH), 4.06 (2*H*, quart, ArOCH₂), 1.42 (3*H*, t, ArOCH₂CH₃), 1.38 (6*H*, d, CH₃). ¹³C NMR (CDCl₃): *δ* (p.p.m.): 162.22 (*p*-ArC), 131.71 (*m*-ArC), 128.04 (Ar—C₁), 114.44 (*o*-ArC), 72.10 (CH), 63.76(ArOCH₂), 24.30 (CH₃), 14.67 (ArOCH₂CH₃).

S3. Refinement

All hydrogen atoms were found in the difference electron density maps and were placed in idealized positions and refined with geometrical constraints, with C—H bond lengths in the range 0.95-1.00 Å. The structure was refined to *R* factor of 0.0303.

Figure 1

The molecular structure of the title complex, shown with 50% probability displacement ellipsoids.

Bis[O-propan-2-yl (4-ethoxyphenyl)dithiophosphonato-k²S,S']nickel(II)

Crystal data

[Ni(C₁₁H₁₆O₂PS₂)₂] $M_r = 609.37$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.8893 (6) Å b = 8.4178 (7) Å c = 11.4825 (10) Å a = 109.530 (4)° $\beta = 101.959$ (4)° $\gamma = 93.913$ (5)° V = 695.22 (10) Å³

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $1.2^{\circ} \varphi$ scans and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.665, T_{\max} = 0.857$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.065$ S = 1.023062 reflections 154 parameters Z = 1 F(000) = 318 $D_x = 1.455 \text{ Mg m}^{-3}$ Melting point: 441 K Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14410 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 1.14 \text{ mm}^{-1}$ T = 173 KBlock, purple $0.39 \times 0.26 \times 0.14 \text{ mm}$

14410 measured reflections 3062 independent reflections 2381 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = 0 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -14 \rightarrow 14$

0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.028P)^2 + 0.2462P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} = -0.31 \text{ e } \text{\AA}^{-3} \end{split}$$

Fractional atomic coordinates and	isotropic or	equivalent isotropi	c displacement	parameters	$(Å^2)$)
					. /	

Nil 0.5000 0.0000 0.0229 (10) S1 0.64099 (6) 0.75272 (6) 0.02356 (5) 0.02729 (13) S2 0.58144 (7) 0.38847 (6) -0.18193 (5) 0.02842 (13) P1 0.64598 (6) 0.63370 (6) -0.15849 (5) 0.02271 (12) O1 0.19743 (19) 0.8621 (2) -0.53641 (14) 0.0416 (4) O2 0.82744 (15) 0.67472 (17) -0.18857 (12) 0.0266 (3) C1 0.5013 (2) 0.7025 (2) -0.26799 (17) 0.0231 (4) C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5) H2 0.5664 0.9551 -0.1634 0.038* C3 0.3976 1.0523 -0.3099 0.040* C4 0.2974 (2) 0.8179 (3) -0.4432 (19) 0.0308 (5) C5 0.2947 (3) 0.6447 (3) -0.4582 (2) 0.0405 (6) H5 0.2227 0.5647 -0.5455 0.4049 C6 0.3960 (3) 0.5880 (3) -0.5253 (2) <t< th=""><th></th><th>x</th><th>У</th><th>Z</th><th>$U_{ m iso}$*/$U_{ m eq}$</th></t<>		x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1 0.64099 (6) 0.75272 (6) 0.02356 (5) 0.02729 (13) S2 0.58144 (7) 0.38847 (6) -0.18193 (5) 0.02842 (13) P1 0.64598 (6) 0.63370 (6) -0.15849 (5) 0.02271 (12) O1 0.19743 (19) 0.8621 (2) -0.53641 (14) 0.0416 (4) O2 0.82744 (15) 0.67472 (17) -0.18857 (12) 0.0266 (3) C1 0.5013 (2) 0.7025 (2) -0.26799 (17) 0.0231 (4) C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5) H2 0.5664 0.9551 -0.1634 0.0338 * C3 0.3976 1.0523 -0.3099 0.040* C4 0.2974 (2) 0.8179 (3) -0.44330 (19) 0.308 (5) C5 0.2947 (3) 0.6447 (3) -0.4682 (2) 0.0404* C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0360 (5) H4 0.3937 0.4690 -0.3996 0.043* C7 0.2176 (3) 1.0381 (3)	Nil	0.5000	0.5000	0.0000	0.02229 (10)
S2 0.58144 (7) 0.38847 (6) -0.18193 (5) 0.02242 (13)P1 0.64598 (6) 0.63370 (6) -0.15849 (5) 0.02271 (12)O1 0.19743 (19) 0.8621 (2) -0.53641 (14) 0.0416 (4)O2 0.82744 (15) 0.67472 (17) -0.18857 (12) 0.0266 (3)C1 0.5013 (2) 0.7025 (2) -0.26799 (17) 0.0231 (4)C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5)H2 0.5664 0.9551 -0.1634 $0.038*$ C3 0.3977 (3) 0.9335 (3) -0.3289 (2) 0.0336 (5)H3 0.3977 (1) 0.02231 -0.44330 (19) 0.308 (5)C4 0.2974 (2) 0.8179 (3) -0.44330 (19) 0.308 (5)C5 0.2947 (3) 0.6447 (3) -0.4682 (2) $0.040*$ C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0405 (6)H5 0.2227 0.5647 -0.5455 $0.049*$ C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0463 (6)H7A 0.3430 1.0834 -0.5079 $0.056*$ C7 0.2176 (3) 1.0381 (3) -0.5253 (2) 0.0463 (6)H7B 0.1696 1.1073 -0.4548 $0.056*$ C8 0.1178 (3) 1.0441 (4) -0.6510 (3) 0.0654 (8)H8B 0.1299 1.1621 -0.6482 $0.098*$ C8 0.9927 (2) 0.6387 (3) -0.11992 (19) 0.302 (5)<	S1	0.64099 (6)	0.75272 (6)	0.02356 (5)	0.02729 (13)
P1 0.64598 (6) 0.63370 (6) -0.15849 (5) 0.02271 (12) O1 0.19743 (19) 0.8621 (2) -0.53641 (14) 0.0416 (4) O2 0.82744 (15) 0.67472 (17) -0.18857 (12) 0.0266 (3) C1 0.5013 (2) 0.7025 (2) -0.26799 (17) 0.0231 (4) C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5) H2 0.5664 0.9551 -0.1634 0.038* C3 0.3977 (3) 0.9335 (3) -0.3289 (2) 0.0308 (5) C4 0.2974 (2) 0.8179 (3) -0.44330 (19) 0.0308 (5) C5 0.2947 (3) 0.6447 (3) -0.44330 (19) 0.0308 (5) C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0405 (6) H5 0.2227 0.5647 -0.5253 (2) 0.0463 (6) C7 0.2176 (3) 1.0381 (3) -0.5253 (2) 0.0463 (6) H7A 0.4330 1.0831 (3) -0.5253 (2) 0.0463 (6) H7A 0.4330 1.0831 (S2	0.58144 (7)	0.38847 (6)	-0.18193 (5)	0.02842 (13)
O1 0.19743 (19) 0.8621 (2) -0.53641 (14) 0.0416 (4) O2 0.82744 (15) 0.67472 (17) -0.18857 (12) 0.0266 (3) C1 0.5013 (2) 0.7025 (2) -0.26799 (17) 0.0211 (4) C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5) H2 0.5664 0.9551 -0.1634 0.038* C3 0.3977 (3) 0.9335 (3) -0.3289 (2) 0.0336 (5) H3 0.3976 1.0523 -0.3099 0.040* C4 0.2974 (2) 0.8179 (3) -0.44330 (19) 0.0308 (5) C5 0.2947 (3) 0.6447 (3) -0.4682 (2) 0.0405 (6) H5 0.2227 0.5647 -0.5455 0.049* C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0463 (6) H7A 0.3430 1.0834 -0.5079 0.056* C8 0.1178 (3) 1.0441 (4) -0.6510 (3) 0.698* H8B 0.1299 1.1621 -0.6482 0.098*	P1	0.64598 (6)	0.63370 (6)	-0.15849 (5)	0.02271 (12)
O2 0.82744 (15) 0.67472 (17) -0.18857 (12) 0.0266 (3) C1 0.5013 (2) 0.7025 (2) -0.26799 (17) 0.0231 (4) C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5) H2 0.5664 0.9551 -0.1634 0.038* C3 0.3977 (3) 0.9351 (3) -0.3289 (2) 0.0336 (5) H3 0.3976 1.0523 -0.3099 0.040* C4 0.2974 (2) 0.8179 (3) -0.44330 (19) 0.3038 (5) C5 0.2947 (3) 0.6447 (3) -0.4682 (2) 0.0405 (6) H5 0.2227 0.5647 -0.5455 0.049* C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0463 (6) H7 0.2176 (3) 1.0381 (3) -0.5253 (2) 0.0463 (6) H7A 0.3430 1.0834 -0.5079 0.056* C8 0.1178 (3) 1.0441 (4) -0.6510 (3) 0.698* H8B 0.1299 1.1621 -0.6482 0.098* <td>01</td> <td>0.19743 (19)</td> <td>0.8621 (2)</td> <td>-0.53641 (14)</td> <td>0.0416 (4)</td>	01	0.19743 (19)	0.8621 (2)	-0.53641 (14)	0.0416 (4)
C1 0.5013 (2) 0.7025 (2) -0.26799 (17) 0.0231 (4) C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5) H2 0.5664 0.9551 -0.1634 0.038* C3 0.3977 (3) 0.9335 (3) -0.3289 (2) 0.0336 (5) H3 0.3976 1.0523 -0.3099 0.040* C4 0.2974 (2) 0.8179 (3) -0.44330 (19) 0.0308 (5) C5 0.2947 (3) 0.6447 (3) -0.4682 (2) 0.0405 (6) H5 0.2227 0.5647 -0.5455 0.049* C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0360 (5) H6 0.3937 0.4690 -0.3996 0.043* C7 0.2176 (3) 1.0381 (3) -0.5253 (2) 0.0463 (6) H7A 0.3430 1.0834 -0.5079 0.56* C8 0.1178 (3) 1.0441 (4) -0.6510 (3) 0.0654 (8) H8B 0.1299 1.1621 -0.6482 0.098* C9 0.9927 (2) 0.6387 (3) -0.11992 (19) 0.0302 (5)	O2	0.82744 (15)	0.67472 (17)	-0.18857 (12)	0.0266 (3)
C2 0.4982 (3) 0.8752 (3) -0.2422 (2) 0.0317 (5)H2 0.5664 0.9551 -0.1634 $0.038*$ C3 0.3977 (3) 0.9335 (3) -0.3289 (2) 0.0336 (5)H3 0.3976 1.0523 -0.3099 $0.040*$ C4 0.2974 (2) 0.8179 (3) -0.44330 (19) 0.0308 (5)C5 0.2947 (3) 0.6447 (3) -0.4682 (2) 0.0405 (6)H5 0.2227 0.5647 -0.5455 $0.049*$ C6 0.3960 (3) 0.5880 (3) -0.3815 (2) 0.0360 (5)H6 0.3937 0.4690 -0.3996 $0.043*$ C7 0.2176 (3) 1.0381 (3) -0.5253 (2) 0.0463 (6)H7A 0.3430 1.0834 -0.5079 $0.056*$ C8 0.1178 (3) 1.0441 (4) -0.6510 (3) 0.0654 (8)H8A 0.1653 0.9734 -0.7200 $0.098*$ H8B 0.1299 1.1621 -0.6482 $0.098*$ H8B 0.1299 1.621 -0.6662 $0.098*$ H8C -0.0063 1.0008 -0.0502 $0.036*$ C10 1.1185 (3) 0.8017 (3) -0.02211 $0.097*$ H10A 1.334 0.8847 -0.1302 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ H10A 1.0541 (3) 0.4983 (3) -0.2128 (2) 0.567 (7)H11A 0.9642 0.3971 -0.2481 $0.085*$	C1	0.5013 (2)	0.7025 (2)	-0.26799 (17)	0.0231 (4)
H20.56640.9551-0.16340.038*C30.3977 (3)0.9335 (3)-0.3289 (2)0.0336 (5)H30.39761.0523-0.30990.040*C40.2974 (2)0.8179 (3)-0.44330 (19)0.0308 (5)C50.2947 (3)0.6447 (3)-0.4682 (2)0.0405 (6)H50.22270.5647-0.54550.049*C60.3960 (3)0.5880 (3)-0.3815 (2)0.0360 (5)H60.39370.4690-0.39960.043*C70.2176 (3)1.0381 (3)-0.5253 (2)0.0463 (6)H7A0.34301.0834-0.50790.056*K70.16961.1073-0.45480.056*C80.1178 (3)1.0441 (4)-0.6510 (3)0.0654 (8)H8A0.16530.9734-0.72000.098*H8B0.12991.1621-0.64820.098*K8C-0.00631.0008-0.66620.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.0302 (5)H90.96930.6009-0.0529 (3)0.0646 (8)H10A1.13340.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	C2	0.4982 (3)	0.8752 (3)	-0.2422 (2)	0.0317 (5)
C3 $0.3977 (3)$ $0.9335 (3)$ $-0.3289 (2)$ $0.0336 (5)$ H3 0.3976 1.0523 -0.3099 $0.040*$ C4 $0.2974 (2)$ $0.8179 (3)$ $-0.44330 (19)$ $0.308 (5)$ C5 $0.2947 (3)$ $0.6447 (3)$ $-0.4682 (2)$ $0.0405 (6)$ H5 0.2227 0.5647 -0.5455 $0.049*$ C6 $0.3960 (3)$ $0.5880 (3)$ $-0.3815 (2)$ $0.0360 (5)$ H6 0.3937 0.4690 -0.3996 $0.043*$ C7 $0.2176 (3)$ $1.0381 (3)$ $-0.5253 (2)$ $0.0463 (6)$ H7A 0.3430 1.0834 -0.5079 $0.056*$ C8 $0.1178 (3)$ $1.0441 (4)$ $-0.6510 (3)$ $0.0654 (8)$ H8A 0.1653 0.9734 -0.7200 $0.998*$ H8B 0.1299 1.1621 -0.6482 $0.098*$ C9 $0.9927 (2)$ $0.6387 (3)$ $-0.11992 (19)$ $0.302 (5)$ H9 0.9693 0.6009 -0.0502 $0.036*$ C10 $1.1185 (3)$ $0.8017 (3)$ -0.6622 $0.097*$ H10B 1.2319 0.7811 -0.0211 $0.097*$ H10B 1.2319 0.7811 $-0.2128 (2)$ $0.0567 (7)$ H11A 0.9642 0.3971 -0.2481 $0.805*$	H2	0.5664	0.9551	-0.1634	0.038*
H30.39761.0523-0.30990.040*C40.2974 (2)0.8179 (3)-0.44330 (19)0.0308 (5)C50.2947 (3)0.6447 (3)-0.4682 (2)0.0405 (6)H50.22270.5647-0.54550.049*C60.3960 (3)0.5880 (3)-0.3815 (2)0.0360 (5)H60.39370.4690-0.39960.043*C70.2176 (3)1.0381 (3)-0.5253 (2)0.0463 (6)H7A0.34301.0834-0.50790.056*C80.1178 (3)1.0441 (4)-0.6510 (3)0.0654 (8)H8A0.16530.9734-0.72000.098*H8B0.12991.1621-0.64820.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.302 (5)H90.96930.6009-0.05020.036*C101.185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	C3	0.3977 (3)	0.9335 (3)	-0.3289 (2)	0.0336 (5)
C40.2974 (2)0.8179 (3)-0.44330 (19)0.0308 (5)C50.2947 (3)0.6447 (3)-0.4682 (2)0.0405 (6)H50.22270.5647-0.54550.049*C60.3960 (3)0.5880 (3)-0.3815 (2)0.0360 (5)H60.39370.4690-0.39960.043*C70.2176 (3)1.0381 (3)-0.5253 (2)0.0463 (6)H7A0.34301.0834-0.50790.056*H7B0.16961.1073-0.45480.056*C80.1178 (3)1.0441 (4)-0.6510 (3)0.0654 (8)H8A0.16530.9734-0.72000.098*H8B0.12991.1621-0.64820.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.0302 (5)H90.96930.6009-0.05020.036*C101.185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	H3	0.3976	1.0523	-0.3099	0.040*
C5 $0.2947 (3)$ $0.6447 (3)$ $-0.4682 (2)$ $0.0405 (6)$ H5 0.2227 0.5647 -0.5455 $0.049*$ C6 $0.3960 (3)$ $0.5880 (3)$ $-0.3815 (2)$ $0.0360 (5)$ H6 0.3937 0.4690 -0.3996 $0.043*$ C7 $0.2176 (3)$ $1.0381 (3)$ $-0.5253 (2)$ $0.0463 (6)$ H7A 0.3430 1.0834 -0.5079 $0.056*$ H7B 0.1696 1.1073 -0.4548 $0.056*$ C8 $0.1178 (3)$ $1.0441 (4)$ $-0.6510 (3)$ $0.0654 (8)$ H8A 0.1653 0.9734 -0.7200 $0.098*$ H8B 0.1299 1.1621 -0.6482 $0.098*$ C9 $0.9927 (2)$ $0.6387 (3)$ $-0.11992 (19)$ $0.302 (5)$ H9 0.9693 0.6009 -0.0502 $0.036*$ C10 $1.1185 (3)$ $0.8017 (3)$ $-0.0629 (3)$ $0.0646 (8)$ H10A 1.1334 0.8447 -0.1302 $0.097*$ H10B 1.2319 0.7811 -0.2111 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ C11 $1.0541 (3)$ $0.4983 (3)$ $-0.2128 (2)$ $0.0567 (7)$ H11A 0.9642 0.3971 -0.2481 $0.085*$	C4	0.2974 (2)	0.8179 (3)	-0.44330 (19)	0.0308 (5)
H50.22270.5647-0.54550.049*C60.3960 (3)0.5880 (3)-0.3815 (2)0.0360 (5)H60.39370.4690-0.39960.043*C70.2176 (3)1.0381 (3)-0.5253 (2)0.0463 (6)H7A0.34301.0834-0.50790.056*H7B0.16961.1073-0.45480.056*C80.1178 (3)1.0441 (4)-0.6510 (3)0.0654 (8)H8A0.16530.9734-0.72000.098*H8B0.12991.1621-0.64820.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.302 (5)H90.96930.6009-0.05020.036*C101.1185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	C5	0.2947 (3)	0.6447 (3)	-0.4682 (2)	0.0405 (6)
C6 $0.3960(3)$ $0.5880(3)$ $-0.3815(2)$ $0.0360(5)$ H6 0.3937 0.4690 -0.3996 $0.043*$ C7 $0.2176(3)$ $1.0381(3)$ $-0.5253(2)$ $0.0463(6)$ H7A 0.3430 1.0834 -0.5079 $0.056*$ H7B 0.1696 1.1073 -0.4548 $0.056*$ C8 $0.1178(3)$ $1.0441(4)$ $-0.6510(3)$ $0.0654(8)$ H8A 0.1653 0.9734 -0.7200 $0.098*$ H8B 0.1299 1.1621 -0.6482 $0.098*$ H8C -0.0063 1.0008 -0.6662 $0.098*$ C9 $0.9927(2)$ $0.6387(3)$ $-0.11992(19)$ $0.0302(5)$ H9 0.9693 0.6009 -0.0502 $0.036*$ C10 $1.1185(3)$ $0.8017(3)$ $-0.0629(3)$ $0.0646(8)$ H10A 1.1334 0.8447 -0.1302 $0.097*$ H10B 1.2319 0.7811 -0.0211 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ C11 $1.0541(3)$ $0.4983(3)$ $-0.2128(2)$ $0.0567(7)$ H11A 0.9642 0.3971 -0.2481 $0.085*$	H5	0.2227	0.5647	-0.5455	0.049*
H60.39370.4690-0.39960.043*C70.2176 (3)1.0381 (3)-0.5253 (2)0.0463 (6)H7A0.34301.0834-0.50790.056*H7B0.16961.1073-0.45480.056*C80.1178 (3)1.0441 (4)-0.6510 (3)0.0654 (8)H8A0.16530.9734-0.72000.098*H8B0.12991.1621-0.64820.098*K8C-0.00631.0008-0.66620.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.302 (5)H90.96930.6009-0.05020.036*C101.1185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.3340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*H11A0.96420.3971-0.24810.055*	C6	0.3960 (3)	0.5880 (3)	-0.3815 (2)	0.0360 (5)
C7 0.2176 (3) 1.0381 (3) -0.5253 (2) 0.0463 (6)H7A 0.3430 1.0834 -0.5079 $0.056*$ H7B 0.1696 1.1073 -0.4548 $0.056*$ C8 0.1178 (3) 1.0441 (4) -0.6510 (3) 0.0654 (8)H8A 0.1653 0.9734 -0.7200 $0.098*$ H8B 0.1299 1.1621 -0.6482 $0.098*$ C9 0.9927 (2) 0.6387 (3) -0.11992 (19) 0.0302 (5)H9 0.9693 0.6009 -0.0629 (3) 0.0646 (8)H10A 1.1334 0.8447 -0.1302 $0.097*$ H10B 1.2319 0.7811 -0.0211 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ H11A 0.9642 0.3971 -0.2481 $0.085i$	H6	0.3937	0.4690	-0.3996	0.043*
H7A0.34301.0834-0.50790.056*H7B0.16961.1073-0.45480.056*C80.1178 (3)1.0441 (4)-0.6510 (3)0.0654 (8)H8A0.16530.9734-0.72000.098*H8B0.12991.1621-0.64820.098*H8C-0.00631.0008-0.66620.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.0302 (5)H90.96930.6009-0.05020.036*C101.1185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	C7	0.2176 (3)	1.0381 (3)	-0.5253 (2)	0.0463 (6)
H7B0.16961.1073-0.45480.056*C80.1178 (3)1.0441 (4)-0.6510 (3)0.0654 (8)H8A0.16530.9734-0.72000.098*H8B0.12991.1621-0.64820.098*H8C-0.00631.0008-0.66620.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.0302 (5)H90.96930.6009-0.05020.036*C101.1185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	H7A	0.3430	1.0834	-0.5079	0.056*
C8 0.1178 (3) 1.0441 (4) -0.6510 (3) 0.0654 (8)H8A 0.1653 0.9734 -0.7200 $0.098*$ H8B 0.1299 1.1621 -0.6482 $0.098*$ H8C -0.0063 1.0008 -0.6662 $0.098*$ C9 0.9927 (2) 0.6387 (3) -0.11992 (19) 0.0302 (5)H9 0.9693 0.6009 -0.0502 $0.036*$ C10 1.1185 (3) 0.8017 (3) -0.0629 (3) 0.0646 (8)H10A 1.1334 0.8447 -0.1302 $0.097*$ H10B 1.2319 0.7811 -0.0211 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ C11 1.0541 (3) 0.4983 (3) -0.2128 (2) 0.0567 (7)H11A 0.9642 0.3971 -0.2481 $0.085*$	H7B	0.1696	1.1073	-0.4548	0.056*
H8A 0.1653 0.9734 -0.7200 $0.098*$ H8B 0.1299 1.1621 -0.6482 $0.098*$ H8C -0.0063 1.0008 -0.6662 $0.098*$ C9 $0.9927 (2)$ $0.6387 (3)$ $-0.11992 (19)$ $0.0302 (5)$ H9 0.9693 0.6009 -0.0502 $0.036*$ C10 $1.1185 (3)$ $0.8017 (3)$ $-0.0629 (3)$ $0.0646 (8)$ H10A 1.1334 0.8447 -0.1302 $0.097*$ H10B 1.2319 0.7811 -0.0211 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ C11 $1.0541 (3)$ $0.4983 (3)$ $-0.2128 (2)$ $0.0567 (7)$ H11A 0.9642 0.3971 -0.2481 $0.085*$	C8	0.1178 (3)	1.0441 (4)	-0.6510(3)	0.0654 (8)
H8B0.12991.1621-0.64820.098*H8C-0.00631.0008-0.66620.098*C90.9927 (2)0.6387 (3)-0.11992 (19)0.0302 (5)H90.96930.6009-0.05020.036*C101.1185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	H8A	0.1653	0.9734	-0.7200	0.098*
H8C -0.0063 1.0008 -0.6662 $0.098*$ C9 $0.9927 (2)$ $0.6387 (3)$ $-0.11992 (19)$ $0.0302 (5)$ H9 0.9693 0.6009 -0.0502 $0.036*$ C10 $1.1185 (3)$ $0.8017 (3)$ $-0.0629 (3)$ $0.0646 (8)$ H10A 1.1334 0.8447 -0.1302 $0.097*$ H10B 1.2319 0.7811 -0.0211 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ C11 $1.0541 (3)$ $0.4983 (3)$ $-0.2128 (2)$ $0.0567 (7)$ H11A 0.9642 0.3971 -0.2481 $0.085*$	H8B	0.1299	1.1621	-0.6482	0.098*
C9 $0.9927 (2)$ $0.6387 (3)$ $-0.11992 (19)$ $0.0302 (5)$ H9 0.9693 0.6009 -0.0502 $0.036*$ C10 $1.1185 (3)$ $0.8017 (3)$ $-0.0629 (3)$ $0.0646 (8)$ H10A 1.1334 0.8447 -0.1302 $0.097*$ H10B 1.2319 0.7811 -0.0211 $0.097*$ H10C 1.0725 0.8863 0.0001 $0.097*$ C11 $1.0541 (3)$ $0.4983 (3)$ $-0.2128 (2)$ $0.0567 (7)$ H11A 0.9642 0.3971 -0.2481 $0.085*$	H8C	-0.0063	1.0008	-0.6662	0.098*
H90.96930.6009-0.05020.036*C101.1185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	C9	0.9927 (2)	0.6387 (3)	-0.11992 (19)	0.0302 (5)
C101.1185 (3)0.8017 (3)-0.0629 (3)0.0646 (8)H10A1.13340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	H9	0.9693	0.6009	-0.0502	0.036*
H10A1.13340.8447-0.13020.097*H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	C10	1.1185 (3)	0.8017 (3)	-0.0629 (3)	0.0646 (8)
H10B1.23190.7811-0.02110.097*H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	H10A	1.1334	0.8447	-0.1302	0.097*
H10C1.07250.88630.00010.097*C111.0541 (3)0.4983 (3)-0.2128 (2)0.0567 (7)H11A0.96420.3971-0.24810.085*	H10B	1.2319	0.7811	-0.0211	0.097*
C11 1.0541 (3) 0.4983 (3) -0.2128 (2) 0.0567 (7) H11A 0.9642 0.3971 -0.2481 0.085*	H10C	1.0725	0.8863	0.0001	0.097*
H11A 0.9642 0.3971 -0.2481 0.085*	C11	1.0541 (3)	0.4983 (3)	-0.2128 (2)	0.0567 (7)
	H11A	0.9642	0.3971	-0.2481	0.085*
H11B 1.1628 0.4711 -0.1695 0.085*	H11B	1.1628	0.4711	-0.1695	0.085*
H11C 1.0758 0.5343 -0.2819 0.085*	H11C	1.0758	0.5343	-0.2819	0.085*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02098 (18)	0.0252 (2)	0.0246 (2)	0.00292 (14)	0.00633 (14)	0.01367 (16)
S1	0.0299 (3)	0.0276 (3)	0.0257 (3)	0.0000 (2)	0.0069 (2)	0.0119 (2)
S2	0.0343 (3)	0.0258 (3)	0.0305 (3)	0.0050 (2)	0.0128 (2)	0.0138 (2)

P1	0.0197 (2)	0.0268 (3)	0.0260 (3)	0.00378 (19)	0.0065 (2)	0.0145 (2)	
01	0.0440 (9)	0.0502 (10)	0.0364 (9)	0.0170 (7)	0.0024 (7)	0.0253 (8)	
O2	0.0170 (6)	0.0397 (8)	0.0333 (8)	0.0077 (6)	0.0074 (6)	0.0248 (7)	
C1	0.0184 (9)	0.0282 (11)	0.0257 (10)	0.0047 (8)	0.0065 (8)	0.0125 (9)	
C2	0.0288 (11)	0.0299 (12)	0.0315 (12)	0.0026 (9)	-0.0009 (9)	0.0100 (10)	
C3	0.0329 (11)	0.0284 (11)	0.0413 (13)	0.0073 (9)	0.0041 (10)	0.0170 (10)	
C4	0.0259 (10)	0.0406 (13)	0.0323 (12)	0.0111 (9)	0.0076 (9)	0.0198 (10)	
C5	0.0466 (14)	0.0352 (13)	0.0292 (12)	0.0069 (10)	-0.0062 (10)	0.0073 (10)	
C6	0.0407 (12)	0.0283 (11)	0.0355 (12)	0.0090 (9)	0.0008 (10)	0.0112 (10)	
C7	0.0392 (13)	0.0601 (16)	0.0630 (16)	0.0159 (11)	0.0154 (12)	0.0483 (14)	
C8	0.0461 (15)	0.107 (2)	0.082 (2)	0.0262 (15)	0.0198 (14)	0.0779 (19)	
C9	0.0194 (10)	0.0415 (12)	0.0363 (12)	0.0080 (9)	0.0029 (8)	0.0240 (10)	
C10	0.0313 (13)	0.0465 (15)	0.097 (2)	0.0041 (11)	-0.0166 (14)	0.0217 (16)	
C11	0.0352 (13)	0.0701 (18)	0.0548 (17)	0.0292 (12)	-0.0002 (12)	0.0123 (14)	

Geometric parameters (Å, °)

Ni1—S2	2.2328 (5)	C4—C5	1.387 (3)	
Ni1—S2 ⁱ	2.2328 (5)	C5—C6	1.378 (3)	
Ni1-S1 ⁱ	2.2369 (5)	С5—Н5	0.9500	
Nil—S1	2.2369 (5)	С6—Н6	0.9500	
Nil—P1	2.8224 (5)	C7—C8	1.513 (3)	
Ni1—P1 ⁱ	2.8224 (5)	С7—Н7А	0.9900	
S1—P1	2.0035 (7)	С7—Н7В	0.9900	
S2—P1	2.0053 (7)	C8—H8A	0.9800	
P1—O2	1.5828 (12)	C8—H8B	0.9800	
P1—C1	1.7894 (18)	C8—H8C	0.9800	
O1—C4	1.364 (2)	C9—C11	1.489 (3)	
O1—C7	1.438 (3)	C9—C10	1.497 (3)	
O2—C9	1.484 (2)	С9—Н9	1.0000	
C1—C6	1.385 (3)	C10—H10A	0.9800	
C1—C2	1.386 (3)	C10—H10B	0.9800	
С2—С3	1.383 (3)	C10—H10C	0.9800	
С2—Н2	0.9500	C11—H11A	0.9800	
C3—C4	1.381 (3)	C11—H11B	0.9800	
С3—Н3	0.9500	C11—H11C	0.9800	
S2—Ni1—S2 ⁱ	180.0	O1—C4—C5	116.20 (19)	
S2-Ni1-S1 ⁱ	91.679 (18)	C3—C4—C5	119.59 (18)	
S2 ⁱ —Ni1—S1 ⁱ	88.321 (18)	C6—C5—C4	120.3 (2)	
S2—Ni1—S1	88.321 (18)	C6—C5—H5	119.8	
S2 ⁱ —Ni1—S1	91.679 (18)	C4—C5—H5	119.8	
S1 ⁱ —Ni1—S1	180.0	C5—C6—C1	120.7 (2)	
S2—Ni1—P1	44.885 (16)	С5—С6—Н6	119.6	
S2 ⁱ —Ni1—P1	135.115 (17)	C1—C6—H6	119.6	
S1 ⁱ —Ni1—P1	135.174 (16)	O1—C7—C8	106.7 (2)	
S1—Ni1—P1	44.827 (16)	O1—C7—H7A	110.4	
S2—Ni1—P1 ⁱ	135.115 (16)	C8—C7—H7A	110.4	

	14 995 (1()	01 07 1170	110.4
S2-NII-PI	44.885 (10)	OI - C / - H / B	110.4
SI - NII - PI	44.827 (16)		110.4
SI-NII-PI	135.1/3 (16)	H/A - C/ - H/B	108.6
PI—NII—PI	180.0	С/—С8—Н8А	109.5
P1—S1—Ni1	83.26 (2)	С7—С8—Н8В	109.5
P1—S2—Ni1	83.33 (2)	H8A—C8—H8B	109.5
O2—P1—C1	100.70 (7)	С7—С8—Н8С	109.5
O2—P1—S1	113.76 (6)	H8A—C8—H8C	109.5
C1—P1—S1	113.38 (7)	H8B—C8—H8C	109.5
O2—P1—S2	114.16 (6)	O2—C9—C11	107.84 (16)
C1—P1—S2	113.47 (7)	O2—C9—C10	107.22 (17)
S1—P1—S2	101.93 (3)	C11—C9—C10	113.9 (2)
O2—P1—Ni1	141.40 (5)	О2—С9—Н9	109.3
C1—P1—Ni1	117.90 (6)	С11—С9—Н9	109.3
S1—P1—Ni1	51.913 (17)	С10—С9—Н9	109.3
S2—P1—Ni1	51,790 (18)	C9—C10—H10A	109.5
C4-01-C7	118 46 (17)	C9-C10-H10B	109.5
$C_{9} = O_{2} = P_{1}$	121.36(11)	H_{10A} C_{10} H_{10B}	109.5
C_{1}^{2}	121.30(11) 118.40(18)	C_{0} C_{10} H_{10} C_{10}	109.5
$C_0 = C_1 = C_2$	110.40(10) 121.92(15)		109.5
$C_0 - C_1 - P_1$	121.65(15) 110.72(15)	H10A - C10 - H10C	109.5
	119.72 (15)	HI0B—CI0—HI0C	109.5
	121.31 (19)	C9—CII—HIIA	109.5
C3—C2—H2	119.3	C9—C11—H11B	109.5
C1—C2—H2	119.3	H11A—C11—H11B	109.5
C4—C3—C2	119.60 (19)	C9—C11—H11C	109.5
С4—С3—Н3	120.2	H11A—C11—H11C	109.5
С2—С3—Н3	120.2	H11B—C11—H11C	109.5
O1—C4—C3	124.21 (19)		
S2—Ni1—S1—P1	12.58 (2)	S1—P1—O2—C9	58.46 (15)
S2 ⁱ —Ni1—S1—P1	-167.42(2)	S2—P1—O2—C9	-57.97 (15)
$P1^{i}$ —Ni1—S1—P1	180.0	Ni1—P1—O2—C9	0.38 (19)
S1 ⁱ —Ni1—S2—P1	167.43 (2)	02—P1—C1—C6	101.89 (17)
\$1_Ni1_\$2_P1	-1257(2)	S1P1C1C6	-13621(15)
$P1^{i}$ _Ni1_S2_P1	180.0	S2P1C1C6	-20.53(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-137.71(6)	Nil Pl Cl C6	-78.31(17)
$N_1 = S_1 = 1 = C_2$	107.00(7)	$R_{1} = 1 = 0$	-75.50(16)
$N_{1} = S_{1} = F_{1} = C_{1}$	107.99(7)	$02 - r_1 - c_1 - c_2$	-73.30(10)
NII—SI—PI—S2	-14.35(3)	SI = PI = CI = C2	40.41 (17)
N11-S2-P1-02	137.47 (6)	$S_2 - P_1 - C_1 - C_2$	162.08 (14)
N11—S2—P1—C1	-107.90 (7)	N11—P1—C1—C2	104.30 (15)
N11—S2—P1—S1	14.37 (3)	C6—C1—C2—C3	-2.3 (3)
S2—Ni1—P1—O2	-81.30 (9)	P1—C1—C2—C3	175.20 (15)
S2 ⁱ —Ni1—P1—O2	98.70 (9)	C1—C2—C3—C4	0.4 (3)
S1 ⁱ —Ni1—P1—O2	-99.27 (9)	C7—O1—C4—C3	10.4 (3)
S1—Ni1—P1—O2	80.73 (9)	C7—O1—C4—C5	-169.75 (19)
S2—Ni1—P1—C1	99.02 (8)	C2—C3—C4—O1	-178.27 (18)
S2 ⁱ —Ni1—P1—C1	-80.98 (8)	C2—C3—C4—C5	1.9 (3)
S1 ⁱ —Ni1—P1—C1	81.05 (8)	O1—C4—C5—C6	177.9 (2)

S1—Ni1—P1—C1	-98.95 (8)	C3—C4—C5—C6	-2.2 (3)	
S2—Ni1—P1—S1	-162.03 (3)	C4—C5—C6—C1	0.3 (3)	
S2 ⁱ —Ni1—P1—S1	17.97 (3)	C2-C1-C6-C5	1.9 (3)	
S1 ⁱ —Ni1—P1—S1	180.000(1)	P1—C1—C6—C5	-175.49 (17)	
S2 ⁱ —Ni1—P1—S2	180.0	C4—O1—C7—C8	169.83 (18)	
S1 ⁱ —Ni1—P1—S2	-17.97 (3)	P1	112.06 (18)	
S1—Ni1—P1—S2	162.03 (3)	P1	-124.87 (18)	
C1—P1—O2—C9	-179.91 (14)			

Symmetry code: (i) -x+1, -y+1, -z.