organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N^{1} -(4-Methylphenyl)piperidine-1,4dicarboxamide

Arun M. Islor,^a M. R. Jagadeesh,^b H. M. Suresh Kumar,^c R. Ananda Kumari,^d Thomas Gerber,^e Eric Hosten^e and **Richard Betz^e***

^aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, ^bGM Institute of Technology, Department of Physics, Davangere 577 006, India, ^cSiddaganga Institute of Technololgy, Department of Physics, Tumkur 572 103, India, ^dSree Siddaganga College for Women, Tumkur 572 103, India, and ^eNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa Correspondence e-mail: richard.betz@webmail.co.za

Received 26 October 2012; accepted 21 November 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.124; data-to-parameter ratio = 19.2.

In the title compound, $C_{14}H_{19}N_3O_2$, the heterocycle adopts a ${}^{1}C_{4}$ conformation with the N atom being one of the flap atoms. In the crystal, classical N-H···O hydrogen bonds and C-H...O contacts connect the molecules into a three-dimensional network.

Related literature

For the pharmacological importance of piperidine and its derivatives, see: Chen et al. (2012); Boja et al. (2011); Jakubowska et al. (2012). For puckering analysis of six-membered rings, see: Cremer & Pople (1975); Boeyens (1978). For graphset analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental

Crystal data $C_{14}H_{19}N_3O_2$ $M_r = 261.32$ Monoclinic, $P2_1/c$ a = 5.0102 (1) Åb = 28.6642 (7) Å c = 10.1131 (2) Å $\beta = 103.113 \ (1)^{\circ}$

V = 1414.50 (5) Å ³
Z = 4
Mo Ka radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 200 K
$0.42 \times 0.25 \times 0.11 \ \mathrm{mm}$

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\rm min} = 0.966, T_{\rm max} = 0.991
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.124$	independent and constrained
S = 1.06	refinement
3556 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
185 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

27256 measured reflections

 $R_{\rm int} = 0.020$

3556 independent reflections

3014 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \frac{N1 - H1 \cdots O1^{i}}{N3 - H3A \cdots O2^{ii}} \\ N3 - H3B \cdots O2^{iii} \\ C3 - H3C \cdots O1^{i} $	0.834 (17)	2.128 (17)	2.9481 (13)	167.9 (15)
	0.886 (18)	2.071 (18)	2.9451 (14)	168.9 (15)
	0.890 (17)	2.034 (17)	2.8875 (13)	160.3 (15)
	0.99	2.41	3.2987 (17)	149

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a Young scientist award. JMR thanks the Principal of GMIT Davavangere for providing research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2489).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Boja, P., Won, S., Suh, D. H., Chu, J., Park, W. K. & Lim, H. (2011). Bull. Korean Chem. Soc. 32, 1249-1252
- Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.
- Chen, X., Zhan, P., Pannecouque, C., Balzarini, J., Clercq, E. D. & Liu, X.
- (2012). Eur. J. Med. Chem. 51, 60-66. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jakubowska, A., Kulig, K., Guzior, N. & Malawska, B. (2012). Acta Pol. Pharm. Drug Res. 69, 449-455.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o3452 [doi:10.1107/S1600536812047836]

N^{1} -(4-Methylphenyl)piperidine-1,4-dicarboxamide

Arun M. Islor, M. R. Jagadeesh, H. M. Suresh Kumar, R. Ananda Kumari, Thomas Gerber, Eric Hosten and Richard Betz

S1. Comment

Piperidine and its derivatives are ubiquitous building blocks in the synthesis of pharmaceuticals and fine chemicals (Chen *et al.*, 2012; Boja *et al.*, 2011, Jakubowska *et al.*, 2012). Members of this family have found a wide range of applications in pharmacology and are used as antidepressants (*e.g.* Paroxetine) and analgesics (*e.g.* meperidine hydrochloride) or to control attention-deficit hyperactivity disorder (*e.g.* Methylphenidate). In view of the biological importance, the title compound was synthesized to study its crystal structure.

According to a puckering analysis (Cremer & Pople, 1975; Boeyens, 1978), the piperidine ring adopts a ${}^{1}C_{4}$ conformation with the the nitrogen atom as well as the carbon atom in *para* position to it acting as the flap atoms (${}^{N2}C_{C5}$). The primary amide group occupies an equatorial position. Due to amide-type resonance, the intracyclic nitrogen atom is present in an almost planar environment, the least-squares plane defined by the urea moiety (N2–C2–O1–N1) featuring the carbon atom as the one atom deviating most from this plane by 0.010 (1) Å (r.m.s. of all fitted atoms = 0.0057 Å). The least-squares planes through the atoms of the heterocycle and the phenyl groups define an angle of 48.15 (7) °. The planes defined by the non-hydrogen atoms of the amide groups intersect the least-squares plane defined by the intracyclic atoms of the heterocycle at angles of 29.22 (15) ° and 71.8 (2) ° with the smaller angle found for the secondary amide group (Fig. 1).

In the crystal, non-classical C–H..O bonds as well as classical hydrogen bonds of the N–H···O type coexist. The former ones take part between one of the intracyclic methylene groups directly bonded to the nitrogen atom of the piperidine moiety and the oxygen atom of the secondary amide group (which also acts as acceptor for one set of N–H···O hydrogen bonds). The hydrogen atoms of the primary amide group, in turn, link the oxygen atom of its own functional group in neighbouring molecules as acceptor. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, these contacts connect the molecules to a three-dimensional network. According to a graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for the C–H···O contacts is $C^1_1(5)$ on the unitary level while the descriptor found for the hydrogen bonds fostered by the secondary amide group necessitates a $C^1_1(4)$ on the same level. The description of the hydrogen bonding pattern created by the primary amide group is best achieved by a binary descriptor of $R^2_4(8)$. The shortest intercentroid distance between two aromatic systems corresponds to a [100] translation (Fig. 2).

S2. Experimental

Piperidine-4-carboxamide (10.0 g, 0.078 mol) was dissolved in THF (200 ml). To this triethylamine (23.27 g, 0.23 mol) was added, followed by 1-isocyanato-4-methylbenzene (11.31 g, 0.085 mol). The reaction mixture was stirred at room temperature for 12 h. Completion of the reaction was monitored by TLC. The precipitated solid was filtered, washed with THF and dried under vacuum to get the desired product. The resulting solid was recrystallized from ethanol, yield: 18.5 g

(90.77%).

S3. Refinement

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms, C–H 0.99 Å for methylene groups and C–H 1.00 Å for methine groups) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008)), with U(H) set to $1.5U_{eq}(C)$. All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Figure 2

Intermolecular contacts, viewed along [-1 0 0]. For reasons of clarity, only a selection of contacts is shown. Blue dashed lines illustrate classical hydrogen bonds of the N–H···O type, green dashed lines depict C–H···O contacts. Symmetry operators: i -x + 1, -y, -z + 1; ii x, -y + 1/2, z - 1/2.

N¹-(4-Methylphenyl)piperidine-1,4-dicarboxamide

Crystal data	
$C_{14}H_{19}N_3O_2$	$\beta = 103.113 \ (1)^{\circ}$
$M_r = 261.32$	V = 1414.50 (5) Å ³
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 560
a = 5.0102 (1) Å	$D_{\rm x} = 1.227 {\rm ~Mg} {\rm ~m}^{-3}$
b = 28.6642 (7) Å	Melting point = $523-521$ K
c = 10.1131 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9992 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.966, \ T_{\max} = 0.991$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0614P)^2 + 0.3543P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.31 \ m e \ m \AA^{-3}$
$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

T = 200 K

 $R_{\rm int} = 0.020$

 $k = -38 \rightarrow 38$ $l = -13 \rightarrow 13$

Platelet, colourless

 $0.42 \times 0.25 \times 0.11 \text{ mm}$

 $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ $h = -6 \rightarrow 6$

27256 measured reflections 3556 independent reflections 3014 reflections with $I > 2\sigma(I)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
01	0.1615 (2)	0.25725 (3)	0.13744 (9)	0.0434 (2)	
O2	0.31030 (17)	0.05523 (3)	0.44661 (12)	0.0459 (3)	
N1	0.1515 (2)	0.27199 (3)	0.35689 (10)	0.0330 (2)	
H1	0.155 (3)	0.2596 (5)	0.4318 (17)	0.042 (4)*	
N2	0.3917 (3)	0.20893 (4)	0.30192 (10)	0.0394 (3)	
N3	0.7377 (2)	0.03696 (4)	0.43233 (13)	0.0386 (3)	
H3A	0.710 (3)	0.0081 (6)	0.4578 (17)	0.049 (4)*	
H3B	0.898 (3)	0.0466 (6)	0.4190 (16)	0.045 (4)*	
C1	-0.2229 (5)	0.46134 (6)	0.3273 (2)	0.0767 (6)	
H1A	-0.0793	0.4818	0.3082	0.115*	
H1B	-0.2613	0.4698	0.4150	0.115*	
H1C	-0.3898	0.4649	0.2556	0.115*	
C2	0.2337 (3)	0.24678 (4)	0.25859 (11)	0.0310(2)	
C3	0.5469 (3)	0.20076 (4)	0.44066 (12)	0.0368 (3)	
H3C	0.4867	0.2229	0.5031	0.044*	
H3D	0.7444	0.2060	0.4461	0.044*	
C4	0.5025 (2)	0.15119 (4)	0.48297 (12)	0.0321 (2)	
H4A	0.3070	0.1467	0.4839	0.039*	
H4B	0.6129	0.1456	0.5760	0.039*	
C5	0.5848 (2)	0.11644 (4)	0.38535 (12)	0.0301 (2)	
H5	0.7851	0.1202	0.3899	0.036*	

C6	0.4276 (3)	0.12705 (4)	0.24063 (13)	0.0409 (3)	
H6A	0.4911	0.1060	0.1765	0.049*	
H6B	0.2297	0.1213	0.2327	0.049*	
C7	0.4714 (4)	0.17763 (4)	0.20382 (14)	0.0472 (4)	
H7A	0.6666	0.1827	0.2034	0.057*	
H7B	0.3604	0.1845	0.1117	0.057*	
C8	0.5337 (2)	0.06691 (4)	0.42456 (12)	0.0305 (2)	
C11	0.0476 (2)	0.31796 (4)	0.34039 (11)	0.0302 (2)	
C12	-0.1339 (3)	0.33220 (5)	0.41605 (15)	0.0455 (3)	
H12	-0.2011	0.3104	0.4713	0.055*	
C13	-0.2187 (4)	0.37835 (6)	0.41185 (17)	0.0544 (4)	
H13	-0.3429	0.3877	0.4653	0.065*	
C14	-0.1276 (3)	0.41117 (5)	0.33202 (15)	0.0482 (3)	
C15	0.0491 (3)	0.39607 (5)	0.25471 (15)	0.0452 (3)	
H15	0.1115	0.4177	0.1972	0.054*	
C16	0.1383 (3)	0.35025 (4)	0.25839 (13)	0.0383 (3)	
H16	0.2618	0.3409	0.2046	0.046*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0715 (7)	0.0391 (5)	0.0191 (4)	0.0123 (4)	0.0091 (4)	0.0027 (3)
O2	0.0244 (4)	0.0361 (5)	0.0818 (7)	0.0014 (3)	0.0219 (4)	0.0156 (4)
N1	0.0484 (6)	0.0318 (5)	0.0201 (5)	0.0058 (4)	0.0106 (4)	0.0038 (4)
N2	0.0650(7)	0.0307 (5)	0.0221 (5)	0.0115 (5)	0.0094 (5)	0.0012 (4)
N3	0.0236 (5)	0.0294 (5)	0.0654 (8)	0.0017 (4)	0.0159 (5)	0.0104 (5)
C1	0.1017 (15)	0.0434 (9)	0.0764 (13)	0.0245 (9)	0.0024 (11)	-0.0068 (8)
C2	0.0435 (6)	0.0291 (5)	0.0209 (5)	-0.0002 (4)	0.0083 (4)	0.0012 (4)
C3	0.0458 (7)	0.0307 (6)	0.0301 (6)	0.0028 (5)	0.0011 (5)	0.0018 (4)
C4	0.0347 (6)	0.0338 (6)	0.0265 (6)	0.0043 (4)	0.0042 (4)	0.0054 (4)
C5	0.0241 (5)	0.0282 (5)	0.0410 (6)	0.0009 (4)	0.0135 (4)	0.0063 (4)
C6	0.0620 (8)	0.0311 (6)	0.0324 (6)	0.0079 (5)	0.0162 (6)	-0.0017 (5)
C7	0.0824 (10)	0.0338 (6)	0.0312 (6)	0.0140 (6)	0.0253 (7)	0.0051 (5)
C8	0.0223 (5)	0.0293 (5)	0.0412 (6)	-0.0004 (4)	0.0096 (4)	0.0059 (4)
C11	0.0347 (5)	0.0326 (5)	0.0219 (5)	0.0022 (4)	0.0033 (4)	-0.0010 (4)
C12	0.0540 (8)	0.0451 (7)	0.0429 (7)	0.0076 (6)	0.0224 (6)	0.0027 (6)
C13	0.0629 (9)	0.0538 (9)	0.0502 (9)	0.0195 (7)	0.0205 (7)	-0.0047 (7)
C14	0.0566 (8)	0.0371 (7)	0.0438 (8)	0.0100 (6)	-0.0032 (6)	-0.0054 (6)
C15	0.0570 (8)	0.0345 (6)	0.0403 (7)	-0.0013 (6)	0.0035 (6)	0.0052 (5)
C16	0.0460 (7)	0.0368 (6)	0.0330 (6)	0.0014 (5)	0.0113 (5)	0.0029 (5)

Geometric parameters (Å, °)

01—C2	1.2333 (14)	C4—H4B	0.9900
O2—C8	1.2360 (13)	С5—С8	1.5114 (15)
N1-C2	1.3659 (15)	C5—C6	1.5270 (17)
N1-C11	1.4127 (15)	C5—H5	1.0000
N1—H1	0.834 (17)	С6—С7	1.5249 (18)

N2—C2	1.3560 (15)	С6—Н6А	0.9900
N2—C7	1.4588 (16)	С6—Н6В	0.9900
N2—C3	1.4605 (15)	С7—Н7А	0.9900
N3—C8	1.3235 (14)	С7—Н7В	0.9900
N3—H3A	0.886 (18)	C11—C12	1.3763 (17)
N3—H3B	0.890 (17)	C11—C16	1.3863 (17)
C1—C14	1.513 (2)	C12—C13	1.387 (2)
C1—H1A	0.9800	C12—H12	0.9500
C1_H1B	0.9800	C12 - C12	1.383(2)
	0.9800	C13 H13	0.9500
$C^2 = C^4$	1.5151(16)	C_{13}	0.9500
C_{3}	1.3131(10)	C15 $C16$	1.377(2)
	0.9900		1.3852 (18)
C3—H3D	0.9900		0.9500
C4—C5	1.5238 (16)	C16—H16	0.9500
C4—H4A	0.9900		
C2—N1—C11	124.85 (10)	С6—С5—Н5	108.5
C2—N1—H1	119.3 (11)	C7—C6—C5	110.61 (11)
C11—N1—H1	115.8 (11)	С7—С6—Н6А	109.5
C2—N2—C7	120.14 (10)	С5—С6—Н6А	109.5
C2—N2—C3	125.68 (10)	С7—С6—Н6В	109.5
C7—N2—C3	112.74 (10)	С5—С6—Н6В	109.5
C8—N3—H3A	117.0 (11)	H6A—C6—H6B	108.1
C8—N3—H3B	120.2 (10)	N2—C7—C6	110.00 (10)
H3A—N3—H3B	122.7 (15)	N2—C7—H7A	109.7
C14— $C1$ — $H1A$	109.5	C6—C7—H7A	109.7
C14— $C1$ — $H1B$	109.5	N2—C7—H7B	109.7
H1A_C1_H1B	109.5	C6-C7-H7B	109.7
C_{14} C_{1} H_{1C}	109.5		109.7
	109.5	$\Omega_{1}^{2} = \Omega_{1}^{2} = \Omega_{1$	100.2 122.17(11)
HIA-CI-HIC	109.5	02 - 03 - 103	122.17(11)
HIB-CI-HIC	109.5	02-08-05	121.06(10)
01 - 02 - N2	122.28 (11)	N3-C8-C5	116.76 (10)
01—C2—N1	121.69 (11)	C12—C11—C16	118.82 (11)
N2-C2-N1	116.01 (10)	C12—C11—N1	118.89 (11)
N2—C3—C4	109.95 (10)	C16—C11—N1	122.10 (11)
N2—C3—H3C	109.7	C11—C12—C13	120.15 (13)
C4—C3—H3C	109.7	C11—C12—H12	119.9
N2—C3—H3D	109.7	C13—C12—H12	119.9
C4—C3—H3D	109.7	C14—C13—C12	121.80 (14)
H3C—C3—H3D	108.2	C14—C13—H13	119.1
C3—C4—C5	110.57 (10)	C12—C13—H13	119.1
C3—C4—H4A	109.5	C15—C14—C13	117.23 (13)
C5—C4—H4A	109.5	C15—C14—C1	121.33 (16)
C3—C4—H4B	109.5	C13—C14—C1	121.42 (16)
C5—C4—H4B	109 5	C14-C15-C16	121.86(13)
H4A - C4 - H4B	108.1	C14—C15—H15	119.1
C8-C5-C4	110.03 (0)	C16_C15_H15	110.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.95(9) 110.04(10)	$C_{15} = C_{15} = -115$	117.1
-0	110.27 (10)	010-010-011	120.11 (12)

C4—C5—C6 C8—C5—H5 C4—C5—H5	109.52 (9) 108.5 108.5	C15—C16—H16 C11—C16—H16	119.9 119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.0(2) 162.27(13) 175.02(12) -19.70(19) -18.65(19) 163.31(11) 134.00(13) -59.78(15) 57.39(13) -178.42(9) -55.63(13) 177.79(10) 55.01(13) -133.78(13) 59.15(16) -56.27(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.08 (16) -71.88 (15) -130.68 (12) 107.35 (13) 151.54 (13) -33.52 (18) -1.4 (2) 173.76 (13) 0.5 (2) 0.9 (2) 179.54 (16) -1.5 (2) 179.85 (15) 0.7 (2) 0.76 (19) -174 18 (12)
			()

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1…O1 ⁱ	0.834 (17)	2.128 (17)	2.9481 (13)	167.9 (15)
N3—H3A····O2 ⁱⁱ	0.886 (18)	2.071 (18)	2.9451 (14)	168.9 (15)
N3—H3 <i>B</i> ···O2 ⁱⁱⁱ	0.890 (17)	2.034 (17)	2.8875 (13)	160.3 (15)
C3—H3 <i>C</i> ···O1 ⁱ	0.99	2.41	3.2987 (17)	149

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*+1, *y*, *z*.