

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Bis[1,2-bis(diphenylphosphanyl)ethane]chlorido(ethynyl)ruthenium(II)

Alexander Trujillo,^a* Mauricio Fuentealba,^b Ramiro Arratia-Perez^a and Judith A. K. Howard^c

^aDepartamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida Republica 275, Santiago, Chile, ^bInstituto de Ouímica. Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile, and ^cDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England Correspondence e-mail: al truiillo@uandresbello.edu

Received 29 September 2012; accepted 28 October 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.030; wR factor = 0.072; data-to-parameter ratio = 22.1.

The molecular structure of the title compound, trans-[Cu- $(C_2H)Cl(C_{26}H_{24}P_2)_2$, consists of an Ru^{II} cation, located on an inversion centre, in an octahedral environment defined by two chelating phosphines, one acetylide and one chloride ligand. The -C=CH and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each). The coordination geometry is distorted octahedral, with the -C=CH fragment and the Cl ligand in trans positions. The four P atoms occupy the equatorial plane of the octahedron and the chloride and acetylide ligands the axial positions.

Related literature

For details of electronic communication, see: Hu et al. (2005) and for molecular electronics, see: Gauthier et al. (2008). For the chemistry of the *trans*-RuCl(C=CH)(dppe)₂, [dppe = 1,2bis(diphenylphosphanyl)ethane] complex, see: Fox et al. (2009). For related structures, see: Faulkner et al. (1994); Zhu et al. (1999); Younus et al. (1999).

metal-organic compounds

Experimental

Crystal data

$[Cu(C_2H)Cl(C_{26}H_{24}P_2)_2]$	V = 2241.22 (6) Å ³
$M_r = 958.33$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.92406 (18) Å	$\mu = 0.59 \text{ mm}^{-1}$
b = 16.0826 (2) Å	$T = 120 { m K}$
c = 13.2228 (2) Å	$0.41 \times 0.35 \times 0.20$
$\beta = 105.2553 \ (17)^{\circ}$	

Data collection

Agilent Xcalibur (Sapphire3, Gemini ultra) diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.912, \ T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.072$ S = 1.096470 reflections

 $5 \times 0.20 \text{ mm}$

```
32289 measured reflections
6470 independent reflections
5653 reflections with I > 2\sigma(I)
R_{\rm int} = 0.040
```

293 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.48$ e Å⁻³

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009).; software used to prepare material for publication: OLEX2.

This work was supported by FONDECYT through grant No. 3110066. MF thanks the Becaschile Programme (Chile) for support through a postdoctoral fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2483).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Faulkner, C. W., Ingham, S. L., Khan, M. S., Lewis, J., Long, N. J. & Raithby, P. R. (1994). J. Organomet. Chem. 482, 139-145.
- Fox, M. A., Harris, J. E., Heider, S., Pérez-Gregorio, V., Zakrzewska, M. E., Farmer, J. D., Yufit, D. S., Howard, J. A. K. & Low, P. J. (2009). J. Organomet. Chem 694 2350-2358
- Gauthier, N., Olivier, C., Rigaut, S., Touchard, D., Roisnel, T., Humphrey, M. G. & Paul, F. (2008). Organometallics, 27, 1063-1072.
- Hu, Q. Y., Lu, W. X., Tang, H. D., Sung, H. H. Y., Wen, T. B., Williams, I. D., Wong, G. K. L., Lin, Z. & Jia, G. (2005). Organometallics, 24, 3966-3973. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Younus, M., Long, N. J., Raithby, P. R., Lewis, J., Page, N. A., White, A. J. P., Williams, D. J., Colbert, M. C. B., Hodge, A. J. & Khan, M. S. (1999). J. Organomet. Chem. 578, 198-209.
- Zhu, Y., Millet, D. B., Wolf, M. O. & Rettig, S. J. (1999). Organometallics, 18, 1930-1938.

supporting information

Acta Cryst. (2012). E68, m1445 [doi:10.1107/S1600536812044558]

trans-Bis[1,2-bis(diphenylphosphanyl)ethane]chlorido(ethynyl)ruthenium(II) Alexander Trujillo, Mauricio Fuentealba, Ramiro Arratia-Perez and Judith A. K. Howard

S1. Comment

In recent years, the design of carbon-rich organometallics compounds has been an interesting research topic, because in this type of structures the connection between the metal center with functional groups is achieved, and consequently the electronic communication is allowed through the C=C unit (Hu *et al.*, 2005). Therefore, much attention has had the chemistry of the trans-RuCl(C=CH)(dppe)2, [dppe=1,2-Bis(diphenylphosphanyl)ethane] complex (Fox *et al.*, 2009). The Cl(dppe)2Ru—C=C– endgroups behave as strongly electron-releasing groups which compares favorably to organic electron-releasing substituents such as methoxy or amino substituents. Moreover, in contrast to the organic substituents, these mononuclear organometallic acetylide complexes exhibit usually a very electron-rich chemistry and constitute a remarkable potential use in the molecular electronics field, since the oxidation state of the metal can be easily modulated (Gauthier *et al.*, 2008). In addition, these types of fragments have been shown to be interesting when they are attached to various unsaturated bridges. Depending on the nature of the bridge and the type of design obtained, they can exhibit different magnetic, optical or electronic properties (Faulkner *et al.*, 1994; Zhu *et al.*, 1999). Despite its important and widely use in the organometallic chemistry for the syntheses of vinylidene ruthenium complexes, for his rich electronic properties, the molecular structure of complex (1) has not been previously reported.

The main compound (1) crystallizes in the monoclinic space group $P2_1/n$. The structure lies over a special position located in an inversion centre. the $-C \equiv CH$ and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each one). The coordination geometry is a distorted octahedron with the $-C \equiv CH$ fragment and the Cl ligand in *trans* position.

The structure of (1) shows four phosphorus atoms occupying the equatorial plane of the octahedron and the chloride and acetylide ligands occupying the axial position in *trans* configuration. The Cl—Ru, Ru—C(1), and C(1)—C(2) data for this complex fall within the range of those previously reported for related octahedral *trans*-bis(bidentate phosphine) ruthenium alkynyl complexes (Younus *et al.*, 1999).

Finally, both inter- and intramolecular hydrogen bonds or any other kind interaction are not observed in the crystalline packing of title compound.

S2. Experimental

A Schlenk tube under argon was loaded with $[Ru(dppe)_2Cl]^+$ (0.400 g, 0.369 mmol), ethynyltrimethylsilane (100 ml, 0.71 mmol), and 20 ml CH₂Cl₂ was added. The resulting mixture was stirred over night. After evaporation of the solvent, the residue was extracted with CH₂Cl₂ and chromatographied through a 2x4 cm Al₂O₃ column using CH₂Cl₂ as eluant. The solution was evaporated and the remaining solid was washed with *n*-pentane and dried *in vacuo*, to afford (1) as an yellow powder (0.262 g, 68,5%). Crystals were obtained by vapor diffusion of dichloromethane and hexane solution of (1).

S3. Refinement

The hydrogen atoms positions were calculated after each cycle of refinement with *SHELXL* (Sheldrick, 2008) using a riding model for each structure, with C—H distances in the range 0.95 to 0.98 Å. $U_{iso}(H)$ values were set equal to $1.2U_{eq}$. The ruthenium atom lies over an inversion center; in consequence, the dppe ligand occupy the equatorial position while chlorine and acetylide ligands are found on both axial positions. Both ligands were refined with 0.5 occupancies each one. On the other hand, phenyl ring (C3–C8) from dppe ligand is disordered in two positions with refined occupancies of 0.725 (17) and 0.275 (17). The anisotropic displacement parameters were constrained using the EADP instruction.

Figure 1

The molecular structure of title compound with full atom numbering scheme for indepent atoms. Displacement ellipsoids are presented at 50% probability level. Hydrogen atoms and disordered phenyl ring have been omitted in sake of clarity.

trans-Bis[1,2- bis(diphenylphosphanyl)ethane]chlorido(ethynyl)ruthenium(II)

Crystal data	
$[Cu(C_2H)Cl(C_{26}H_{24}P_2)_2]$	F(000) = 988
$M_r = 958.33$	$D_{\rm x} = 1.420 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.7107$ Å
a = 10.92406 (18) Å	Cell parameters from 13838 reflections
b = 16.0826 (2) Å	$\theta = 2.5 - 30.8^{\circ}$
c = 13.2228 (2) Å	$\mu = 0.59 ext{ mm}^{-1}$
$\beta = 105.2553 \ (17)^{\circ}$	T = 120 K
V = 2241.22 (6) Å ³	Polyhedron, yellow
Z = 2	$0.41 \times 0.35 \times 0.20 \text{ mm}$

Data collection

Agilent Xcalibur (Sapphire3, Gemini ultra) diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1511 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{min} = 0.912, T_{max} = 1.000$	32289 measured reflections 6470 independent reflections 5653 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 30.8^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -15 \rightarrow 15$ $k = -22 \rightarrow 23$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$ wR(F^2) = 0.072	Hydrogen site location: inferred from neighbouring sites
S = 1.09	H-atom parameters constrained
6470 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0263P)^2 + 1.1519P]$
293 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.49 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Agilent Technologies, 2011)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.0000	0.0000	0.0000	0.01370 (5)	
Cl1	0.23554 (13)	0.03894 (6)	0.07756 (9)	0.0164 (2)	0.50
P1	-0.00132 (4)	0.01938 (2)	0.17791 (3)	0.01557 (8)	
P2	-0.03740 (4)	0.14451 (2)	-0.00604 (3)	0.01542 (8)	
C1	-0.1785 (5)	-0.0277 (2)	-0.0475 (3)	0.0159 (7)	0.50
C2	-0.2870 (5)	-0.0472 (3)	-0.0780 (4)	0.0182 (10)	0.50
H2	-0.3736	-0.0629	-0.1024	0.022*	0.50
C3	-0.1320 (5)	-0.0010 (3)	0.2384 (4)	0.0177 (7)	0.725 (17)
C4	-0.2548 (5)	-0.0110 (3)	0.1755 (4)	0.0240 (9)	0.725 (17)
H4	-0.2709	-0.0086	0.1013	0.029*	0.725 (17)
C5	-0.3543 (5)	-0.0244 (3)	0.2209 (6)	0.0328 (12)	0.725 (17)
H5	-0.4382	-0.0312	0.1779	0.039*	0.725 (17)
C6	-0.3308 (6)	-0.0280 (3)	0.3294 (6)	0.0332 (12)	0.725 (17)
H6	-0.3988	-0.0372	0.3605	0.040*	0.725 (17)

supporting information

C7	-0.2080 (6)	-0.0180 (3)	0.3924 (5)	0.0354 (11)	0.725 (17)
H7	-0.1919	-0.0204	0.4665	0.042*	0.725 (17)
C8	-0.1085 (5)	-0.0046 (4)	0.3469 (4)	0.0276 (9)	0.725 (17)
H8	-0.0246	0.0022	0.3899	0.033*	0.725 (17)
C3A	-0.1411 (13)	-0.0092 (11)	0.2247 (11)	0.0177 (7)	0.275 (17)
C4A	-0.2629 (15)	0.0009 (12)	0.1584 (10)	0.0240 (9)	0.275 (17)
H4A	-0.2741	0.0161	0.0871	0.029*	0.275 (17)
C5A	-0.3695 (12)	-0.0117 (11)	0.1984 (12)	0.0328 (12)	0.275 (17)
H5A	-0.4522	-0.0067	0.1525	0.039*	0.275 (17)
C6A	-0.3573 (14)	-0.0301 (10)	0.2973 (13)	0.0332 (12)	0.275 (17)
H6A	-0.4299	-0.0460	0.3194	0.040*	0.275 (17)
C7A	-0.2455 (16)	-0.0268 (9)	0.3665 (11)	0.0354 (11)	0.275 (17)
H7A	-0.2396	-0.0303	0.4394	0.042*	0.275 (17)
C8A	-0.1349 (13)	-0.0181 (11)	0.3314 (11)	0.0276 (9)	0.275 (17)
H8A	-0.0544	-0.0181	0.3812	0.033*	0.275 (17)
C9	0.13110 (15)	-0.02627 (10)	0.27746 (12)	0.0187 (3)	~ /
C10	0.12128 (17)	-0.10699 (11)	0.31425 (13)	0.0225 (3)	
H10	0.0450	-0.1376	0.2886	0.027*	
C11	0.22226 (19)	-0.14261 (12)	0.38806 (14)	0.0302 (4)	
H11	0.2148	-0.1974	0.4125	0.036*	
C12	0.33340 (19)	-0.09861 (14)	0.42603 (14)	0.0339 (5)	
H12	0.4022	-0.1230	0.4766	0.041*	
C13	0.34422 (18)	-0.01890 (13)	0.39024 (15)	0.0300 (4)	
H13	0.4207	0.0114	0.4163	0.036*	
C14	0.24357 (16)	0.01729 (12)	0.31609 (14)	0.0241 (4)	
H14	0.2519	0.0721	0.2918	0.029*	
C15	0.01206 (16)	0.13281 (10)	0.20793 (12)	0.0195 (3)	
H15A	-0.0705	0.1533	0.2157	0.023*	
H15B	0.0760	0.1413	0.2757	0.023*	
C16	0.04975 (16)	0.18398 (10)	0.12365 (12)	0.0190 (3)	
H16A	0.1423	0.1793	0.1321	0.023*	
H16B	0.0289	0.2433	0.1304	0.023*	
C17	-0.19892(15)	0.18361 (10)	-0.02263 (12)	0.0180 (3)	
C18	-0.22999 (17)	0.24080 (11)	0.04617 (14)	0.0257 (4)	
H18	-0.1660	0.2599	0.1051	0.031*	
C19	-0.35332(19)	0.27016 (13)	0.02957 (15)	0.0326 (4)	
H19	-0.3733	0.3085	0.0776	0.039*	
C20	-0.44647 (18)	0.24394 (13)	-0.05609 (16)	0.0329 (4)	
H20	-0.5309	0.2637	-0.0671	0.039*	
C21	-0.41672 (17)	0.18843 (12)	-0.12658(15)	0.0289 (4)	
H21	-0.4806	0.1713	-0.1867	0.035*	
C22	-0.29422 (16)	0.15783 (10)	-0.10961 (13)	0.0225 (3)	
H22	-0.2751	0.1191	-0.1575	0.027*	
C23	0.02017 (15)	0.21231 (10)	-0.09510(12)	0.0180 (3)	
C24	-0.05139 (18)	0.27775 (11)	-0.14948 (14)	0.0251 (4)	
H24	-0.1326	0.2895	-0.1395	0.030*	
C25	-0.0045(2)	0.32590 (12)	-0.21821 (16)	0.0337 (4)	
H25	-0.0538	0.3706	-0.2547	0.040*	
				••	

supporting information

C26 H26	0.1133 (2) 0.1447	0.30913 (12)	-0.23390 (16) -0.2814	0.0318 (4)
C27	0.18501 (18)	0.24436 (11)	-0.18002 (14)	0.0265 (4)
H27 C28	0.2659 0.13984 (16)	0.2326 0.19629 (10)	-0.1908 -0.11019 (13)	0.032* 0.0214 (3)
H28	0.1904	0.1525	-0.0727	0.026*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.01802 (9)	0.00967 (8)	0.01496 (9)	0.00060 (6)	0.00706 (6)	0.00112 (6)
C11	0.0137 (7)	0.0166 (5)	0.0174 (5)	-0.0028 (5)	0.0015 (5)	0.0003 (3)
P1	0.01879 (19)	0.01286 (18)	0.01658 (19)	0.00130 (14)	0.00734 (15)	0.00160 (14)
P2	0.01964 (19)	0.01067 (17)	0.01706 (19)	0.00060 (14)	0.00677 (15)	0.00072 (14)
C1	0.022 (2)	0.0135 (16)	0.0144 (18)	-0.0002 (16)	0.0080 (15)	0.0004 (13)
C2	0.010 (2)	0.025 (2)	0.0165 (17)	-0.0044 (19)	-0.0013 (18)	0.0015 (13)
C3	0.0248 (11)	0.0106 (14)	0.0214 (16)	0.0001 (9)	0.0124 (12)	-0.0042 (12)
C4	0.0246 (12)	0.022 (2)	0.0288 (18)	0.0007 (12)	0.0125 (13)	-0.0040 (14)
C5	0.0248 (16)	0.027 (2)	0.051 (3)	-0.0008 (13)	0.0187 (18)	-0.0077 (18)
C6	0.035 (2)	0.0332 (12)	0.041 (3)	0.0019 (15)	0.027 (3)	0.0003 (19)
C7	0.026 (3)	0.0582 (19)	0.026 (2)	0.013 (2)	0.014 (2)	0.0114 (17)
C8	0.022 (2)	0.040 (2)	0.0226 (17)	0.0032 (15)	0.0101 (16)	0.0014 (13)
C3A	0.0248 (11)	0.0106 (14)	0.0214 (16)	0.0001 (9)	0.0124 (12)	-0.0042 (12)
C4A	0.0246 (12)	0.022 (2)	0.0288 (18)	0.0007 (12)	0.0125 (13)	-0.0040 (14)
C5A	0.0248 (16)	0.027 (2)	0.051 (3)	-0.0008 (13)	0.0187 (18)	-0.0077 (18)
C6A	0.035 (2)	0.0332 (12)	0.041 (3)	0.0019 (15)	0.027 (3)	0.0003 (19)
C7A	0.026 (3)	0.0582 (19)	0.026 (2)	0.013 (2)	0.014 (2)	0.0114 (17)
C8A	0.022 (2)	0.040 (2)	0.0226 (17)	0.0032 (15)	0.0101 (16)	0.0014 (13)
C9	0.0226 (8)	0.0195 (8)	0.0156 (7)	0.0052 (6)	0.0074 (6)	0.0015 (6)
C10	0.0300 (9)	0.0200 (8)	0.0189 (8)	0.0050 (7)	0.0087 (7)	0.0003 (6)
C11	0.0444 (11)	0.0243 (9)	0.0211 (9)	0.0152 (8)	0.0073 (8)	0.0041 (7)
C12	0.0346 (10)	0.0415 (12)	0.0221 (9)	0.0197 (9)	0.0014 (8)	-0.0002 (8)
C13	0.0219 (8)	0.0421 (11)	0.0254 (9)	0.0057 (8)	0.0050 (7)	-0.0037 (8)
C14	0.0233 (8)	0.0280 (9)	0.0228 (8)	0.0016 (7)	0.0091 (7)	0.0010 (7)
C15	0.0284 (8)	0.0133 (7)	0.0173 (7)	0.0024 (6)	0.0068 (6)	-0.0014 (6)
C16	0.0238 (8)	0.0130 (7)	0.0199 (7)	-0.0013 (6)	0.0054 (6)	-0.0006 (6)
C17	0.0217 (8)	0.0126 (7)	0.0214 (8)	0.0024 (6)	0.0086 (6)	0.0035 (6)
C18	0.0319 (9)	0.0235 (9)	0.0222 (8)	0.0087 (7)	0.0080 (7)	0.0011 (7)
C19	0.0386 (11)	0.0331 (10)	0.0310 (10)	0.0178 (8)	0.0177 (8)	0.0057 (8)
C20	0.0269 (9)	0.0345 (11)	0.0394 (11)	0.0123 (8)	0.0124 (8)	0.0128 (9)
C21	0.0246 (9)	0.0259 (9)	0.0333 (10)	0.0017 (7)	0.0023 (7)	0.0072 (7)
C22	0.0265 (8)	0.0154 (7)	0.0256 (8)	0.0007 (6)	0.0067 (7)	0.0019 (6)
C23	0.0253 (8)	0.0118 (7)	0.0184 (7)	-0.0018 (6)	0.0085 (6)	-0.0002 (6)
C24	0.0310 (9)	0.0179 (8)	0.0306 (9)	0.0060 (7)	0.0154 (7)	0.0067 (7)
C25	0.0456 (11)	0.0212 (9)	0.0405 (11)	0.0101 (8)	0.0222 (9)	0.0146 (8)
C26	0.0446 (11)	0.0222 (9)	0.0364 (10)	0.0009 (8)	0.0243 (9)	0.0081 (8)
C27	0.0287 (9)	0.0250 (9)	0.0303 (9)	-0.0010 (7)	0.0155 (7)	0.0016 (7)
C28	0.0250 (8)	0.0173 (8)	0.0231 (8)	0.0007 (6)	0.0083 (6)	0.0018 (6)

Geometric parameters (Å, °)

Ru1—P2	2.3575 (4)	C18—H18	0.9500
Ru1—P2 ⁱ	2.3575 (4)	C18—C19	1.389 (2)
Ru1—P1 ⁱ	2.3769 (4)	C15—H15A	0.9900
Ru1—P1	2.3769 (4)	C15—H15B	0.9900
Ru1—Cl1 ⁱ	2.5838 (14)	C10—H10	0.9500
Ru1—Cl1	2.5838 (14)	C10—C11	1.390 (2)
Ru1—C1	1.936 (5)	C24—H24	0.9500
Ru1—C1 ⁱ	1.936 (5)	C24—C25	1.390 (2)
P2—C23	1.8332 (16)	C13—H13	0.9500
P2—C17	1.8311 (16)	C13—C12	1.382 (3)
P2—C16	1.8414 (16)	C11—H11	0.9500
P1—C3	1.840 (3)	C11—C12	1.381 (3)
Р1—С9	1.8337 (16)	C21—H21	0.9500
P1—C15	1.8644 (16)	C21—C22	1.388 (2)
Р1—СЗА	1.850 (11)	C21—C20	1.390 (3)
Cl1—C1 ⁱ	0.670 (4)	C27—H27	0.9500
Cl1—C2 ⁱ	0.576 (4)	C27—C26	1.383 (3)
C3—C4	1.3900	C22—H22	0.9500
C3—C8	1.3900	C20—H20	0.9500
C4—H4	0.9500	C20—C19	1.375 (3)
C4—C5	1.3900	C12—H12	0.9500
С5—Н5	0.9500	C19—H19	0.9500
C5—C6	1.3900	C25—H25	0.9500
С6—Н6	0.9500	C25—C26	1.383 (3)
С6—С7	1.3900	C26—H26	0.9500
С7—Н7	0.9500	C1—Cl1 ⁱ	0.670 (4)
C7—C8	1.3900	C1—C2	1.190 (5)
С8—Н8	0.9500	C2—Cl1 ⁱ	0.576 (4)
C23—C28	1.397 (2)	C2—H2	0.9500
C23—C24	1.393 (2)	C3A—C4A	1.397 (12)
C17—C18	1.397 (2)	C3A—C8A	1.402 (11)
C17—C22	1.396 (2)	C4A—H4A	0.9500
C16—H16A	0.9900	C4A—C5A	1.415 (11)
C16—H16B	0.9900	C5A—H5A	0.9500
C16—C15	1.526 (2)	C5A—C6A	1.312 (17)
C9—C14	1.390 (2)	С6А—Н6А	0.9500
C9—C10	1.400 (2)	C6A—C7A	1.320 (15)
C14—H14	0.9500	C7A—H7A	0.9500
C14—C13	1.393 (3)	C7A—C8A	1.410 (13)
C28—H28	0.9500	C8A—H8A	0.9500
C28—C27	1.391 (2)		
P2 ⁱ —Ru1—P2	180.0	C14—C9—P1	121.07 (13)
P2 ⁱ —Ru1—P1	98.156 (13)	C14—C9—C10	118.74 (16)
$P2$ — $Ru1$ — $P1^i$	98.157 (13)	C10—C9—P1	120.17 (13)
$P2^{i}$ —Ru1—P1 ⁱ	81.844 (13)	C9—C14—H14	119.8

P2—Ru1—P1	81.843 (13)	C9—C14—C13	120.38 (18)
P2—Ru1—Cl1 ⁱ	94.58 (2)	C13—C14—H14	119.8
$P2^{i}$ —Ru1—Cl1 ⁱ	85.42 (2)	C23—C28—H28	120.0
P2—Ru1—Cl1	85.42 (2)	C27—C28—C23	120.07 (16)
P2 ⁱ —Ru1—Cl1	94.58 (2)	C27—C28—H28	120.0
P1 ⁱ —Ru1—P1	179.999 (19)	C17—C18—H18	119.6
P1—Ru1—Cl1 ⁱ	99.20 (3)	C19—C18—C17	120.84 (17)
P1 ⁱ —Ru1—C11	99.20 (3)	C19—C18—H18	119.6
P1—Ru1—Cl1	80.80 (3)	P1—C15—H15A	108.9
$P1^{i}$ —Ru1—Cl1 ⁱ	80.80 (3)	P1—C15—H15B	108.9
Cl1—Ru1—Cl1 ⁱ	180.00 (4)	C16—C15—P1	113.15 (11)
$C1^{i}$ —Ru1—P2 ⁱ	93.73 (11)	C16—C15—H15A	108.9
C1—Ru1—P2 ⁱ	86.27 (11)	C16—C15—H15B	108.9
C1 ⁱ —Ru1—P2	86.27 (11)	H15A—C15—H15B	107.8
C1—Ru1—P2	93.73 (11)	С9—С10—Н10	119.8
$C1$ — $Ru1$ — $P1^i$	85.22 (11)	C11—C10—C9	120.46 (17)
$C1^{i}$ —Ru1—P1	85.22 (11)	C11—C10—H10	119.8
C1— $Ru1$ — $P1$	94.78 (11)	C23—C24—H24	119.8
$C1^{i}$ Ru1 P1 ⁱ	94.78 (11)	$C_{25} = C_{24} = C_{23}$	120.36 (16)
$C1^{i}$ Ru1 Cl1	4 43 (12)	$C_{25} = C_{24} = H_{24}$	119.8
C1— $Ru1$ — $Cl1$	175 57 (12)	C14—C13—H13	119.8
$C1^{i}$ Ru1 $-C11^{i}$	175 57 (12)	C12-C13-C14	120.37 (18)
$C1$ — $Ru1$ — $C11^{i}$	4 43 (12)	C12—C13—H13	119.8
$C1^{i}$ Ru1 $C1$	180.0	C10-C11-H11	119.0
C_{23} P_{2} R_{11}	121 50 (5)	C_{12} C_{11} C_{10}	120 24 (18)
$C_{23} = P_{2} = C_{16}$	121.30(3) 102.27(7)	C12_C11_H11	110.0
$C_{12} = C_{10}$	102.27(7) 110.70(5)	$C_{12} = C_{11} = H_{11}$	110.8
C17 = P2 = C23	119.70(3) 101.62(7)	$C_{22} = C_{21} = H_{21}$	119.8
C17 = 12 = C23	101.02(7) 103.83(7)	$C_{22} = C_{21} = C_{20}$	120.33 (10)
$C_{17} = 12 = C_{10}$	105.83(7) 105.41(5)	$C_{20} = C_{21} = H_{21}$	119.0
C_{10} L_{10} C_{10} L_{10} C_{10} C	103.41(3) 127.01(17)	$C_{26} = C_{27} = C_{28}$	117.7
C_{3} P_{1} C_{15}	127.91(17)	$C_{20} = C_{27} = C_{28}$	120.38 (17)
$C_{0} = P_{1} = C_{10}$	90.22 (18)	$C_{20} = C_{27} = H_{27}$	119.7
C9 - P1 - Ru1	110.07(3)	C1/-C22-H22	119.8
C9 - P1 - C3	99.91(19)	$C_{21} = C_{22} = C_{17}$	120.42 (10)
C9 - P1 - C13	103.00(8) 102.0(5)	$C_{21} = C_{22} = H_{22}$	119.8
C_{2} P_{1} C_{3} C_{15} P_{1} P_{23}	103.0(5)	$C_{21} = C_{20} = H_{20}$	120.1
C15 - P1 - Ru1	108.57(5)	C19 - C20 - C21	119.78 (17)
C3A = P1 = C15	121.2 (5)	C19 - C20 - H20	120.1
C_{3A} PI CIS	101.4 (6)	CI3-CI2-HI2	120.1
C2 ⁱ —CII—Rul	158.0 (5)	C11—C12—C13	119.81 (17)
$C2^{i}$	145.2 (7)	C11—C12—H12	120.1
C4—C3—P1	119.8 (2)	C18—C19—H19	119.9
C4 - C3 - C8	120.0	C20—C19—C18	120.18 (18)
C8—C3—P1	120.2 (2)	C20—C19—H19	119.9
C3—C4—H4	120.0	C24—C25—H25	119.8
C5—C4—C3	120.0	C26—C25—C24	120.43 (17)
С5—С4—Н4	120.0	C26—C25—H25	119.8
C4—C5—H5	120.0	С27—С26—Н26	120.2

C4—C5—C6	120.0	C25—C26—C27	119.56 (17)
С6—С5—Н5	120.0	С25—С26—Н26	120.2
С5—С6—Н6	120.0	C2—C1—Ru1	177.7 (4)
C7—C6—C5	120.0	C11 ⁱ —C2—H2	161.3
С7—С6—Н6	120.0	C1—C2—H2	180.0
C6-C7-H7	120.0	C4A - C3A - P1	1196(9)
C6-C7-C8	120.0	C4A - C3A - C8A	115.0(9) 115.4(8)
C8 C7 H7	120.0	$C_{8A} = C_{3A} = P_1$	122.4(10)
$C_3 = C_2 = H_2$	120.0	$C_{0A} = C_{0A} = H_{0A}$	122.4 (10)
C_{3}	120.0	C_{3A} C_{4A} C_{5A}	120.3
$C/-C\delta-CS$	120.0	$C_{SA} = C_{4A} = U_{4A}$	119.5 (10)
C/-C8-H8	120.0	CSA—C4A—H4A	120.3
C28—C23—P2	118.30 (12)	С4А—С5А—Н5А	119.1
C24—C23—P2	122.70 (13)	C6A—C5A—C4A	121.8 (11)
C24—C23—C28	118.99 (15)	C6A—C5A—H5A	119.1
C18—C17—P2	122.66 (13)	С5А—С6А—Н6А	119.5
C22—C17—P2	118.88 (12)	C5A—C6A—C7A	121.0 (9)
C22—C17—C18	118.41 (15)	С7А—С6А—Н6А	119.5
P2—C16—H16A	109.9	С6А—С7А—Н7А	120.3
P2—C16—H16B	109.9	C6A—C7A—C8A	119.5 (9)
H16A—C16—H16B	108.3	С8А—С7А—Н7А	120.3
C15—C16—P2	108.75 (11)	C3A—C8A—C7A	121.5 (10)
C15—C16—H16A	109.9	СЗА—С8А—Н8А	119.2
C15—C16—H16B	109.9	С7А—С8А—Н8А	119.2
Ru1—P2—C23—C28	-38.82(15)	C4 - C5 - C6 - C7	0.0
$R_{11} = P_{2} = C_{23} = C_{24}$	139.91 (13)	$C_{5} - C_{6} - C_{7} - C_{8}$	0.0
$R_{11} = P_{2} = C_{12} = C_{13}$	125.95 (13)	C6-C7-C8-C3	0.0
$R_{11} = P_2 = C_{17} = C_{10}$	-5655(14)	C^{8} C^{3} C^{4} C^{5}	0.0
Ru1 - 12 - C17 - C22	-51.85 (11)	$C_{3} = C_{3} = C_{4} = C_{3}$	-07.05(15)
Ru1 - 12 - C10 - C13	-16.2(4)	$C_{23} = C_{12} = C_{17} = C_{18}$	97.03 (13)
Ru1 - F1 - C3 - C4	-10.5(4)	$C_{23} = F_2 = C_1 / = C_{22}$	170.7((11))
Rui - Pi - C3 - C8	165.22 (18)	C23—P2—C16—C15	-1/9./6(11)
Rul = Pl = C9 = C14	87.24 (14)	$C_{23} = C_{28} = C_{27} = C_{26}$	1.0 (3)
Ru1—P1—C9—C10	-91.31 (13)	C23—C24—C25—C26	0.4 (3)
Ru1—P1—C15—C16	-12.75 (13)	C17—P2—C23—C28	-174.82 (13)
Ru1—P1—C3A—C4A	-34.9 (14)	C17—P2—C23—C24	3.91 (16)
Ru1—P1—C3A—C8A	163.9 (8)	C17—P2—C16—C15	74.82 (12)
P2—Ru1—P1—C3	99.6 (2)	C17—C18—C19—C20	-0.9 (3)
$P2^{i}$ —Ru1—P1—C3	-80.4 (2)	C16—P2—C23—C28	78.06 (14)
$P2^{i}$ —Ru1—P1—C9	49.05 (6)	C16—P2—C23—C24	-103.21 (15)
P2—Ru1—P1—C9	-130.95 (6)	C16—P2—C17—C18	8.85 (16)
P2—Ru1—P1—C15	-14.37 (6)	C16—P2—C17—C22	-173.64 (13)
P2 ⁱ —Ru1—P1—C15	165.63 (6)	C9—P1—C3—C4	-151.8 (3)
P2 ⁱ —Ru1—P1—C3A	-77.8 (7)	C9—P1—C3—C8	29.7 (3)
P2—Ru1—P1—C3A	102.2 (7)	C9—P1—C15—C16	111.93 (12)
$P2^{i}$ Ru1 – Cl1 – Cl ⁱ	79.0 (14)	C9 - P1 - C3A - C4A	-167.6(11)
$P_2 = R_{11} = C_{11} = C_{11}$	-1010(14)	C9-P1-C3A-C8A	31.2 (11)
$P2^{i}$ _Ru1_Cl1_C2^{i}	891(15)	C9-C14-C13-C12	01(3)
12 - 101 - 01 - 02	07.1 (13)	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.1 (5)
\mathbf{D}_{2} \mathbf{D}_{11} \mathbf{D}_{11} \mathbf{D}_{21}	-00.0(15)	C0 C10 C11 C12	0.1(2)

P2—Ru1—C1—Cl1 ⁱ	101.3 (14)	C14—C9—C10—C11	0.1 (2)
$P2^{i}$ —Ru1—C1—Cl1 ⁱ	-78.7 (14)	C14—C13—C12—C11	0.0 (3)
P2-C23-C28-C27	177.65 (13)	C28—C23—C24—C25	0.4 (3)
P2-C23-C24-C25	-178.28 (15)	C28—C27—C26—C25	-0.2 (3)
P2-C17-C18-C19	178.71 (14)	C18—C17—C22—C21	-0.2(2)
P2-C17-C22-C21	-177.77 (13)	C15—P1—C3—C4	103.1 (3)
P2-C16-C15-P1	41.29 (14)	C15—P1—C3—C8	-75.4 (3)
P1 ⁱ —Ru1—P2—C23	-30.89 (6)	C15—P1—C9—C14	-32.02 (15)
P1—Ru1—P2—C23	149.11 (6)	C15—P1—C9—C10	149.43 (13)
P1—Ru1—P2—C17	-82.46 (6)	C15—P1—C3A—C4A	85.3 (12)
P1 ⁱ —Ru1—P2—C17	97.54 (6)	C15—P1—C3A—C8A	-75.9 (10)
P1 ⁱ —Ru1—P2—C16	-146.19 (6)	C10-C9-C14-C13	-0.2 (2)
P1—Ru1—P2—C16	33.81 (6)	C10-C11-C12-C13	-0.2 (3)
$P1^{i}$ —Ru1—Cl1—Cl ⁱ	-3.5 (14)	C24—C23—C28—C27	-1.1(3)
$P1$ — $Ru1$ — $C11$ — $C1^i$	176.5 (14)	C24—C25—C26—C27	-0.5 (3)
$P1^{i}$ —Ru1—Cl1—C 2^{i}	6.6 (15)	C21—C20—C19—C18	-0.5 (3)
$P1$ — $Ru1$ — $C11$ — $C2^{i}$	-173.4 (15)	C22—C17—C18—C19	1.2 (3)
$P1$ — $Ru1$ — $C1$ — $C11^i$	-176.6 (14)	C22—C21—C20—C19	1.5 (3)
$P1^{i}$ —Ru1—C1—Cl1 ⁱ	3.4 (14)	C20-C21-C22-C17	-1.2(3)
P1—C3—C4—C5	-178.5 (4)	C1—Ru1—P2—C23	-116.59 (12)
P1—C3—C8—C7	178.5 (4)	C1 ⁱ —Ru1—P2—C23	63.41 (12)
P1-C9-C14-C13	-178.75 (13)	C1—Ru1—P2—C17	11.84 (12)
P1-C9-C10-C11	178.64 (13)	C1 ⁱ —Ru1—P2—C17	-168.16 (12)
P1—C3A—C4A—C5A	-172.6 (13)	C1 ⁱ —Ru1—P2—C16	-51.89 (12)
P1-C3A-C8A-C7A	169.8 (14)	C1—Ru1—P2—C16	128.11 (12)
Cl1 ⁱ —Ru1—P2—C23	-112.23 (7)	C1—Ru1—P1—C3	6.5 (3)
Cl1—Ru1—P2—C23	67.77 (7)	C1 ⁱ —Ru1—P1—C3	-173.5 (3)
Cl1 ⁱ —Ru1—P2—C17	16.20 (7)	C1—Ru1—P1—C9	135.96 (13)
Cl1—Ru1—P2—C17	-163.80(7)	$C1^{i}$ —Ru1—P1—C9	-44.04 (13)
Cl1 ⁱ —Ru1—P2—C16	132.47 (6)	C1—Ru1—P1—C15	-107.46 (12)
Cl1—Ru1—P2—C16	-47.53 (6)	C1 ⁱ —Ru1—P1—C15	72.54 (12)
Cl1—Ru1—P1—C3	-173.7 (2)	C1 ⁱ —Ru1—P1—C3A	-170.9 (7)
Cl1 ⁱ —Ru1—P1—C3	6.3 (2)	C1—Ru1—P1—C3A	9.1 (7)
Cl1—Ru1—P1—C9	-44.31 (7)	$C1^{i}$ —Ru1—Cl1—C2 ⁱ	10 (2)
Cl1 ⁱ —Ru1—P1—C9	135.69 (7)	C3A—P1—C3—C4	-35 (6)
Cl1—Ru1—P1—C15	72.28 (6)	C3A—P1—C3—C8	147 (6)
Cl1 ⁱ —Ru1—P1—C15	-107.72 (6)	C3A—P1—C9—C14	-137.4 (6)
Cl1—Ru1—P1—C3A	-171.1 (7)	C3A—P1—C9—C10	44.1 (6)
Cl1 ⁱ —Ru1—P1—C3A	8.9 (7)	C3A—P1—C15—C16	-141.5 (5)
C3—P1—C9—C14	-131.0 (2)	C3A—C4A—C5A—C6A	2.2 (13)
C3—P1—C9—C10	50.5 (2)	C4A—C3A—C8A—C7A	7.8 (14)
C3—P1—C15—C16	-146.3 (2)	C4A—C5A—C6A—C7A	9.1 (17)
C3—P1—C3A—C4A	128 (7)	C5A—C6A—C7A—C8A	-11.4 (18)
C3—P1—C3A—C8A	-33 (5)	C6A—C7A—C8A—C3A	2.7 (15)
C3—C4—C5—C6	0.0	C8A—C3A—C4A—C5A	-10.1 (13)
C4—C3—C8—C7	0.0		~ /

Symmetry code: (i) -x, -y, -z.