organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrabutylammonium 2-[2,5-dimethyl-3-(4-nitrophenyl)-2,3-dihydro-1,2,4oxadiazolium-4-yl]nonahydro-c*loso*decaborate

Aleksey L. Mindich,^a Anna V. Pavlishchuk,^b* Nadezhda A. Bokach,^a* Galina L. Starova^a and Konstantin Yu. Zhizhin^c

^aDepartment of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, ^bDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska str. 62, Kiev 01601, Ukraine, and ^cN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Pr., 119991 Moscow, Russian Federation Correspondence e-mail: annpavlis@ukr.net

Received 8 June 2012; accepted 30 October 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.054; wR factor = 0.142; data-to-parameter ratio = 28.0.

The title ionic compound, $C_{16}H_{36}N^+ \cdot C_{10}H_{20}B_{10}N_3O_3^-$, consists of a tetrabutylammonium cation and a *closo*-decaborate cluster anion, which is bound to the substituted 2,3-dihydro-1,2,4-oxadiazole ring through a B–N bond [1.540 (2) Å]. The distances between connected B atoms in the decaborate cluster range from 1.689 (2) to 1.844 (2) Å. The 2,3-dihydro-1,2,4-oxadiazole ring adopts an envelope conformation with the N atom as the flap atom.

Related literature

For related structures and background, see: Mindich *et al.* (2012). For examples of substituted 1,2,4-oxadiazoles, their complexes and properties, see: Kritchenkov *et al.* (2012); Bokach *et al.* (2011*a,b*); Makarycheva-Mikhailova *et al.* (2007); Kukushkin & Pombeiro (2002); Kritchenkov *et al.* (2011); Bokach (2010); Sivaev *et al.* (2002, 2008). For propeties and structure examples of boron clusters, see: Dash *et al.* (2011); Dou *et al.* (1994).

Experimental

Crystal data

 $C_{16}H_{36}N^+ \cdot C_{10}H_{20}B_{10}N_3O_3^ M_r = 580.85$ Monoclinic, P_{2_1}/n a = 8.7356 (4) Å b = 15.8691 (6) Å c = 24.7015 (10) Å $\beta = 98.206 (1)^\circ$

Data collection

Bruker Kappa APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.161, T_{max} = 0.374$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.142$ S = 0.9410868 reflections $V = 3389.2 (2) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 100 K 0.35 \times 0.25 \times 0.20 mm

35977 measured reflections 10868 independent reflections 6806 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.086$

 $\begin{array}{l} 388 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.55 \text{ e } \text{ } \text{A}^{-3} \\ \Delta \rho_{min} = -0.51 \text{ e } \text{ } \text{A}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Russian Fund for Basic Research (grants11–03–00262 and 11–03–90417), the Federal Targeted Program Scientific and Scientific-Pedagogical Personnel of Innovative Russia in 2009–2013 (contract P1294 from 09/06/2010) and the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041). ALM expresses his gratitude to the Government of Saint-Petersburg for a grant for graduate and undergraduate students (2011). Financial support from the Visby Program through the Swedish Institute is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2067).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bokach, N. A. (2010). Russ. Chem. Rev. 79, 89-100.
- Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Y. (2011a). Organometallics, 30, 595-602.
- Bokach, N. A., Kuznetsov, M. L. & Kukushkin, V. Y. (2011b). Coord. Chem. Rev. 255, 2946–2967.
- Bruker (2005). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dash, B. P., Satapathy, R., Maguire, J. A. & Hosmane, N. S. (2011). New J. Chem. 35, 1955–1972.
- Dou, D., Mavunkal, I. J., Bauer, J. A. K., Knobler, C. B., Hawthorne, M. F. & Shore, S. G. (1994). *Inorg. Chem.* 33, 6432–6434.
- Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175–4182.
- Kritchenkov, A. S., Bokach, N. A., Kuznetsov, M. L., Dolgushin, F. M., Tung, T. Q., Molchanov, A. P. & Kukushkin, V. Y. (2012). Organometallics, 31, 687– 699.

- Kukushkin, V. Y. & Pombeiro, A. J. L. (2002). *Chem. Rev.* **102**, 1771–1802. Makarycheva-Mikhailova, A. V., Golenetskaya, J. A., Bokach, N. A., Balova,
- I. A., Haukka, M. & Kukushkin, V. Y. (2007). *Inorg. Chem.* **46**, 8323–8331. Mindich, A. L., Bokach, N. A., Dolgushin, F. M., Haukka, M., Lisitsyn, L. A., Zhdanov, A. P. & Zhizhin, K. Y. (2012). *Organometallics*, **31**, 1716–1724.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sivaev, I. B., Kulikova, N. Y., Nizhnik, E. A., Vichuzhanin, M. V., Starikova, Z. A., Semioshkin, A. A. & Bregadze, V. I. (2008). J. Organomet. Chem. 693, 519–525.
- Sivaev, I. B., Votinova, N. A., Bragin, V. I., Starikova, Z. A., Goeva, L. V., Bregadze, V. I. & Sjoberg, S. (2002). J. Organomet. Chem. 657, 163–170.

supporting information

Acta Cryst. (2012). E68, o3284-o3285 [doi:10.1107/S1600536812044984]

Tetrabutylammonium 2-[2,5-dimethyl-3-(4-nitrophenyl)-2,3-dihydro-1,2,4-oxadiazolium-4-yl]nonahydro-*closo*-decaborate

Aleksey L. Mindich, Anna V. Pavlishchuk, Nadezhda A. Bokach, Galina L. Starova and Konstantin Yu. Zhizhin

S1. Comment

In the past decade, a great attention has been paid to electrophilic activation of the C=N bond in nitriles (Bokach, 2010; Bokach *et al.*, 2011*a*; Bokach *et al.*, 2011*b*; Kritchenkov *et al.*, 2011; Kritchenkov *et al.*, 2012; Kukushkin & Pombeiro, 2002; Makarycheva-Mikhailova *et al.*, 2007). In a addition an interest in compounds which contain borane clusters is caused by their potential application in medicine, homogeneous catalysis, for non-linear optics and luminescent materials creation, as potential metal extractants, agents for anion recognition and building blocks for coordination polymers creation, *etc* (Dash *et al.*, 2011). Despite boron clusters are known near the century, examples of coordination compounds based thereon are sparse. Therefore the synthesis of new ligand systems based on borane clusters and investigation of their ability of complex formation are of particular interest. In the framework of our project focused on reactivity of the activated C=N group in nitrilium derivatives of *closo*-decaborate clusters (Mindich *et al.*, 2012), the substituted borylated 2,3-dihydro-1,2,4-oxadiazole (Scheme 1) was characterized by a single-crystal X-ray diffraction.

Each unit cell (Fig. 1) of the title compound, $[n-Bu_4N]^+[C_{10}H_{20}B_{10}O_3N_3]^-$, consists of four anions and four cations. So far as there are no hydrogen bonds in the title compound, it should be mentioned that crystal packing is generally caused by electrostatic interactions between cations and anions. In the cation of the title compound, the alkyl chains of $[n-Bu_4N]^+$ are always in *anti* or *gauche* conformations and all bond lengths are close to those reported in the literature (Sivaev *et al.*, 2008).

The anionic part consists of a substituted 2,3-dihydro-1,2,4-oxadiazole ring bound to the *closo*-decaborate cluster *via* the N1 atom [d(B2-N1) = 1.540 (3) Å] (Fig. 2). This bond is longer as compared to the starting nitrilium *closo*-decaborate (1.515 (5) Å) (Dou *et al.*, 1994) and is equal, within 3σ , to those in the previously described *closo*-decaborate clusters functionalized with substituted 2,3-dihydro-1,2,4-oxadiazoles (1.5438 (18)–1.546 (3) Å) (Mindich *et al.*, 2012).

Ten boron atoms in the decaborate cluster are connected between each other in such way, that they form a bicapped square antiprism. Each of two boron atoms (B1 and B10), which are situated in the vertex of observed polyhedron, are surrounded by four boron atoms. Bond distances between B1 or B10 and connected with them boron atoms (B2 – B5 for B1 and B6 – B9 for B10) range from 1.689 (2) Å to 1.708 (2) Å. Each of the boron atoms B2 – B9 are surrounded by five boron atoms. Bond distances between connected boron atoms B2 – B9 vary from 1.806 (2) Å to 1.844 (2) Å, what is on 0.117 - 0.136 Å longer than for B1—B(2–5) and B10—B(6–9) bonds. In the cluster, the B—B bond distances and angles are typical for 2-substituted-nonahydro-*closo*-decaborates (Dou *et al.*, 1994; Sivaev *et al.*, 2002).

The double bond in 1,2,4-oxadiazole in the title compound is observed between atoms N1 and C1 [d = 1.2886 (16) Å]. The 2,3-dihydro-1,2,4-oxadiazole ring adopts an envelope conformation with N2 being the flap atom. Deviation of N2 from the plane O1C1N1C5 is equal to 0.327 (2) Å. 1,2,4-oxadiazole contains two methyl groups in the 2-nd and 5-th

positions and *p*-nitrophenyl in the 3-rd position. The angle between mean planes of substituted 1,2,4-oxadiazole ring O1C1N1C5 and phenyl ring C6C7C8C9C10C11 is equal to 86.35 (18)°. The geometrical parameters of the 2,3-di-hydro-1,2,4-oxadiazole rings are the same, within 3σ , as those in the previously described borylated 2,3-dihydro-1,2,4-oxadiazoles (Mindich *et al.*, 2012). All bonds and angles are of normal values.

S2. Experimental

Title compound was synthesized and isolated as pure solid by the described method (Mindich *et al.*, 2012). The crystal was obtained by a slow evaporation of a methanol solution of the title compound. XRD study was carried out in the X-ray Diffraction Centre of St.Petersburg State University.

S3. Refinement

Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F² are statistically about twice as large as those based on F, and R– factors based on all data will be even larger.

Figure 1

A packing view of the title compound.

Figure 2

A view of the title compound with the atomic numbering scheme (thermal ellipsoids are drawn at the 50% probability level.

Tetrabutylammonium 2-[2,5-dimethyl-3-(4-nitrophenyl)-2,3-dihydro- 1,2,4-oxadiazolium-4-yl]nonahydro-*closo*-decaborate

Crystal data

$C_{16}H_{36}N^+\!\cdot\!C_{10}H_{20}B_{10}N_3O_3^-$
$M_r = 580.85$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 8.7356 (4) Å
<i>b</i> = 15.8691 (6) Å
c = 24.7015 (10) Å
$\beta = 98.206 (1)^{\circ}$
V = 3389.2 (2) Å ³
Z = 4

Data collection

Bruker Kappa APEXII DUO CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.161, T_{\max} = 0.374$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.142$ S = 0.94 F(000) = 1256 $D_x = 1.138 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6524 reflections $\theta = 2.6-30.8^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.35 \times 0.25 \times 0.20 \text{ mm}$

35977 measured reflections 10868 independent reflections 6806 reflections with $I > 2\sigma(I)$ $R_{int} = 0.086$ $\theta_{max} = 31.2^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -12 \rightarrow 6$ $k = -23 \rightarrow 20$ $l = -34 \rightarrow 35$

10868 reflections 388 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0609P)^2]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.55 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
N4	1.06470 (12)	0.31892 (7)	-0.19722 (4)	0.0152 (2)
C1A	0.99038 (15)	0.30280 (8)	-0.25556 (5)	0.0166 (3)
H1AA	1.0716	0.2948	-0.2781	0.020*
H1AB	0.9323	0.3525	-0.2689	0.020*
C2A	0.88276 (16)	0.22708 (8)	-0.26301 (6)	0.0189 (3)
H2AA	0.7830	0.2420	-0.2528	0.023*
H2AB	0.9257	0.1814	-0.2395	0.023*
C3A	0.86245 (16)	0.19856 (9)	-0.32259 (6)	0.0211 (3)
H3AA	0.8326	0.2465	-0.3461	0.025*
H3AB	0.9605	0.1776	-0.3312	0.025*
C4A	0.7411 (2)	0.13008 (9)	-0.33407 (6)	0.0311 (4)
H4AA	0.7311	0.1143	-0.3719	0.047*
H4AB	0.6437	0.1507	-0.3259	0.047*
H4AC	0.7718	0.0819	-0.3117	0.047*
C1B	0.94265 (15)	0.32580 (8)	-0.15940 (5)	0.0164 (3)
H1BA	0.9944	0.3320	-0.1222	0.020*
H1BB	0.8847	0.2735	-0.1612	0.020*
C2B	0.82901 (16)	0.39833 (8)	-0.17181 (6)	0.0198 (3)
H2BA	0.7641	0.3882	-0.2064	0.024*
H2BB	0.8854	0.4504	-0.1749	0.024*
C3B	0.72812 (17)	0.40682 (9)	-0.12650 (6)	0.0232 (3)
H3BA	0.7946	0.4144	-0.0919	0.028*
H3BB	0.6649	0.4570	-0.1332	0.028*
C4B	0.62259 (17)	0.33156 (10)	-0.12169 (7)	0.0273 (3)
H4BA	0.5635	0.3410	-0.0923	0.041*
H4BB	0.6841	0.2816	-0.1144	0.041*
H4BC	0.5537	0.3247	-0.1553	0.041*
C1C	1.16972 (15)	0.24577 (8)	-0.17577 (5)	0.0168 (3)
H1CA	1.2302	0.2629	-0.1415	0.020*
H1CB	1.1051	0.1989	-0.1679	0.020*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C2C	1.28027 (16)	0.21468 (8)	-0.21379 (6)	0.0182 (3)
H2CA	1.3361	0.2620	-0.2263	0.022*
H2CB	1.2223	0.1877	-0.2455	0.022*
C3C	1.39420 (15)	0.15209 (8)	-0.18342 (6)	0.0194 (3)
H3CA	1.4461	0.1782	-0.1503	0.023*
НЗСВ	1.3380	0.1034	-0.1729	0.023*
C4C	1.51453 (17)	0.12333 (10)	-0.21844(7)	0.0282 (3)
H4CA	1.5831	0.0835	-0.1983	0.042*
H4CB	1.5727	0.1711	-0.2279	0.042*
H4CC	1.4636	0.0973	-0.2512	0.042*
CID	1 15761 (16)	0 40003 (8)	-0.19808(6)	0.0172(3)
HIDA	1 2440	0 3894	-0.2178	0.021*
HIDR	1.0925	0.4420	-0.2185	0.021*
C2D	1.0925	0.43691 (8)	-0.14269(6)	0.021
	1 2882	0.3964	-0.1220 (0)	0.013*
H2DR	1.2002	0.3704	-0.1225	0.023*
C2D	1.1555	0.4407 0.51705 (0)	-0.14065 (6)	0.025
	1.30901 (19)	0.51795 (9)	-0.14903(0) -0.1705	0.0200(3)
	1.3931	0.5039	-0.1703	0.031*
	1.2410 1.27(1.(2))	0.3383	-0.1702	0.031°
	1.3701 (2)	0.55655 (10)	-0.09510 (6)	0.0320 (4)
H4DA	1.4514	0.6071	-0.1013	0.048*
H4DB	1.4455	0.51/1	-0.0748	0.048*
H4DC	1.2936	0.5697	-0.0/4/	0.048*
	0.54528 (11)	0.16501 (6)	-0.017/3 (4)	0.0202 (2)
NI	0.74065 (12)	0.12499 (6)	0.04378 (4)	0.0144 (2)
N2	0.66334 (12)	0.13225 (7)	-0.05053 (5)	0.0165 (2)
C1	0.59955 (15)	0.15096 (8)	0.03466 (6)	0.0168 (3)
C2	0.49407 (16)	0.17008 (9)	0.07497 (6)	0.0222 (3)
H2A	0.3957	0.1879	0.0561	0.033*
H2B	0.5377	0.2143	0.0989	0.033*
H2C	0.4805	0.1205	0.0961	0.033*
C4	0.60748 (16)	0.04754 (8)	-0.06730 (6)	0.0182 (3)
H4A	0.5161	0.0521	-0.0938	0.027*
H4B	0.5837	0.0171	-0.0359	0.027*
H4C	0.6862	0.0180	-0.0831	0.027*
C5	0.80327 (15)	0.12692 (8)	-0.00925 (5)	0.0148 (3)
H5	0.8579	0.0741	-0.0140	0.018*
C6	0.91407 (15)	0.20041 (8)	-0.00974 (5)	0.0156 (3)
C7	0.87874 (16)	0.28045 (8)	0.00783 (6)	0.0206 (3)
H7	0.7820	0.2908	0.0180	0.025*
C8	0.98651 (17)	0.34482 (9)	0.01034 (6)	0.0222 (3)
H8	0.9630	0.3986	0.0216	0.027*
С9	1.13015 (16)	0.32699 (8)	-0.00431 (5)	0.0181 (3)
C10	1.16758 (15)	0.24852 (8)	-0.02307 (5)	0.0172 (3)
H10	1.2641	0.2386	-0.0336	0.021*
C11	1.05790 (15)	0.18518 (8)	-0.02585 (5)	0.0163 (3)
H11	1.0804	0.1321	-0.0386	0.020*
N3	1.24830 (15)	0.39366 (8)	0.00029 (5)	0.0226 (3)

O3A	1.21039 (14)	0.46527 (6)	0.01226 (5)	0.0338 (3)
O3B	1.37898 (12)	0.37441 (7)	-0.00819 (5)	0.0314 (3)
B1	0.84962 (19)	0.16988 (10)	0.15185 (7)	0.0202 (3)
H12	0.7988	0.2324	0.1557	0.030*
B2	0.84165 (17)	0.10294 (9)	0.09822 (6)	0.0152 (3)
B3	0.78915 (18)	0.07008 (10)	0.16335 (6)	0.0185 (3)
H13	0.6764	0.0609	0.1777	0.028*
B4	0.97278 (19)	0.11400 (10)	0.19715 (7)	0.0219 (3)
H14	1.0038	0.1399	0.2375	0.033*
B5	1.02284 (18)	0.14771 (10)	0.13054 (7)	0.0190 (3)
H15	1.0997	0.2006	0.1211	0.028*
B6	0.85624 (17)	-0.00739 (9)	0.11691 (6)	0.0151 (3)
H16	0.7707	-0.0506	0.0929	0.023*
B7	0.94918 (18)	0.00066 (10)	0.18820 (6)	0.0185 (3)
H17	0.9411	-0.0380	0.2246	0.028*
B8	1.11443 (18)	0.05523 (10)	0.16491 (7)	0.0192 (3)
H18	1.2426	0.0601	0.1834	0.029*
B9	1.02020 (17)	0.04734 (9)	0.09450 (6)	0.0153 (3)
H19	1.0644	0.0470	0.0534	0.023*
B10	1.04235 (17)	-0.03695 (9)	0.13722 (6)	0.0163 (3)
H20	1.0971	-0.0992	0.1344	0.024*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0155 (5)	0.0132 (5)	0.0167 (6)	0.0006 (4)	0.0018 (5)	0.0020 (4)
0.0177 (6)	0.0160 (6)	0.0154 (6)	0.0003 (5)	-0.0001 (5)	0.0019 (5)
0.0218 (7)	0.0156 (6)	0.0190 (7)	-0.0022 (6)	0.0023 (6)	0.0006 (5)
0.0226 (7)	0.0204 (7)	0.0204 (7)	-0.0004 (6)	0.0031 (6)	-0.0005 (6)
0.0443 (10)	0.0247 (8)	0.0240 (8)	-0.0107 (7)	0.0033 (8)	-0.0059 (6)
0.0174 (6)	0.0148 (6)	0.0172 (6)	0.0002 (5)	0.0036 (5)	0.0017 (5)
0.0182 (6)	0.0153 (6)	0.0259 (8)	0.0010 (5)	0.0036 (6)	0.0030 (6)
0.0204 (7)	0.0210 (7)	0.0285 (8)	0.0039 (6)	0.0043 (6)	-0.0015 (6)
0.0222 (7)	0.0287 (8)	0.0319 (9)	0.0020 (6)	0.0066 (7)	0.0055 (7)
0.0170 (6)	0.0151 (6)	0.0179 (7)	0.0027 (5)	0.0012 (5)	0.0046 (5)
0.0197 (6)	0.0171 (6)	0.0182 (7)	0.0007 (6)	0.0037 (6)	0.0026 (5)
0.0166 (6)	0.0169 (6)	0.0246 (7)	0.0005 (5)	0.0033 (6)	0.0035 (5)
0.0217 (7)	0.0273 (8)	0.0367 (9)	0.0038 (6)	0.0073 (7)	0.0018 (7)
0.0183 (6)	0.0134 (6)	0.0196 (7)	-0.0020 (5)	0.0019 (6)	0.0032 (5)
0.0203 (7)	0.0185 (7)	0.0194 (7)	-0.0023 (6)	0.0027 (6)	-0.0001 (5)
0.0312 (8)	0.0235 (7)	0.0225 (8)	-0.0100 (7)	0.0008 (7)	0.0012 (6)
0.0419 (10)	0.0286 (8)	0.0258 (8)	-0.0187 (8)	0.0067 (8)	-0.0048 (7)
0.0172 (5)	0.0238 (5)	0.0190 (5)	0.0083 (4)	0.0009 (4)	-0.0019 (4)
0.0149 (5)	0.0131 (5)	0.0152 (5)	0.0010 (4)	0.0022 (4)	-0.0014 (4)
0.0140 (5)	0.0173 (6)	0.0181 (6)	0.0036 (5)	0.0019 (5)	-0.0028 (4)
0.0178 (6)	0.0140 (6)	0.0182 (7)	0.0022 (5)	0.0014 (5)	-0.0010 (5)
0.0179 (6)	0.0272 (8)	0.0218 (7)	0.0063 (6)	0.0035 (6)	-0.0033 (6)
0.0161 (6)	0.0186 (7)	0.0190 (7)	-0.0002 (5)	0.0001 (5)	-0.0032 (5)
	U^{11} 0.0155 (5) 0.0177 (6) 0.0218 (7) 0.0226 (7) 0.0443 (10) 0.0174 (6) 0.0182 (6) 0.0204 (7) 0.0222 (7) 0.0170 (6) 0.0197 (6) 0.0166 (6) 0.0217 (7) 0.0183 (6) 0.0203 (7) 0.0312 (8) 0.0419 (10) 0.0172 (5) 0.0149 (5) 0.0178 (6) 0.0179 (6) 0.0179 (6) 0.0179 (6) 0.0179 (6) 0.0179 (6) 0.0179 (6) 0.0179 (6) 0.0179 (6) 0.0161 (6)	U^{11} U^{22} $0.0155 (5)$ $0.0132 (5)$ $0.0177 (6)$ $0.0160 (6)$ $0.0218 (7)$ $0.0156 (6)$ $0.0226 (7)$ $0.0204 (7)$ $0.0443 (10)$ $0.0247 (8)$ $0.0174 (6)$ $0.0148 (6)$ $0.0182 (6)$ $0.0153 (6)$ $0.0204 (7)$ $0.0210 (7)$ $0.0222 (7)$ $0.0287 (8)$ $0.0170 (6)$ $0.0151 (6)$ $0.0197 (6)$ $0.0151 (6)$ $0.0166 (6)$ $0.0169 (6)$ $0.0217 (7)$ $0.0273 (8)$ $0.0183 (6)$ $0.0134 (6)$ $0.0203 (7)$ $0.0185 (7)$ $0.0312 (8)$ $0.0235 (7)$ $0.0149 (10)$ $0.0286 (8)$ $0.0172 (5)$ $0.0238 (5)$ $0.0149 (5)$ $0.0173 (6)$ $0.0178 (6)$ $0.0173 (6)$ $0.0179 (6)$ $0.0272 (8)$ $0.0161 (6)$ $0.0186 (7)$	U^{11} U^{22} U^{33} 0.0155 (5)0.0132 (5)0.0167 (6)0.0177 (6)0.0160 (6)0.0154 (6)0.0218 (7)0.0156 (6)0.0190 (7)0.0226 (7)0.0204 (7)0.0204 (7)0.0443 (10)0.0247 (8)0.0240 (8)0.0174 (6)0.0148 (6)0.0172 (6)0.0182 (6)0.0153 (6)0.0259 (8)0.0204 (7)0.0287 (8)0.0319 (9)0.0170 (6)0.0151 (6)0.0179 (7)0.0197 (6)0.0171 (6)0.0182 (7)0.0166 (6)0.0169 (6)0.0246 (7)0.0217 (7)0.0273 (8)0.0367 (9)0.0183 (6)0.0134 (6)0.0196 (7)0.0203 (7)0.0185 (7)0.0194 (7)0.0312 (8)0.0235 (7)0.0225 (8)0.0172 (5)0.0238 (5)0.0190 (5)0.0149 (5)0.0131 (5)0.0152 (5)0.0140 (5)0.0173 (6)0.0181 (6)0.0178 (6)0.0140 (6)0.0182 (7)0.0179 (6)0.0272 (8)0.0218 (7)	U^{11} U^{22} U^{33} U^{12} 0.0155 (5)0.0132 (5)0.0167 (6)0.0006 (4)0.0177 (6)0.0160 (6)0.0154 (6)0.0003 (5)0.0218 (7)0.0156 (6)0.0190 (7) -0.0022 (6)0.0226 (7)0.0204 (7)0.0204 (7) -0.0004 (6)0.0443 (10)0.0247 (8)0.0240 (8) -0.0107 (7)0.0174 (6)0.0148 (6)0.0172 (6)0.0002 (5)0.0182 (6)0.0153 (6)0.0259 (8)0.0010 (5)0.0204 (7)0.0210 (7)0.0285 (8)0.0039 (6)0.0222 (7)0.0287 (8)0.0319 (9)0.0020 (6)0.0170 (6)0.0151 (6)0.0179 (7)0.0027 (5)0.0197 (6)0.0171 (6)0.0182 (7)0.0005 (5)0.0217 (7)0.0273 (8)0.0367 (9)0.0038 (6)0.0183 (6)0.0134 (6)0.0196 (7) -0.0020 (5)0.0203 (7)0.0185 (7)0.0194 (7) -0.0023 (6)0.0312 (8)0.0235 (7)0.0225 (8) -0.0100 (7)0.0419 (10)0.0286 (8)0.0258 (8) -0.0187 (8)0.0172 (5)0.0238 (5)0.0190 (5)0.0083 (4)0.0140 (5)0.0173 (6)0.0181 (6)0.0182 (7)0.0178 (6)0.0140 (6)0.0182 (7)0.0022 (5)0.0179 (6)0.0272 (8)0.0218 (7)0.0022 (5)0.0179 (6)0.0272 (8)0.0218 (7)0.0022 (5)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0155 (5)0.0132 (5)0.0167 (6)0.0006 (4)0.0018 (5)0.0177 (6)0.0160 (6)0.0154 (6)0.0003 (5) -0.0001 (5)0.0218 (7)0.0156 (6)0.0190 (7) -0.0022 (6)0.0023 (6)0.0226 (7)0.0204 (7)0.0204 (7) -0.0004 (6)0.0031 (6)0.0443 (10)0.0247 (8)0.0240 (8) -0.0107 (7)0.0033 (8)0.0174 (6)0.0148 (6)0.0172 (6)0.0002 (5)0.0036 (5)0.0182 (6)0.0153 (6)0.0259 (8)0.0010 (5)0.0036 (6)0.0204 (7)0.0210 (7)0.0285 (8)0.0039 (6)0.0043 (6)0.0222 (7)0.0287 (8)0.0319 (9)0.0020 (6)0.0066 (7)0.0170 (6)0.0151 (6)0.0179 (7)0.0027 (5)0.0012 (5)0.0197 (6)0.0171 (6)0.0182 (7)0.0005 (5)0.0033 (6)0.0217 (7)0.0273 (8)0.0367 (9)0.0038 (6)0.0073 (7)0.0183 (6)0.0134 (6)0.0196 (7) -0.0020 (5)0.0019 (6)0.0203 (7)0.0185 (7)0.0194 (7) -0.0023 (6)0.0027 (6)0.0312 (8)0.0235 (7)0.0225 (8) -0.0100 (7)0.0008 (7)0.0419 (10)0.0286 (8)0.0258 (8) -0.0187 (8)0.0067 (8)0.0172 (5)0.0238 (5)0.0190 (5)0.0033 (4)0.0009 (4)0.0140 (5)0.0173 (6)0.0181 (6)0.0036 (5)0.0019 (5)0.0178 (6)0.0140 (6) <td< td=""></td<>

supporting information

C5	0.0148 (6)	0.0139 (6)	0.0155 (6)	0.0022 (5)	0.0015 (5)	-0.0004 (5)
C6	0.0170 (6)	0.0145 (6)	0.0144 (6)	0.0018 (5)	-0.0002 (5)	0.0003 (5)
C7	0.0199 (7)	0.0166 (6)	0.0261 (8)	0.0025 (6)	0.0060 (6)	-0.0010 (6)
C8	0.0274 (7)	0.0151 (6)	0.0246 (8)	0.0013 (6)	0.0059 (6)	-0.0019 (6)
C9	0.0213 (7)	0.0166 (6)	0.0155 (6)	-0.0045 (6)	-0.0005 (6)	0.0000 (5)
C10	0.0163 (6)	0.0201 (7)	0.0146 (6)	0.0009 (5)	0.0006 (5)	0.0021 (5)
C11	0.0176 (6)	0.0153 (6)	0.0154 (6)	0.0030 (5)	0.0004 (5)	0.0001 (5)
N3	0.0275 (6)	0.0213 (6)	0.0184 (6)	-0.0065 (5)	0.0014 (5)	0.0000 (5)
O3A	0.0450 (7)	0.0185 (5)	0.0398 (7)	-0.0090 (5)	0.0124 (6)	-0.0067 (5)
O3B	0.0245 (6)	0.0327 (6)	0.0367 (7)	-0.0082 (5)	0.0033 (5)	-0.0027 (5)
B1	0.0221 (8)	0.0176 (7)	0.0194 (8)	0.0033 (6)	-0.0020 (7)	-0.0053 (6)
B2	0.0143 (7)	0.0152 (7)	0.0159 (7)	0.0005 (6)	0.0012 (6)	-0.0001 (6)
B3	0.0192 (7)	0.0227 (8)	0.0138 (7)	0.0045 (6)	0.0025 (6)	-0.0015 (6)
B4	0.0229 (8)	0.0223 (8)	0.0190 (8)	0.0051 (7)	-0.0020 (7)	-0.0069 (6)
B5	0.0171 (7)	0.0145 (7)	0.0236 (8)	0.0001 (6)	-0.0028 (6)	-0.0043 (6)
B6	0.0151 (7)	0.0151 (7)	0.0151 (7)	-0.0008 (6)	0.0020 (6)	-0.0015 (6)
B7	0.0190 (7)	0.0197 (8)	0.0163 (7)	0.0034 (6)	0.0007 (6)	0.0012 (6)
B8	0.0165 (7)	0.0188 (7)	0.0206 (8)	0.0019 (6)	-0.0030 (6)	-0.0031 (6)
B9	0.0142 (7)	0.0136 (7)	0.0179 (7)	0.0003 (6)	0.0015 (6)	-0.0015 (6)
B10	0.0158 (7)	0.0154 (7)	0.0176 (7)	0.0020 (6)	0.0015 (6)	-0.0001 (6)

Geometric parameters (Å, °)

N4—C1A	1.5154 (17)	B2—B6	1.810 (2)
N4—C1B	1.5184 (15)	B2—B3	1.811 (2)
N4—C1D	1.5234 (16)	B2—B5	1.813 (2)
N4—C1C	1.5268 (16)	B3—B7	1.816 (2)
C1A—C2A	1.5206 (18)	B3—B6	1.834 (2)
C2A—C3A	1.5255 (19)	B3—B4	1.837 (2)
C3A—C4A	1.516 (2)	B4—B7	1.820 (2)
C1B—C2B	1.5222 (18)	B4—B8	1.821 (2)
C2B—C3B	1.5261 (18)	B4—B5	1.841 (2)
C3B—C4B	1.524 (2)	B5—B8	1.822 (2)
C1C—C2C	1.5221 (17)	B5—B9	1.823 (2)
C2C—C3C	1.5254 (19)	B6—B10	1.698 (2)
C3C—C4C	1.5235 (18)	B6—B9	1.827 (2)
C1D—C2D	1.5168 (19)	B6—B7	1.835 (2)
C2D—C3D	1.5263 (18)	B7—B10	1.702 (2)
C3D—C4D	1.518 (2)	B7—B8	1.844 (2)
01—C1	1.3319 (16)	B8—B10	1.697 (2)
01—N2	1.4929 (13)	B8—B9	1.819 (2)
N1—C1	1.2886 (16)	B9—B10	1.698 (2)
N1—C5	1.4903 (15)	C2—H2A	0.9600
N1—B2	1.5397 (19)	C2—H2B	0.9600
N2—C4	1.4694 (16)	C2—H2C	0.9600
N2—C5	1.4781 (17)	C4—H4A	0.9600
C1—C2	1.4815 (17)	C4—H4B	0.9600
C5—C6	1.5167 (18)	C4—H4C	0.9600

C6—C7	1.3910 (18)	С5—Н5	0.9800
C6—C11	1.3923 (17)	С7—Н7	0.9300
C7—C8	1.3846 (19)	С8—Н8	0.9300
C8—C9	1.3839 (18)	С10—Н10	0.9300
C9—C10	1.3841 (18)	C11—H11	0.9300
C9—N3	1.4710 (17)	B1—H12	1.0971
C10—C11	1.3836 (18)	B3—H13	1.1035
N3-03B	1 2283 (15)	B4—H14	1.0770
N3-03A	1.2205(15) 1.2315(15)	B5—H15	1 1202
B1—B4	1 689 (2)	B6—H16	1.1202
B1 B2	1.007(2)	B7 H17	1.0002
B1 B2	1.092(2) 1.706(2)		1.0992
D1 D5	1.700(2) 1.708(2)		1.1497
D1	1.708(2)	D9—П19	1.1303
B2—B9	1.800 (2)	B10—H20	1.1034
C1A—N4—C1B	110.74 (10)	B8—B4—B3	102.17 (10)
C1A—N4—C1D	106.63 (9)	B1—B4—B5	57.68 (9)
C1B-N4-C1D	111.72 (9)	B7—B4—B5	102.46 (10)
C1A - N4 - C1C	110.87 (10)	B8—B4—B5	59 68 (8)
C1B - N4 - C1C	106 32 (9)	B3—B4—B5	90.43 (10)
C1D - N4 - C1C	110.63(10)	B1—B5—B2	57 33 (9)
N4-C1A-C2A	114 97 (10)	B1B5B8	111.81 (11)
C14 - C24 - C34	109 64 (10)	B2B5B8	100.79(10)
$C_{1A} = C_{2A} = C_{2A}$	109.04(10) 112.03(11)	$B_2 - B_3 - B_6$ $B_1 - B_5 - B_0$	112.36(11)
C4A - C3A - C2A	112.03(11) 115.18(10)	$D_1 = D_2 = D_7$ $D_2 = D_5 = D_1$	50 55 (8)
N4-CIB-C2B	113.10(10) 110.22(11)	$B_2 - B_3 - B_2$	59.55 (8)
C1B - C2B - C3B	110.55 (11)	D0-D3-D9	59.87 (8)
C4B - C3B - C2B	114.02 (12)	B1—B5—B4	56.68 (9)
C2C—CIC—N4	115./9 (10)	B2—B5—B4	88.61 (10)
C1C - C2C - C3C	109.55 (11)	B8—B5—B4	59.61 (9)
C4C—C3C—C2C	111.75 (11)	B9—B5—B4	101.21 (10)
C2D—C1D—N4	115.98 (10)	B10—B6—B2	111.85 (11)
C1D—C2D—C3D	110.38 (11)	B10—B6—B9	57.44 (8)
C4D—C3D—C2D	112.14 (12)	B2—B6—B9	59.52 (8)
C1—O1—N2	106.93 (9)	B10—B6—B3	112.24 (11)
C1—N1—C5	107.55 (11)	B2—B6—B3	59.61 (8)
C1—N1—B2	129.79 (11)	B9—B6—B3	101.84 (10)
C5—N1—B2	122.41 (10)	B10—B6—B7	57.44 (9)
C4—N2—C5	110.54 (10)	B2—B6—B7	100.53 (10)
C4—N2—O1	104.14 (9)	B9—B6—B7	89.95 (10)
C5—N2—O1	102.30 (9)	B3—B6—B7	59.35 (8)
N1-C1-O1	114.99 (11)	B10—B7—B3	112.88 (11)
N1—C1—C2	128.25 (13)	B10—B7—B4	112.24 (11)
O1—C1—C2	116.72 (12)	B3—B7—B4	60.67 (9)
N2—C5—N1	103.67 (9)	B10—B7—B6	57.21 (8)
N2—C5—C6	114.61 (10)	B3—B7—B6	60.28 (8)
N1—C5—C6	109.72 (10)	B4—B7—B6	102.25 (10)
C7—C6—C11	119.81 (12)	B10—B7—B8	57.02 (8)
C7—C6—C5	121.97 (11)	B3—B7—B8	102.05 (10)

C11—C6—C5	118.14 (11)	B4—B7—B8	59.59 (8)
C8—C7—C6	120.53 (12)	B6—B7—B8	89.55 (9)
C9—C8—C7	118.26 (12)	B10—B8—B9	57.60 (9)
C8—C9—C10	122.54 (13)	B10—B8—B4	112.42 (11)
C8—C9—N3	119.02 (12)	B9—B8—B4	102.14 (11)
C10—C9—N3	118.45 (12)	B10—B8—B5	113.16 (12)
C11—C10—C9	118.38 (12)	B9—B8—B5	60.09 (8)
C10—C11—C6	120.43 (12)	B4—B8—B5	60.71 (9)
O3B—N3—O3A	123.98 (12)	B10—B8—B7	57.27 (8)
O3B—N3—C9	117.83 (12)	B9—B8—B7	89.91 (10)
O3A—N3—C9	118.20 (12)	B4—B8—B7	59.54 (9)
B4—B1—B2	98.06 (11)	B5—B8—B7	102.26 (10)
B4—B1—B3	65.50 (10)	B10—B9—B2	112.08 (10)
B2—B1—B3	64.43 (9)	B10—B9—B8	57.59 (9)
B4—B1—B5	65.64 (10)	B2—B9—B8	101.18 (10)
B2—B1—B5	64.45 (9)	B10—B9—B5	113.11 (11)
B3—B1—B5	99.74 (11)	B2—B9—B5	59.94 (8)
N1—B2—B1	119.71 (11)	B8—B9—B5	60.04 (9)
N1—B2—B9	117.26 (10)	B10—B9—B6	57.44 (8)
B1—B2—B9	114.04 (11)	B2—B9—B6	59.78 (8)
N1—B2—B6	116.95 (11)	B8—B9—B6	90.59 (9)
B1—B2—B6	114.46 (11)	B5—B9—B6	102.89 (10)
B9—B2—B6	60.70 (8)	B8—B10—B9	64.80 (9)
N1—B2—B3	130.92 (11)	B8—B10—B6	99.52 (11)
B1—B2—B3	58.18 (9)	B9—B10—B6	65.12 (9)
B9—B2—B3	103.57 (10)	B8—B10—B7	65.71 (9)
B6—B2—B3	60.84 (8)	B9—B10—B7	99.18 (11)
N1—B2—B5	130.61 (11)	B6—B10—B7	65.35 (9)
B1—B2—B5	58.22 (9)	C1—C2—H2A	109.5
B9—B2—B5	60.51 (8)	C1—C2—H2B	109.5
B6—B2—B5	103.97 (10)	H2A—C2—H2B	109.5
B3—B2—B5	92.16 (10)	C1—C2—H2C	109.5
B1—B3—B2	57.39 (9)	H2A—C2—H2C	109.5
B1—B3—B7	112.18 (11)	H2B—C2—H2C	109.5
B2—B3—B7	101.22 (10)	N2—C4—H4A	109.5
B1—B3—B6	112.57 (10)	N2—C4—H4B	109.5
B2—B3—B6	59.56 (8)	H4A—C4—H4B	109.5
B7—B3—B6	60.37 (8)	N2—C4—H4C	109.5
B1—B3—B4	56.80 (9)	H4A—C4—H4C	109.5
B2—B3—B4	88.80 (10)	H4B—C4—H4C	109.5
B7—B3—B4	59.76 (9)	N2—C5—H5	109.5
B6—B3—B4	101.67 (10)	N1—C5—H5	109.5
B1—B4—B7	112.83 (12)	С6—С5—Н5	109.5
B1—B4—B8	112.80 (12)	C8—C7—H7	119.7
B7—B4—B8	60.86 (8)	С6—С7—Н7	119.7
B1—B4—B3	57.70 (9)	С9—С8—Н8	120.9
B7—B4—B3	59.57 (9)	C7—C8—H8	120.9
	× /		

C1B—N4—C1A—C2A	-54.33 (14)	B7—B3—B6—B2	-126.43 (11)
C1D—N4—C1A—C2A	-176.07 (11)	B4—B3—B6—B2	-81.59 (10)
C1C—N4—C1A—C2A	63.44 (13)	B1—B3—B6—B9	20.73 (15)
N4—C1A—C2A—C3A	-159.65 (11)	B2—B3—B6—B9	43.63 (9)
C1A—C2A—C3A—C4A	-172.99(12)	B7—B3—B6—B9	-82.80(10)
C1A—N4—C1B—C2B	-62.33 (14)	B4—B3—B6—B9	-37.96(12)
C1D—N4—C1B—C2B	56.37 (15)	B1—B3—B6—B7	103.53 (13)
C1C—N4—C1B—C2B	177.15 (11)	B2—B3—B6—B7	126.43 (11)
N4-C1B-C2B-C3B	-171.56(11)	B4—B3—B6—B7	44.84 (10)
C1B-C2B-C3B-C4B	-64.75(16)	B1 - B3 - B7 - B10	-80.78(14)
C1A - N4 - C1C - C2C	47.08 (14)	B2—B3—B7—B10	-21.61(14)
C1B-N4-C1C-C2C	167.50 (11)	B6-B3-B7-B10	23.40 (11)
C1D-N4-C1C-C2C	-71.01(14)	B4 = B3 = B7 = B10 B4 = B3 = B7 = B10	-10354(12)
N4-C1C-C2C-C3C	170.86(11)	B1 - B3 - B7 - B4	22.76 (11)
C1C-C2C-C3C-C4C	-17620(12)	$B^{2}-B^{3}-B^{7}-B^{4}$	81.93 (10)
C1A - N4 - C1D - C2D	169.95 (11)	B2 = B3 = B7 = B4 B6-B3-B7-B4	126.94(10)
C1B N4 C1D C2D	48 84 (15)	B1 = B3 = B7 = B6	-104 18 (12)
C1C N4 $C1D$ $C2D$	-69.41(13)	$B_{1}^{-} B_{3}^{-} B_{7}^{-} B_{6}^{-}$	-45.01(9)
$N_{\rm A}$ C1D C2D C3D	-17060(11)	$B_2 = B_3 = B_7 = B_0$ B4 B3 B7 B6	-126.94(10)
$C_{1D} C_{2D} C_{3D} C_{4D}$	-179.35(13)	$B_1 = B_3 = B_7 = B_8$	-21.72(14)
C1 O1 N2 C4	96 65 (11)	B1 - B3 - B7 - B8	21.72(14) 37.46(12)
C1 = 01 = N2 = C4	-1851(12)	$B_2 - B_3 - B_7 - B_8$	37.40(12) 82.46(10)
$C_1 = 0_1 = 0_2 = 0_3$	5 28 (15)	$D_0 - D_3 - D_7 - D_0$	-44.48(10)
C_{3} NI C_{1} OI	5.28(13)	B4 - B3 - B7 - B8	-44.48(10)
B2 - NI - CI - OI	1/9.02(11) 172.02(12)	B1 - B4 - B7 - B10	81.48(14)
C_{2} NI C_{1} C_{2}	-1/2.03(13)	B8—B4—B7—B10	-22.80(11)
B2 - NI - CI - C2	2.3(2)	B3—B4—B7—B10	104.60 (12)
N2-OI-CI-NI	8.72 (15)	B5—B4—B7—B10	21.55 (15)
N2-OI-CI-C2	-1/3.65(11)	B1—B4—B7—B3	-23.12 (11)
C4—N2—C5—N1	-89.84 (11)	B8—B4—B7—B3	-127.40 (11)
01—N2—C5—N1	20.57 (11)	B5—B4—B7—B3	-83.05 (11)
C4—N2—C5—C6	150.60 (10)	B1—B4—B7—B6	22.14 (14)
O1—N2—C5—C6	-98.99 (11)	B8—B4—B7—B6	-82.14 (10)
C1—N1—C5—N2	-16.91 (13)	B3—B4—B7—B6	45.26 (9)
B2—N1—C5—N2	168.24 (10)	B5—B4—B7—B6	-37.79 (12)
C1—N1—C5—C6	105.94 (12)	B1—B4—B7—B8	104.28 (13)
B2—N1—C5—C6	-68.91 (14)	B3—B4—B7—B8	127.40 (11)
N2—C5—C6—C7	70.62 (16)	B5—B4—B7—B8	44.35 (10)
N1—C5—C6—C7	-45.51 (17)	B2—B6—B7—B10	-109.30 (11)
N2-C5-C6-C11	-112.55 (13)	B9—B6—B7—B10	-50.36 (9)
N1—C5—C6—C11	131.33 (12)	B3—B6—B7—B10	-154.20 (11)
C11—C6—C7—C8	-1.1 (2)	B10—B6—B7—B3	154.20 (11)
C5—C6—C7—C8	175.64 (13)	B2—B6—B7—B3	44.90 (9)
C6—C7—C8—C9	-0.9 (2)	B9—B6—B7—B3	103.84 (10)
C7—C8—C9—C10	2.3 (2)	B10—B6—B7—B4	108.71 (11)
C7—C8—C9—N3	-177.48 (13)	B2—B6—B7—B4	-0.58 (11)
C8—C9—C10—C11	-1.7 (2)	B9—B6—B7—B4	58.35 (10)
N3—C9—C10—C11	178.13 (12)	B3—B6—B7—B4	-45.48 (9)
C9—C10—C11—C6	-0.43 (19)	B10—B6—B7—B8	50.02 (9)

C7—C6—C11—C10	1.8 (2)	B2—B6—B7—B8	-59.27 (10)
C5-C6-C11-C10	-175.09 (12)	B9—B6—B7—B8	-0.34 (9)
C8—C9—N3—O3B	173.56 (13)	B3—B6—B7—B8	-104.18 (10)
C10—C9—N3—O3B	-6.26 (19)	B1-B4-B8-B10	-81.44 (15)
C8—C9—N3—O3A	-6.58 (19)	B7—B4—B8—B10	22.89 (11)
C10—C9—N3—O3A	173.61 (13)	B3—B4—B8—B10	-21.59 (15)
C1—N1—B2—B1	-47.65 (19)	B5—B4—B8—B10	-104.86 (13)
C5—N1—B2—B1	125.96 (13)	B1—B4—B8—B9	-21.70 (15)
C1—N1—B2—B9	167.10 (13)	B7—B4—B8—B9	82.63 (10)
C5—N1—B2—B9	-19.29 (16)	B3—B4—B8—B9	38.14 (12)
C1—N1—B2—B6	97.94 (15)	B5—B4—B8—B9	-45.12 (9)
C5—N1—B2—B6	-88.46 (13)	B1—B4—B8—B5	23.42 (11)
C1—N1—B2—B3	24.4 (2)	B7—B4—B8—B5	127.75 (11)
C5—N1—B2—B3	-162.03 (12)	B3—B4—B8—B5	83.27 (11)
C1—N1—B2—B5	-119.62 (16)	B1—B4—B8—B7	-104.33 (13)
C5—N1—B2—B5	53.98 (18)	B3—B4—B8—B7	-44.49 (10)
B4—B1—B2—N1	-179.91 (11)	B5—B4—B8—B7	-127.75 (11)
B3—B1—B2—N1	122.24 (13)	B1-B5-B8-B10	80.67 (14)
B5—B1—B2—N1	-121.88 (13)	B2—B5—B8—B10	21.70 (14)
B4—B1—B2—B9	-33.61 (14)	B9—B5—B8—B10	-23.30 (10)
B3—B1—B2—B9	-91.46 (12)	B4—B5—B8—B10	103.64 (12)
B5—B1—B2—B9	24.42 (11)	B1—B5—B8—B9	103.97 (12)
B4—B1—B2—B6	33.70 (14)	B2—B5—B8—B9	45.01 (9)
B3—B1—B2—B6	-24.16 (11)	B4—B5—B8—B9	126.94 (11)
B5—B1—B2—B6	91.73 (12)	B1—B5—B8—B4	-22.97 (11)
B4—B1—B2—B3	57.86 (10)	B2—B5—B8—B4	-81.93 (10)
B5—B1—B2—B3	115.89 (11)	B9—B5—B8—B4	-126.94 (11)
B4—B1—B2—B5	-58.03 (11)	B1—B5—B8—B7	21.25 (14)
B3—B1—B2—B5	-115.89 (11)	B2—B5—B8—B7	-37.71 (12)
B4—B1—B3—B2	-112.89 (11)	B9—B5—B8—B7	-82.72 (10)
B5—B1—B3—B2	-55.44 (10)	B4—B5—B8—B7	44.23 (10)
B4—B1—B3—B7	-23.54 (11)	B3—B7—B8—B10	-109.60 (12)
B2—B1—B3—B7	89.35 (11)	B4—B7—B8—B10	-154.69 (12)
B5—B1—B3—B7	33.91 (14)	B6—B7—B8—B10	-50.17 (9)
B4—B1—B3—B6	-89.42 (12)	B10—B7—B8—B9	50.51 (9)
B2—B1—B3—B6	23.47 (11)	B3—B7—B8—B9	-59.09 (10)
B5—B1—B3—B6	-31.97 (15)	B4—B7—B8—B9	-104.18 (10)
B2—B1—B3—B4	112.89 (11)	B6—B7—B8—B9	0.34 (9)
B5—B1—B3—B4	57.45 (10)	B10—B7—B8—B4	154.69 (12)
N1—B2—B3—B1	-103.53 (16)	B3—B7—B8—B4	45.09 (10)
B9—B2—B3—B1	110.09 (12)	B6—B7—B8—B4	104.52 (10)
B6—B2—B3—B1	154.75 (12)	B10—B7—B8—B5	109.80 (12)
B5—B2—B3—B1	49.94 (10)	B3—B7—B8—B5	0.21 (12)
N1—B2—B3—B7	147.20 (13)	B4—B7—B8—B5	-44.89 (10)
B1—B2—B3—B7	-109.27 (12)	B6—B7—B8—B5	59.63 (10)
B9—B2—B3—B7	0.82 (12)	N1—B2—B9—B10	-131.89 (12)
B6—B2—B3—B7	45.48 (10)	B1—B2—B9—B10	80.93 (14)
B5—B2—B3—B7	-59.33 (11)	B6—B2—B9—B10	-24.71 (11)

N1—B2—B3—B6	101.72 (15)	B3—B2—B9—B10	20.03 (14)
B1—B2—B3—B6	-154.75 (12)	B5—B2—B9—B10	104.75 (13)
B9—B2—B3—B6	-44.66 (10)	N1—B2—B9—B8	168.73 (11)
B5—B2—B3—B6	-104.81 (10)	B1—B2—B9—B8	21.55 (14)
N1—B2—B3—B4	-153.98 (14)	B6—B2—B9—B8	-84.09 (10)
B1—B2—B3—B4	-50.45 (10)	B3—B2—B9—B8	-39.35 (12)
B9—B2—B3—B4	59.64 (11)	B5—B2—B9—B8	45.37 (10)
B6—B2—B3—B4	104.30 (10)	N1—B2—B9—B5	123.36 (13)
B5—B2—B3—B4	-0.51 (10)	B1—B2—B9—B5	-23.82 (11)
B2—B1—B4—B7	-33.46 (14)	B6—B2—B9—B5	-129.46 (11)
B3—B1—B4—B7	23.61 (11)	B3—B2—B9—B5	-84.72 (11)
B5—B1—B4—B7	-90.62 (12)	N1—B2—B9—B6	-107.18 (12)
B2—B1—B4—B8	33.20 (14)	B1—B2—B9—B6	105.64 (12)
B3—B1—B4—B8	90.27 (12)	B3—B2—B9—B6	44.74 (10)
B5—B1—B4—B8	-23.95(11)	B5—B2—B9—B6	129.46 (11)
B2—B1—B4—B3	-57.07(9)	B4—B8—B9—B10	-109.00(11)
B5—B1—B4—B3	-114.23(10)	B5—B8—B9—B10	-154.48 (11)
B2—B1—B4—B5	57.16 (10)	B7—B8—B9—B10	-50.25(9)
B3—B1—B4—B5	114.23 (10)	B10—B8—B9—B2	109.17 (11)
B2—B3—B4—B1	50.92 (9)	B4—B8—B9—B2	0.17 (12)
B7—B3—B4—B1	154.65 (11)	B5—B8—B9—B2	-45.31 (9)
B6—B3—B4—B1	109.46 (11)	B7—B8—B9—B2	58.92 (10)
B1—B3—B4—B7	-154.65 (11)	B10—B8—B9—B5	154.48 (11)
B2—B3—B4—B7	-103.73(10)	B4—B8—B9—B5	45.48 (10)
B6—B3—B4—B7	-45.19 (9)	B7—B8—B9—B5	104.23 (10)
B1—B3—B4—B8	-109.43(12)	B10—B8—B9—B6	49.91 (9)
B2—B3—B4—B8	-58.51 (11)	B4—B8—B9—B6	-59.09 (11)
B7—B3—B4—B8	45.22 (10)	B5—B8—B9—B6	-104.57(10)
B6—B3—B4—B8	0.04 (13)	B7—B8—B9—B6	-0.34 (9)
B1—B3—B4—B5	-50.42(9)	B1—B5—B9—B10	-79.76(14)
B2—B3—B4—B5	0.50 (9)	B2—B5—B9—B10	-103.02(12)
B7—B3—B4—B5	104.24 (10)	B8—B5—B9—B10	23.29 (11)
B6—B3—B4—B5	59.05 (11)	B4—B5—B9—B10	-21.36(14)
B4—B1—B5—B2	112.78 (11)	B1—B5—B9—B2	23.26 (11)
B3—B1—B5—B2	55.43 (10)	B8—B5—B9—B2	126.31 (10)
B4—B1—B5—B8	23.76 (11)	B4—B5—B9—B2	81.66 (10)
B2—B1—B5—B8	-89.02(12)	B1—B5—B9—B8	-103.05(13)
B3—B1—B5—B8	-33.59(14)	B2—B5—B9—B8	-126.31(10)
B4—B1—B5—B9	88.92 (12)	B4—B5—B9—B8	-44.66(10)
B2—B1—B5—B9	-23.85(11)	B1—B5—B9—B6	-19.93(15)
B3—B1—B5—B9	31.57 (14)	B2—B5—B9—B6	-43.19(10)
B2-B1-B5-B4	-112.78(11)	B8—B5—B9—B6	83.12 (10)
B3—B1—B5—B4	-57.35 (10)	B4—B5—B9—B6	38.47 (12)
N1—B2—B5—B1	103.70 (15)	B2—B6—B9—B10	152.64 (12)
B9—B2—B5—B1	-154.29(12)	B3—B6—B9—B10	108.96 (12)
B6—B2—B5—B1	-110.36(11)	B7—B6—B9—B10	50.37 (9)
B3—B2—B5—B1	-49.90 (9)	B10—B6—B9—B2	-152.64 (12)
N1—B2—B5—B8	-147.21 (13)	B3—B6—B9—B2	-43.68(10)

B1—B2—B5—B8	109.10 (12)	B7—B6—B9—B2	-102.27 (10)
B9—B2—B5—B8	-45.19 (9)	B10—B6—B9—B8	-50.02 (9)
B6—B2—B5—B8	-1.26 (12)	B2—B6—B9—B8	102.62 (10)
B3—B2—B5—B8	59.19 (10)	B3—B6—B9—B8	58.94 (11)
N1—B2—B5—B9	-102.01 (15)	B7—B6—B9—B8	0.34 (9)
B1—B2—B5—B9	154.29 (12)	B10—B6—B9—B5	-109.36 (12)
B6—B2—B5—B9	43.93 (9)	B2—B6—B9—B5	43.28 (10)
B3—B2—B5—B9	104.38 (10)	B3—B6—B9—B5	-0.40(13)
N1—B2—B5—B4	154.11 (13)	B7—B6—B9—B5	-59.00 (11)
B1—B2—B5—B4	50.41 (9)	B4—B8—B10—B9	90.44 (12)
B9—B2—B5—B4	-103.88 (10)	B5—B8—B10—B9	23.96 (11)
B6—B2—B5—B4	-59.94 (10)	B7—B8—B10—B9	113.94 (10)
B3—B2—B5—B4	0.51 (9)	B9—B8—B10—B6	-56.60(9)
B7—B4—B5—B1	109.29 (12)	B4—B8—B10—B6	33.84 (14)
B8—B4—B5—B1	154.30 (12)	B5—B8—B10—B6	-32.64(13)
B3—B4—B5—B1	50 43 (9)	B7—B8—B10—B6	57 33 (10)
B1—B4—B5—B2	-50.93(9)	B9—B8—B10—B7	-11394(10)
B7—B4—B5—B2	58 36 (11)	B4—B8—B10—B7	-2349(11)
B8-B4-B5-B2	103 37 (10)	B5—B8—B10—B7	-89.98(12)
B3-B4-B5-B2	-0.50(9)	B2-B9-B10-B8	-89.45(11)
B1-B4-B5-B8	-15430(12)	B5-B9-B10-B8	-23.94(11)
B7—B4—B5—B8	-45.02(10)	B6—B9—B10—B8	-11482(10)
B3-B4-B5-B8	-103.87(10)	B2-B9-B10-B6	25 38 (11)
B1-B4-B5-B9	-109.50(12)	B8B9B10B6	114.82(10)
B7—B4—B5—B9	-0.21(13)	B5-B9-B10-B6	90 88 (11)
B8-B4-B5-B9	44 81 (10)	B2B9B10B7	-31.89(14)
B3_B4_B5_B9	-59.07 (11)	B8B9B10B7	57 55 (10)
$N1_B2_B6_B10$	132 36 (12)	$B_{5} = B_{9} = B_{10} = B_{7}$	33.62(14)
B1 = B2 = B6 = B10	-80.28(14)	$B_{0} = B_{0} = B_{10} = B_{7}$ B6 = B9 = B10 = B7	-57.27(10)
$B_1 - B_2 - B_0 - B_{10}$	24.67(10)	$B_{10} = B_{10} = B_{10} = B_{10}$	37.27(10) 31.12(13)
B3 B2 B6 B10	-103.74(12)	B0 B6 B10 B8	56 38 (0)
B5 B2 B6 B10	-10.16(12)	$B_{2} = B_{0} = B_{10} = B_{0}$	-3373(13)
N1 P2 P6 P0	19.10(13) 107.60(12)	B_{3} B_{0} B_{10} B_{8}	-57.59(10)
$D_1 D_2 D_6 D_0$	-104.05(12)	D = D = D = D = D = D = D = D = D = D =	-25.26(10)
$D_1 - D_2 - D_0 - D_7$ $D_2 - D_2 - D_6 - D_0$	-104.93(13) -128.41(11)	$B_2 = B_0 = B_10 = B_9$ $B_2 = B_6 = B_10 = B_0$	-23.20(10)
$D_{3} - D_{2} - D_{0} - D_{7}$	-120.41(11) -12.82(0)	B_{3} B_{0} B_{10} B_{9} B_{7} B_{6} B_{10} B_{0}	-90.11(11) -112.07(11)
$D_{3} - D_{2} - D_{0} - D_{7}$ N1 D2 D6 D2	-122.00(12)	D = D = D = D = D = D = D = D = D = D =	113.97 (11) 99.71 (11)
N1 - B2 - B0 - B3	-125.90(15)	B2 - B0 - B10 - B7	88.71(11)
B1 - B2 - B0 - B3	23.40(11)	$B_{2} = B_{10} = B_{10} = B_{10}$	113.97(11)
$D_{2} D_{2} D_{2} D_{3} D_{5} D_{2} D_{6} D_{2}$	120.41 (11)	$D_{2} = D_{1} = D_{1} = D_{1}$	23.80 (11)
$D_3 - D_2 - D_0 - D_3$	64.36(11)	$B_{3} = B_{1} = B_{10} = B_{0}$	89.79(12)
N1 = B2 = B6 = B7	-108.05(10)	B4 - B7 - B10 - B8	23.47 (11)
$D_1 - D_2 - D_0 - D_1$ $D_0 - D_2 - D_6 - D_7$	-21.29(13)	$D_{0} = D_{1} = D_{10} = D_{0}$	114.01(11)
$D_{2} = D_{2} = D_{1} = D_{2} = D_{2} = D_{1} = D_{2}$	03.00 (10) 44.75 (0)	$D_{3} = D_{1} = D_{1} = D_{1} = D_{2}$	32.00(14)
$D_{2} - B_{2} - B_{0} - B_{1}$	-44.73(9)	D' =	-33.43(14)
$B_{2} = B_{2} = B_{1} = B_{2}$	39.83 (11) 90.19 (14)	B0-B/-B10-B9	57.10 (10)
$B_1 - B_3 - B_0 - B_{10}$	δU.1δ (14) 102 08 (12)	$B_{0} - B_{1} - B_{1} - B_{1} - B_{2}$	-50.90 (10)
B2-B3-B6-B10	103.08(12)	$B_{2} - B_{1} - B_{10} - B_{0}$	-24.22(11)
B/—B3—B0—B10	-23.35 (10)	B4—B/—B10—B6	-90.53 (12)

supporting information

B4—B3—B6—B10	21.49 (14)	B8—B7—B10—B6	-114.01 (11)
B1—B3—B6—B2	-22.90 (11)		