Structure Reports

Online
ISSN 1600-5368

Potassium N-bromo-2-nitrobenzenesulfonamidate monohydrate

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and H. S. Spandana ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 4 October 2012; accepted 8 October 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.053 ; w R$ factor $=0.145$; data-to-parameter ratio $=14.7$.

In the title compound, $\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the K^{+}ion is hepta-coordinated by two O atoms from two different water molecules, three sulfonyl O atoms from three N -bromo-2-nitro-benzenesulfonamidate anions and two nitro O atoms from two N -bromo-2-nitro-benzenesulfonamidate anions. The $\mathrm{S}-\mathrm{N}$ distance of $1.576(4) \AA$ is consistent with an $\mathrm{S}=\mathrm{N}$ double bond. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds which link the molecules into polymeric layers running parallel to the $b c$ plane.

Related literature

For the preparation of metal salts of N-haloarylsulfonamides, see: Gowda \& Mahadevappa (1983); Usha \& Gowda (2006). For studies on the effect of substituents and metal ions on the structures of N-haloarylsulfonamides, see: George et al. (2000); Gowda et al. (2011a,b); Olmstead \& Power (1986). For positioning of water H atoms, see: Nardelli (1999).

Experimental

Crystal data
$\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=337.20$

Monoclinic, $P 2_{1} / c$
$a=13.034$ (2) A
$Z=4$
$b=12.815$ (2) \AA
Mo $K \alpha$ radiation
$c=6.7741(9) \AA$
$\beta=100.65(1)^{\circ}$
$\mu=4.27 \mathrm{~mm}^{-1}$
$0.48 \times 0.48 \times 0.24 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.145$
$S=1.06$
2236 reflections
152 parameters
3 restraints

Diffraction, 2009)
$T_{\text {min }}=0.234, T_{\text {max }}=0.428$ 3896 measured reflections 2236 independent reflections 1847 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H51 $\cdots \mathrm{N}^{\mathrm{i}}$	$0.84(2)$	$2.13(3)$	$2.926(5)$	$157(5)$
O5-H52 $^{\mathrm{Hi}}$	0.84 (2)	$2.85(4)$	$3.509(4)$	$137(4)$

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the University Grants Commission, Government of India, New Delhi, for a one-time grant to Faculty/ Professors under UGC-BSR.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2509).

References

George, E., Vivekanandan, S. \& Sivakumar, K. (2000). Acta Cryst. C56, 12081209.

Gowda, B. T., Foro, S. \& Shakuntala, K. (2011a). Acta Cryst. E67, m926.
Gowda, B. T., Foro, S. \& Shakuntala, K. (2011b). Acta Cryst. E67, m1015.
Gowda, B. T. \& Mahadevappa, D. S. (1983). Talanta, 30, 359-362.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Olmstead, M. M. \& Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Usha, K. M. \& Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.

supporting information

Potassium N-bromo-2-nitrobenzenesulfonamidate monohydrate

B. Thimme Gowda, Sabine Foro and H. S. Spandana

S1. Comment

In the present work, to explore the effect of substituents on the crystal structures of metal salts of N-haloarylsulfonamidates (George et al., 2000; Gowda et al., 2011a,b; Olmstead \& Power, 1986), the crystal structure of potassium N-bromo-2-nitro-benzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2-chloro-benzenesulfonamidate sesquihydrate (II) (Gowda et al., 2011a), potassium N -bromo-2-methyl-benzenesulfonamidate sesquihydrate (III) (Gowda et al., 2011b), and sodium N-chloro-arylsulfonamidates (George et al., 2000; Olmstead \& Power, 1986).

In the title compound (I), the K^{+}ion is hepta coordinated by two O atoms from two different water molecules, three sulfonyl O atoms from three N-bromo-2-nitro-benzenesulfonamidate anions and two nitro O atoms from two N-bromo-2-nitro-benzenesulfonamidate anions (Fig 2.). This is in contrast to K^{+}ion hepta coordination by three O atoms from water molecules and by four sulfonyl O atoms of three N -bromo-2-chloro-benzenesulfonamide anions in (II) and three N -bromo-2-methyl-benzenesulfonamide anions in (III).
The $\mathrm{S}-\mathrm{N}$ distance of 1.576 (4) \AA in (I) is consistent with an $\mathrm{S}-\mathrm{N}$ double bond and is in agreement with the observed values of 1.582 (4) \AA in (II) and 1.577 (5) \AA in (III).
The packing diagram consists of a two-dimensional polymeric layer running parallel to the $b c$ plane (Fig. 2). The molecular packing is stabilized by $\mathrm{O} 5-\mathrm{H} 51 \cdots \mathrm{~N} 1$ and $\mathrm{O} 5-\mathrm{H} 52 \cdots \mathrm{Br} 1$ hydrogen bonds (Table 1).

S2. Experimental

The title compound was prepared by a method similar to the one described by Gowda \& Mahadevappa (Gowda \& Mahadevappa, 1983) and Usha \& Gowda (Usha \& Gowda, 2006). 2 g of 2-nitrobenzenesulfonamide was dissolved with stirring in 40 ml of $5 M \mathrm{KOH}$ at room temperature. The resultant solution was cooled in ice and 4 ml of liquid bromine was added drop wise with constant stirring. The resultant potassium salt of N -bromo-2-nitro-benzenesulfonamidate monohydrate was filtered under suction, washed quickly with a minimum quantity of ice cold water. The purity of the compound was checked by determining its melting point $\left(175-177^{\circ} \mathrm{C}\right)$ and estimating, iodometrically, the amount of active bromine present in it. It was further characterized from its infrared spectrum. The characteristic absorptions observed are 3624.3 , $3333.0,3192.2$, 2978.1, 2922.2 , 2075.4, 1626.0, 1602.9, 1477.5, 1452.4, 1242.2, 1122.6, 1060.9, $937.4,817.8,686.7,640.4,578.6,549.6,524.6$ and $470.6 \mathrm{~cm}^{-1}$.
Prism like yellow single crystals of the title compound used in the X-ray diffraction studies were obtained from its aqueous solution at room temperature.

S3. Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$. The O-bound H atoms were located in a difference map and were refined with restrained geometry (Nardelli, 1999), viz.
$\mathrm{O}-\mathrm{H}$ distances were restrained to 0.85 (2) \AA and the $\mathrm{H}-\mathrm{H}$ distance was restrained to $1.365 \AA$, thus leading to the angle of 107°. All H atoms were refined with isotropic displacement parameters set at $1.2 U_{\text {eq }}$ of the parent atom. The residual electron-density features are located in the region of Br 1 . The highest peak and the deepest hole are 0.80 and $0.84 \AA$ from Br 1 , respectivily.

Figure 1

Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K^{+}ion. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Figure 2
Bridging of potassium cations, N-bromo-2-nitro-benzenesulfonamidate anions and water molecules in the structure of the title compound.

Figure 3
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Potassium N-bromo-2-nitrobenzenesulfonamidate monohydrate

Crystal data

$\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=337.20$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=13.034$ (2) \AA
$b=12.815$ (2) \AA
$c=6.7741$ (9) \AA
$\beta=100.65(1)^{\circ}$
$V=1112.0(3) \AA^{3}$
$Z=4$

Data collection

Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω scans.
$F(000)=664$
$D_{\mathrm{x}}=2.014 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2399 reflections
$\theta=3.1-27.8^{\circ}$
$\mu=4.27 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, yellow
$0.48 \times 0.48 \times 0.24 \mathrm{~mm}$

Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.234, T_{\max }=0.428$
3896 measured reflections
2236 independent reflections
1847 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.042 \\
& \theta_{\max }=26.4^{\circ}, \theta_{\min }=3.2^{\circ} \\
& h=-16 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.145$
$S=1.06$
2236 reflections
152 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& k=-16 \rightarrow 11 \\
& l=-6 \rightarrow 8
\end{aligned}
$$

```
Hydrogen site location: inferred from
    neighbouring sites
H atoms treated by a mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0909 P)^{2}+0.1082 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.002\)
\(\Delta \rho_{\text {max }}=0.79\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-1.21 \mathrm{e} \AA^{-3}\)
Extinction correction: SHELXL97 (Sheldrick,
    2008), \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.082 (5)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C1	$0.2873(3)$	$-0.0123(3)$	$0.3340(6)$	$0.0272(9)$
C2	$0.3529(3)$	$0.0693(3)$	$0.3079(6)$	$0.0271(8)$
C3	$0.4505(3)$	$0.0546(4)$	$0.2573(6)$	$0.0346(10)$
H3	0.4930	0.1113	0.2430	0.042^{*}
C4	$0.4833(4)$	$-0.0463(4)$	$0.2286(7)$	$0.0419(11)$
H4	0.5488	-0.0583	0.1975	0.050^{*}
C5	$0.4173(4)$	$-0.1291(4)$	$0.2469(7)$	$0.0425(11)$
H5	0.4377	-0.1966	0.2221	0.051^{*}
C6	$0.3214(4)$	$-0.1127(3)$	$0.3015(7)$	$0.0368(10)$
H6	0.2791	-0.1695	0.3167	0.044^{*}
Br1	$0.24804(4)$	$-0.10055(4)$	$0.78959(7)$	$0.0470(3)$
K1	$0.09562(9)$	$0.13045(8)$	$0.88211(15)$	$0.0418(3)$
N1	$0.1510(3)$	$-0.1035(3)$	$0.5411(6)$	$0.0384(9)$
N2	$0.3214(3)$	$0.1792(3)$	$0.3257(5)$	$0.0316(8)$
O1	$0.1685(3)$	$0.0941(2)$	$0.5295(5)$	$0.0395(8)$
O2	$0.0840(3)$	$-0.0085(2)$	$0.2371(5)$	$0.0442(8)$
O3	$0.2363(3)$	$0.2061(3)$	$0.2308(5)$	$0.0454(8)$
O4	$0.3826(3)$	$0.2369(3)$	$0.4304(6)$	$0.0520(9)$
S1	$0.16307(8)$	$-0.00155(7)$	$0.41728(15)$	$0.0294(3)$
O5	$-0.0180(3)$	$0.2758(3)$	$0.6363(6)$	$0.0494(9)$

H51	$-0.066(3)$	$0.240(3)$	$0.566(7)$	0.059^{*}
H52	$-0.044(4)$	$0.326(3)$	$0.689(8)$	0.059^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.027(2)$	$0.0276(19)$	$0.0253(18)$	$0.0017(17)$	$0.0016(16)$	$-0.0018(16)$
C2	$0.026(2)$	$0.0279(18)$	$0.0271(18)$	$0.0015(17)$	$0.0053(16)$	$0.0028(16)$
C3	$0.032(2)$	$0.042(2)$	$0.032(2)$	$0.000(2)$	$0.0101(18)$	$0.0059(19)$
C4	$0.036(3)$	$0.054(3)$	$0.038(2)$	$0.014(2)$	$0.015(2)$	$0.001(2)$
C5	$0.047(3)$	$0.036(2)$	$0.045(3)$	$0.020(2)$	$0.012(2)$	$-0.003(2)$
C6	$0.041(3)$	$0.030(2)$	$0.040(2)$	$0.0028(19)$	$0.009(2)$	$-0.0020(18)$
Br1	$0.0516(4)$	$0.0461(4)$	$0.0432(4)$	$-0.0034(2)$	$0.0087(2)$	$0.0096(2)$
K1	$0.0378(6)$	$0.0498(6)$	$0.0380(5)$	$0.0041(5)$	$0.0076(4)$	$-0.0024(5)$
N1	$0.036(2)$	$0.034(2)$	$0.047(2)$	$-0.0106(16)$	$0.0122(19)$	$0.0010(16)$
N2	$0.032(2)$	$0.0279(17)$	$0.0369(18)$	$-0.0005(15)$	$0.0100(16)$	$0.0052(15)$
O1	$0.046(2)$	$0.0313(15)$	$0.0463(18)$	$-0.0007(13)$	$0.0206(16)$	$-0.0100(13)$
O2	$0.0293(17)$	$0.0527(19)$	$0.0465(18)$	$-0.0035(15)$	$-0.0039(15)$	$-0.0014(16)$
O3	$0.045(2)$	$0.0325(17)$	$0.0564(19)$	$0.0096(15)$	$0.0025(16)$	$0.0113(15)$
O4	$0.048(2)$	$0.0379(17)$	$0.070(2)$	$-0.0146(16)$	$0.0112(19)$	$-0.0130(17)$
S1	$0.0254(6)$	$0.0274(5)$	$0.0360(5)$	$-0.0033(4)$	$0.0069(4)$	$-0.0032(4)$
O5	$0.043(2)$	$0.0443(19)$	$0.063(2)$	$-0.0011(16)$	$0.0146(18)$	$0.0010(17)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-C2	1.383 (6)	$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.806 (3)
C1-C6	1.391 (5)	$\mathrm{K} 1-\mathrm{O} 3^{\text {iii }}$	2.877 (4)
C1-S1	1.815 (4)	$\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	3.018 (4)
C2-C3	1.390 (6)	$\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	3.081 (4)
C2-N2	1.479 (5)	K1-H51	3.06 (5)
C3-C4	1.386 (6)	N1—S1	1.576 (4)
C3-H3	0.9300	N2-O4	1.215 (5)
C4-C5	1.385 (7)	$\mathrm{N} 2-\mathrm{O} 3$	1.225 (5)
C4-H4	0.9300	O1-S1	1.437 (3)
C5-C6	1.384 (7)	$\mathrm{O} 2-\mathrm{S} 1$	1.448 (3)
C5-H5	0.9300	$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{ii}}$	2.806 (3)
C6-H6	0.9300	$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{iv}}$	3.018 (4)
Br1-N1	1.910 (4)	O3-K1 ${ }^{\text {iv }}$	2.877 (4)
Br1-K1	3.6829 (12)	$\mathrm{O} 3-\mathrm{K} 1^{v}$	3.081 (4)
K1-O5	2.743 (4)	O5-K1 ${ }^{\text {v }}$	2.746 (4)
$\mathrm{K} 1-\mathrm{O} 5^{\mathrm{i}}$	2.746 (4)	O5-H51	0.844 (19)
$\mathrm{K} 1-\mathrm{O} 1$	2.768 (3)	O5-H52	0.841 (19)
C2-C1-C6	117.1 (4)	$\mathrm{O} 2 \mathrm{iii}-\mathrm{K} 1-3^{\text {i }}$	141.88 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	126.2 (3)	O5-K1-Br1	133.65 (9)
C6-C1-S1	116.7 (3)	O5 $5^{\text {- }} \mathrm{K} 1-\mathrm{Br} 1$	145.95 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	123.0 (4)	$\mathrm{O} 1-\mathrm{K} 1-\mathrm{Br} 1$	55.66 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	121.5 (4)	$\mathrm{O} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{Br} 1$	87.19 (8)

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	115.4 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	118.7 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.6
C2-C3-H3	120.6
C5-C4-C3	119.3 (4)
C5-C4-H4	120.4
C3-C4-H4	120.4
C6-C5-C4	120.9 (4)
C6-C5-H5	119.5
C4-C5-H5	119.5
C5-C6-C1	120.9 (4)
C5-C6-H6	119.5
C1-C6-H6	119.5
N1—Br1-K1	82.87 (12)
O5-K1-O5 ${ }^{\text {i }}$	77.92 (8)
O5-K1-O1	79.82 (11)
O5i-K1-O1	157.72 (11)
$\mathrm{O} 5-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	82.86 (11)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$	84.62 (11)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	93.37 (11)
O5-K1-O3 ${ }^{\text {iii }}$	117.39 (11)
O5 ${ }^{\text {i }}$-K1-O3 $3^{\text {iii }}$	70.94 (11)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iii }}$	119.80 (11)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 3^{\text {iii }}$	142.64 (11)
$\mathrm{O} 5-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	141.57 (11)
$\mathrm{O} 5-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	69.28 (11)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	131.59 (10)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	74.84 (10)
$\mathrm{O} 3{ }^{\text {iiii }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	70.30 (9)
O5-K1-O3 ${ }^{\text {i }}$	67.90 (10)
O 5 - $\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	109.52 (11)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	60.50 (9)
$\mathrm{O} 2{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	143.02 (10)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	73.50 (8)
C6-C1-C2-C3	-1.9 (6)
S1-C1-C2-C3	175.3 (3)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	176.0 (4)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-6.8 (6)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.0 (6)
N2-C2-C3-C4	-177.0 (4)
C2-C3-C4-C5	1.3 (7)
C3-C4-C5-C6	-2.8(7)
C4-C5-C6-C1	1.8 (8)
C2-C1-C6-C5	0.5 (7)
S1-C1-C6-C5	-177.0 (4)
N1-Br1-K1-O5	-28.49 (17)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 5{ }^{\text {i }}$	124.97 (19)

O3 ${ }^{\text {iii- }}$-K1—Br1
$\mathrm{O} 2{ }^{\text {iii-}}-\mathrm{K} 1 — \mathrm{Br} 1$
O3 ${ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{Br} 1$
O5—K1—H51
O5i-K1—H51
O1-K1-H51
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{H} 51$
O3iii-K1—H51
$\mathrm{O} 2{ }^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{H} 51$
O3 ${ }^{\text {i}}-\mathrm{K} 1-\mathrm{H} 51$
Br1—K1—H51
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{Br} 1$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{O} 3$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 2$
O3-N2-C2
S1-O1-K1
$\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{iv}}$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{iv}}$
$\mathrm{N} 2-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{iv}}$
$\mathrm{N} 2-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$
O2-S1-C1
N1—S1-C1
$\mathrm{K} 1-\mathrm{O} 5-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1-\mathrm{O} 5-\mathrm{H} 51$
$\mathrm{K} 1{ }^{\mathrm{v}}-\mathrm{O} 5-\mathrm{H} 51$
$\mathrm{K} 1-\mathrm{O} 5-\mathrm{H} 52$
$\mathrm{K} 1{ }^{\mathrm{v}}-\mathrm{O} 5-\mathrm{H} 52$
H51-O5-H52
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{O} 3-\mathrm{K}^{\mathrm{iv}}$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{iv}}$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$
$\mathrm{K}^{\mathrm{i}}{ }^{\mathrm{i}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$
$\mathrm{K} \mathrm{K}^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$
$\mathrm{K} 1^{\text {iv }}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$
97.38 (7)
76.67 (7)
96.72 (7)
15.6 (6)
81.7 (9)
77.0 (10)
68.0 (7)
132.2 (6)
134.5 (10)
80.1 (8)
125.1 (8)
109.8 (2)
124.7 (4)
117.7 (4)
117.6 (3)
127.53 (18)
134.68 (19)
120.16 (18)
105.16 (10)
135.6 (3)
123.6 (3)
100.02 (11)
117.1 (2)
115.2 (2)
105.8 (2)
105.67 (19)
105.7 (2)
106.5 (2)
112.63 (13)

104 (4)
108 (4)
118 (4)
104 (4)
110 (3)
156.5 (3)
-22.1 (5)
-35.7 (5)
145.7 (3)
102.7 (3)
-22.6 (3)
-139.9 (2)
-114.6 (3)
65.8 (3)
15.4 (3)
-164.3 (2)
128.1 (3)
-51.6(2)

$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 1$	-47.15 (14)	$\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 1$	-46.5 (3)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	48.87 (14)	$\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$	-177.5 (2)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iii }}$	-168.38 (14)	$\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	70.3 (2)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	123.95 (13)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	-24.4 (4)
$\mathrm{N} 1-\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O}^{\text {i }}$	-94.22 (13)	C6- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	152.8 (3)
$\mathrm{K} 1-\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1$	63.0 (2)	C2-C1-S1-O2	100.4 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 4$	131.2 (4)	C6- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	-82.4 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 4$	-50.8 (5)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	-147.4 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 3$	-50.2 (5)	C6-C1-S1-N1	29.8 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 3$	127.9 (4)	O5i-K1-O5-K1 ${ }^{\text {v }}$	140.66 (16)
O5-K1-O1-S1	-120.6 (3)	$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 5-\mathrm{K} 1^{\text {v }}$	-38.60 (13)
O5i-K1-O1-S1	-122.5 (3)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 5-\mathrm{K} 1^{\text {v }}$	-133.34 (15)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-38.5 (3)	O 3 iii- $\mathrm{K} 1-\mathrm{O} 5-\mathrm{K} 1^{\text {v }}$	79.80 (16)
O3 ${ }^{\text {iii- }} \mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	123.5 (2)	$\mathrm{O} 2{ }^{\text {iii }}$-K1-O5-K1 ${ }^{\text {v }}$	172.23 (12)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	34.2 (3)	O3i-K1-O5-K1 ${ }^{\text {v }}$	23.55 (11)
O3 ${ }^{\text {i }} \mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	169.1 (3)	$\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 5-\mathrm{K} 1^{v}$	-54.17 (18)
$\mathrm{Br} 1-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	45.8 (2)		

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $-x,-y,-z+1$; (iii) $x, y, z+1$; (iv) $x, y, z-1$; (v) $x,-y+1 / 2, z-1 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5 — \mathrm{H} 51 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.84(2)$	$2.13(3)$	$2.926(5)$	$157(5)$
O5—H52 $^{\mathrm{H}} \mathrm{Br}^{\mathrm{vi}}$	$0.84(2)$	$2.85(4)$	$3.509(4)$	$137(4)$

Symmetry codes: (ii) $-x,-y,-z+1$; (vi) $-x, y+1 / 2,-z+3 / 2$.

