

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-Methoxvindan-1-one

Yuan Jay Chang^a and Kew-Yu Chen^{b*}

^aDepartment of Chemistry, Tung Hai University, 407 Taichung, Taiwan, and ^bDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan

Correspondence e-mail: kyuchen@fcu.edu.tw

Received 26 September 2012; accepted 27 September 2012

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.116; data-to-parameter ratio = 15.1.

In the title compound, $C_{10}H_{10}O_2$, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C-H···O hydrogen bonds, forming layers lying parallel to the *ab* plane. This two-dimensional structure is stabilized by a weak $C-H\cdots\pi$ interaction. A second weak $C-H \cdots \pi$ interaction links the layers, forming a three-dimensional structure.

Related literature

For the preparation of the title compound, see: Li et al. (2011). For applications of indanone derivatives, see: Borge et al. (2010); Cai et al. (2005); Cui et al. (2009); Fu & Wang (2008); Li et al. (2009); Sousa et al. (2011); Tang et al. (2011). For related structures, see: Ali et al. (2010a,b,c,d); Chen et al. (2011a,b). For C-H···O hydrogen bonds, see: Li *et al.* (2011*a*,*b*); Wang & Chen (2011); Xi et al. (2010).

Experimental

Crystal data

 $C_{10}H_{10}O_2$ $M_r = 162.18$ Orthorhombic, Pbca a = 8.5386 (7) Åb = 10.4949 (9) Å c = 18.8536 (16) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.683, \ T_{\max} = 1.000$

T = 297 K $0.64 \times 0.55 \times 0.32 \ \text{mm}$

8807 measured reflections 1663 independent reflections 1278 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.032$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 110 parameters $wR(F^2) = 0.116$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ S = 1.02 $\Delta \rho_{\rm min} = -0.13$ e Å⁻³ 1663 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1/C5-C9 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3B\cdots O2^{i}$	0.97	2.60	3.5183 (18)	159
$C7-H7A\cdots O1^{ii}$	0.93	2.57	3.4802 (18)	167
C10−H10B····O1 ⁱⁱⁱ	0.96	2.59	3.486 (2)	156
$C4-H4A\cdots Cg1^{iv}$	0.97	2.80	3.6430 (16)	146
$C10-H10A\cdots Cg1^{v}$	0.96	2.82	3.6260 (16)	143

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, z$; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}, y, -z + \frac{1}{2}$; (iv) -x, -y + 1, -z; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

This work was supported by the National Science Council, Tung Hai University and Feng Chia University in Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2507).

References

- Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2878.
- Ali, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66. o2875
- Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o2753.
- Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010d). Acta Cryst. E66, o2864.
- Borge, J., Cadierno, V., Díez, J., García-Garrido, S. E. & Gimeno, J. (2010). Dyes Pigm. 87, 209-217.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, X., Wu, K. & Dolbier, W. R. Jr (2005). J. Fluor. Chem. 126, 479-482.
- Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, 0992.
- Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Crvst. E67. 0927.
- Cui, Y., Ren, H., Yu, J., Wang, Z. & Qian, G. (2009). Dyes Pigm. 81, 53-57.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590-595.
- Li, C. J., Feng, Y. Q., Liu, X. J. & Zhang, T. Y. (2011a). Chin. Chem. Lett. 22, 539-542.
- Li, X., Kim, S.-H. & Son, Y.-A. (2009). Dyes Pigm. 82, 293-298.
- Li, Z., Lin, Y., Xia, J.-L., Zhang, H., Fan, F., Zeng, Q., Feng, D., Yin, J. & Liu, S. H. (2011). Dyes Pigm. 90, 245-252.
- Li, H. Q., Zhang, Z. B. & Li, L. (2011b). Chin. Chem. Lett. 22, 280-283.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Sousa, C. M., Berthet, J., Delbaere, S. & Coelho, P. J. (2011). Dyes Pigm. 92, 537-541.
- Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745

Wang, E. J. & Chen, G. Y. (2011). Chin. Chem. Lett. 22, 847-850. Xi, H. T., Yi, T. T. & Sun, X. Q. (2010). Chin. Chem. Lett. 21, 633-636.

V = 1689.5 (2) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$

supporting information

Acta Cryst. (2012). E68, o3063 [doi:10.1107/S1600536812040743]

7-Methoxyindan-1-one

Yuan Jay Chang and Kew-Yu Chen

S1. Comment

Indanone and its derivatives are some of the most widely used organic compounds (Tang *et al.*, 2011). They are used as dyes and pigments (Cui *et al.*, 2009; Li *et al.*, 2009), intermediates in organic synthesis (Fu & Wang, 2008; Borge *et al.*, 2010) and exhibit a wide variety of biological activities (Sousa *et al.*, 2011). In addition, 1-indanones were important precursors in the regiospecific synthesis of 2-fluoro-1-naphthols (Cai *et al.*, 2005).

The molecular structure of the title compound is shown in Figure 1. The 1-indaneone moiety is essentially planar (r.m.s. deviation = 0.028 Å), which is consistent with previous studies (Chen *et al.*, 2011*a,b*; Ali *et al.*, 2010*a,b,c,d*). There are three different kinds of C—H···O (Li *et al.*, 2011*a,b*; Wang *et al.*, 2011; Xi *et al.*, 2010) hydrogen bonds (Table 1) in the crystal structure (Figure 2). In addition, C—H··· π hydrogen bonds further stabilize the crystal structure (2.80 Å for the C4—H4A—Cg1ⁱ angle; 2.82 Å for the C10—H10A···Cg1 distance and 143° for the C10—H10A—Cg1ⁱⁱ angle; Cg1 is the centroid of the C1/C5—C9 ring; symmetry codes: (i): -*x*, 1 - *y*,- *z* (ii): -*x*, 1/2 + *y*, 1/2 - *z*).

S2. Experimental

The title compound was synthesized by the methylation of 7-hydroxyindan-1-one with methyl iodide (Li *et al.*, 2011). Colorless parallelepiped-shaped crystals suitable for the crystallographic study reported here were isolated over a period of six weeks by slow evaporation from a chloroform solution.

S3. Refinement

The C bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

A section of the crystal packing of the title compound, viewed along the *b* axis. Blue, green and red dashed lines denote the intermolecular C10—H10B···O1, C3—H3B···O2 and C7—H7A···O1 hydrogen bonds, respectively. Yellow and purple dashed lines denote the intermolecular C10—H10A··· π and C4—H4A··· π hydrogen bonds, respectively. *Cg*1 (black circles) is the centroid of the C1/C5—C9 ring. For symmetry operators, see Table 1.

7-Methoxyindan-1-one

Crystal data $C_{10}H_{10}O_2$ $M_r = 162.18$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 8.5386 (7) Å b = 10.4949 (9) Å c = 18.8536 (16) Å V = 1689.5 (2) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.683, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.116$ S = 1.021663 reflections 110 parameters 0 restraints F(000) = 688 $D_x = 1.275 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3629 reflections $\theta = 2.9-26.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 297 KParallelepiped, colorless $0.64 \times 0.55 \times 0.32 \text{ mm}$

8807 measured reflections 1663 independent reflections 1278 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.2^\circ$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 23$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0636P)^2 + 0.2236P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Extinction correction: SHELXL,
$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$	$Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$
$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$	Extinction coefficient: 0.0068 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.34168 (11)	0.54158 (11)	0.13950 (7)	0.0741 (4)
0.07222 (10)	0.67528 (9)	0.20144 (5)	0.0545 (3)
0.06609 (14)	0.50056 (11)	0.12296 (6)	0.0412 (3)
0.23519 (16)	0.47945 (13)	0.11460 (7)	0.0480 (3)
0.25583 (19)	0.36302 (14)	0.06788 (8)	0.0637 (4)
0.3207	0.3835	0.0272	0.076*
0.3057	0.2948	0.0943	0.076*
0.09387 (18)	0.32271 (14)	0.04396 (8)	0.0606 (4)
0.0829	0.3318	-0.0070	0.073*
0.0734	0.2348	0.0568	0.073*
-0.01569 (17)	0.41149 (12)	0.08242 (7)	0.0475 (3)
-0.17764 (18)	0.41110 (14)	0.08112 (8)	0.0610 (4)
-0.2322	0.3522	0.0538	0.073*
-0.25596 (18)	0.49998 (16)	0.12127 (8)	0.0643 (5)
-0.3649	0.5006	0.1207	0.077*
-0.17749 (16)	0.58882 (14)	0.16256 (7)	0.0560 (4)
-0.2340	0.6470	0.1896	0.067*
-0.01507 (15)	0.59128 (12)	0.16371 (6)	0.0431 (3)
-0.0085 (2)	0.76805 (14)	0.24349 (8)	0.0662 (4)
0.0664	0.8210	0.2674	0.099*
-0.0729	0.7255	0.2779	0.099*
-0.0730	0.8198	0.2134	0.099*
	x $0.34168 (11)$ $0.07222 (10)$ $0.06609 (14)$ $0.23519 (16)$ $0.25583 (19)$ 0.3207 0.3057 $0.09387 (18)$ 0.0734 $-0.01569 (17)$ $-0.17764 (18)$ -0.2322 $-0.25596 (18)$ -0.3649 $-0.17749 (16)$ -0.2340 $-0.01507 (15)$ $-0.0085 (2)$ 0.0664 -0.0729 -0.0730	xy $0.34168 (11)$ $0.54158 (11)$ $0.07222 (10)$ $0.67528 (9)$ $0.06609 (14)$ $0.50056 (11)$ $0.23519 (16)$ $0.47945 (13)$ $0.25583 (19)$ $0.36302 (14)$ 0.3207 0.3835 0.3057 0.2948 $0.09387 (18)$ $0.32271 (14)$ 0.0829 0.3318 0.0734 0.2348 $-0.01569 (17)$ $0.41149 (12)$ $-0.17764 (18)$ $0.41110 (14)$ -0.2322 0.3522 $-0.25596 (18)$ $0.49998 (16)$ -0.3649 0.5006 $-0.17749 (16)$ $0.58882 (14)$ -0.2340 0.6470 $-0.01507 (15)$ $0.59128 (12)$ $-0.0085 (2)$ $0.76805 (14)$ 0.0664 0.8210 -0.0729 0.7255 -0.0730 0.8198	xyz $0.34168(11)$ $0.54158(11)$ $0.13950(7)$ $0.07222(10)$ $0.67528(9)$ $0.20144(5)$ $0.06609(14)$ $0.50056(11)$ $0.12296(6)$ $0.23519(16)$ $0.47945(13)$ $0.11460(7)$ $0.25583(19)$ $0.36302(14)$ $0.06788(8)$ 0.3207 0.3835 0.0272 0.3057 0.2948 0.0943 $0.09387(18)$ $0.32271(14)$ $0.04396(8)$ 0.0829 0.3318 -0.0070 0.0734 0.2348 0.0568 $-0.01569(17)$ $0.41149(12)$ $0.08242(7)$ $-0.17764(18)$ $0.41110(14)$ $0.08112(8)$ -0.2322 0.3522 0.0538 $-0.25596(18)$ $0.49998(16)$ $0.12127(8)$ -0.3649 0.5006 0.1207 $-0.17749(16)$ $0.5882(14)$ $0.16256(7)$ -0.2340 0.6470 0.1896 $-0.01507(15)$ $0.59128(12)$ $0.16371(6)$ $-0.0085(2)$ $0.76805(14)$ $0.24349(8)$ 0.0664 0.8210 0.2674 -0.0729 0.7255 0.2779 -0.0730 0.8198 0.2134

Atomic displacement parameters $(Å^2)$

157 (6)
125 (4)
71 (5)
54 (6)
052 (7)
038 (6)

supporting information

C5	0.0565 (8)	0.0429 (7)	0.0432 (7)	-0.0009 (6)	-0.0041 (6)	0.0052 (5)
C6	0.0548 (9)	0.0610 (9)	0.0674 (9)	-0.0121 (7)	-0.0116 (7)	0.0017 (7)
C7	0.0380 (7)	0.0802 (11)	0.0747 (10)	-0.0061 (7)	-0.0015 (7)	0.0120 (8)
C8	0.0435 (8)	0.0664 (9)	0.0583 (8)	0.0090 (6)	0.0094 (6)	0.0041 (7)
C9	0.0440 (7)	0.0458 (7)	0.0393 (6)	0.0026 (5)	0.0020 (5)	0.0043 (5)
C10	0.0800 (10)	0.0591 (8)	0.0594 (9)	0.0161 (8)	0.0020 (8)	-0.0128 (7)

Geometric parameters (Å, °)

O1—C2	1.2134 (17)	C4—H4B	0.9700
O2—C9	1.3560 (15)	C5—C6	1.383 (2)
O2—C10	1.4321 (16)	C6—C7	1.375 (2)
C1—C5	1.3948 (17)	С6—Н6А	0.9300
C1—C9	1.4061 (17)	C7—C8	1.387 (2)
C1—C2	1.4692 (18)	С7—Н7А	0.9300
C2—C3	1.517 (2)	C8—C9	1.387 (2)
C3—C4	1.515 (2)	C8—H8A	0.9300
С3—НЗА	0.9700	C10—H10A	0.9600
С3—Н3В	0.9700	C10—H10B	0.9600
C4—C5	1.5063 (19)	C10—H10C	0.9600
C4—H4A	0.9700		
C9—O2—C10	117.90 (11)	C6—C5—C4	127.63 (13)
C5—C1—C9	120.43 (12)	C1—C5—C4	111.55 (12)
C5—C1—C2	109.40 (11)	C7—C6—C5	118.33 (13)
C9—C1—C2	130.17 (12)	С7—С6—Н6А	120.8
O1—C2—C1	127.87 (13)	С5—С6—Н6А	120.8
O1—C2—C3	124.79 (13)	C6—C7—C8	122.01 (14)
C1—C2—C3	107.34 (12)	С6—С7—Н7А	119.0
C4—C3—C2	106.97 (12)	С8—С7—Н7А	119.0
C4—C3—H3A	110.3	C7—C8—C9	120.27 (13)
С2—С3—НЗА	110.3	C7—C8—H8A	119.9
C4—C3—H3B	110.3	C9—C8—H8A	119.9
С2—С3—Н3В	110.3	O2—C9—C8	124.74 (12)
НЗА—СЗ—НЗВ	108.6	O2—C9—C1	117.13 (11)
C5—C4—C3	104.53 (11)	C8—C9—C1	118.14 (12)
C5—C4—H4A	110.8	O2-C10-H10A	109.5
C3—C4—H4A	110.8	O2-C10-H10B	109.5
C5—C4—H4B	110.8	H10A-C10-H10B	109.5
C3—C4—H4B	110.8	O2—C10—H10C	109.5
H4A—C4—H4B	108.9	H10A—C10—H10C	109.5
C6C5C1	120.81 (13)	H10B-C10-H10C	109.5
C5-C1-C2-O1	176.75 (14)	C1—C5—C6—C7	-0.6 (2)
C9—C1—C2—O1	-3.7 (2)	C4—C5—C6—C7	179.00 (13)
C5—C1—C2—C3	-3.15 (14)	C5—C6—C7—C8	-0.1 (2)
C9—C1—C2—C3	176.41 (12)	C6—C7—C8—C9	0.8 (2)
O1—C2—C3—C4	-175.29 (13)	C10—O2—C9—C8	0.29 (18)

C1—C2—C3—C4	4.62 (15)	C10—O2—C9—C1	-179.75 (11)	
C2—C3—C4—C5	-4.24 (15)	C7—C8—C9—O2	179.03 (12)	
C9—C1—C5—C6	0.42 (18)	C7—C8—C9—C1	-0.93 (19)	
C2-C1-C5-C6	-179.97 (12)	C5-C1-C9-O2	-179.63 (10)	
C9—C1—C5—C4	-179.21 (11)	C2-C1-C9-O2	0.84 (18)	
C2-C1-C5-C4	0.41 (14)	C5-C1-C9-C8	0.33 (17)	
C3—C4—C5—C6	-177.12 (14)	C2-C1-C9-C8	-179.19 (12)	
C3—C4—C5—C1	2.47 (15)			

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C5–C9 ring.

	D—H	H···A	D···· A	D—H···A
C3—H3 <i>B</i> ····O2 ⁱ	0.97	2.60	3.5183 (18)	159
С7—Н7А…О1 ^{іі}	0.93	2.57	3.4802 (18)	167
C10—H10 <i>B</i> …O1 ⁱⁱⁱ	0.96	2.59	3.486 (2)	156
C4—H4 A ··· $Cg1^{iv}$	0.97	2.80	3.6430 (16)	146
C10—H10 A ··· $Cg1^{v}$	0.96	2.82	3.6260 (16)	143

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) x-1, y, z; (iii) x-1/2, y, -z+1/2; (iv) -x, -y+1, -z; (v) -x, y+1/2, -z+1/2.