organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(R)-1-Hydroxybutan-2-yl]-1,2,3-benzotriazin-4(3H)-one

Fernando Rocha-Alonzo,^a* David Morales-Morales,^b Simón Hernández-Ortega,^b Reyna Reyes-Martínez^b and Miguel Parra-Hake^{c*}

^aDepartamento de Ciencias Químico Bilógicas, Universidad de Sonora, Hermosillo, Sonora, 83000 México, ^bInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México D.F., 04510 México, and ^cCentro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, B.C., 22500 México

Correspondence e-mail: fernando.rocha@guavacan.uson.mx. miguelhake@yahoo.com

Received 21 October 2012; accepted 22 October 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.076; data-to-parameter ratio = 13.4.

The crystal structure of the title compound, $C_{11}H_{13}N_3O_2$, is stabilized by O-H···O hydrogen bonds, which link the molecules into chains along [100].

Related literature

For biological and synthetic applications of benzo-1,2,3-triazinones, see: Caliendo et al. (1999); Zheng et al. (2005); Vaisburg et al. (2004); Chollet et al. (2002); Le Diguarher et al. (2003); Clark et al. (1995); Carpino et al. (2004); Janout et al. (2003); Gierasch et al. (2000). For structures of benzo-1,2,3triazinones, see: Hjortås et al. (1973); Hunt et al. (1983); Reingruber et al. (2009). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Gómez et al. (2005).

Experimental

Crystal data

$C_{11}H_{13}N_3O_2$	
$M_r = 219.24$	
Orthorhombic, $P2_12_12_1$	
a = 8.9668 (13) Å	

b = 10.1506 (15) Åc = 12.0238 (17) Å V = 1094.4 (3) Å³ Z = 4

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

1 restraint

Bruker SMART APEX CCD area-	
detector diffractometer	
9057 measured reflections	

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.076$	independent and constrained
S = 0.93	refinement
2000 reflections	$\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$
149 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

T = 298 K

 $R_{\rm int} = 0.044$

 $0.32 \times 0.10 \times 0.10 \text{ mm}$

2000 independent reflections 1700 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

	•	,		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^i$	0.85 (1)	2.03 (1)	2.8712 (19)	171 (2)

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We gratefully acknowledge support for this project by the Consejo Nacional de Ciencia y Tecnología (CONACyT grant 36435-E) and Consejo del Sistema Nacional de Educación Tecnológica (COSNET) grant 486-02-P. The authors are indebted to Adrián Ochoa Terán and Ignacio Rivero Espejel for their analytical support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2097).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caliendo, G., Fiorino, F., Grieco, P., Perissutti, E., Santagada, V., Meli, R., Mattace-Raso, G., Zanesco, A. & De Nucci, G. (1999). Eur. J. Med. Chem. 34. 1043-1051
- Carpino, L. A., Xia, J., Zhang, C. & El-Faham, A. (2004). J. Org. Chem. 69, 62-71.
- Chollet, A. M., Le Diguarher, T., Kucharczyk, N., Oynel, A., Bertrand, M., Tucker, G., Guilbaud, N., Burbridge, M., Pastoureau, P., Fradin, A., Sabatini, M., Fauchére, J.-L. & Casara, P. (2002). Bioorg. Med. Chem. 10, 531-544.
- Clark, A. S., Deans, B., Stevens, M. F. G., Tisdale, M. J., Wheelhouse, R. T., Denny, B. J. & Hartley, J. A. (1995). J. Med. Chem. 38, 1493-1504.
- Gierasch, T. M., Chytil, M., Didiuk, M. T., Park, J. Y., Urban, J. J., Nolan, S. P. & Verdine, G. L. (2000). Org. Lett. 2, 3999-4002.
- Gómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem. pp. 4341-4351.
- Hjortås, J. (1973). Acta Cryst. B29, 1916-1922.
- Hunt, W. E., Schwalbe, C. H. & Vaughan, K. (1983). Acta Cryst. C39, 738-740. Janout, V., Jing, B., Staina, I. V. & Regen, S. L. (2003). J. Am. Chem. Soc. 125, 4436-4437.
- Le Diguarher, T., Chollet, A. M., Bertrand, M., Henning, P., Raimbaud, E., Sabatini, M. N., Guilbaud, N., Pierré, A., Tucker, G. C. & Casara, P. (2003). J. Med. Chem. 46, 3840-3852.

- Reingruber, R., Vanderheiden, S., Muller, T., Nieger, M., Es-Sayed, M. & Bräse, S. (2009). *Tetrahedron Lett.* **50**, 3439–3442.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vaisburg, A., Bernstein, N., Frechette, S., Allan, M., Abou-Khalil, E., Leit, S., Moradei, O., Bouchain, G., Wang, J., Hyung Woo, S., Fournel, M., Yan, P. T., Trachy-Bourget, M.-C., Kalita, A., Beaulieu, C., Li, Z., MacLeod, A. R.,

Bestermanb, J. M. & Delormea, D. (2004). *Bioorg. Med. Chem. Lett.* 14, 283–287.

Zheng, G. Z., Bhatia, P., Daanen, J., Kolasa, T., Patel, M., Latshaw, S., El Kouhen, O. F., Chang, R., Uchic, M. E., Miller, L., Nakane, M., Lehto, S. J., Honore, M. P., Moreland, R. B., Brioni, J. D. & Stewart, A. O. (2005). *J. Med. Chem.* 48, 7374–7388.

supporting information

Acta Cryst. (2012). E68, o3240-o3241 [doi:10.1107/S1600536812043802]

3-[(R)-1-Hydroxybutan-2-yl]-1,2,3-benzotriazin-4(3H)-one

Fernando Rocha-Alonzo, David Morales-Morales, Simón Hernández-Ortega, Reyna Reyes-Martínez and Miguel Parra-Hake

S1. Comment

Benzo-1,2,3-triazinones are compounds widely investigated for their potential biological and chemical properties. These heterocyclic compounds have been studied as anesthetic (Caliendo *et al.*, 1999), anti-inflammatory (Zheng *et al.*, 2005), anticancer (Vaisburg *et al.*, 2004; Chollet *et al.*, 2002), and antitumoural (Le Diguarher *et al.*, 2003; Clark *et al.*, 1995) agents. In organic synthesis, 1,2,3-triazinones are used as an activating moiety in coupling agents for the preparation of peptides and amino acids (Carpino *et al.*, 2004; Janout *et al.*, 2003; Gierasch *et al.*, 2000). As result of its biological and synthetic importance, we have developed an alternative method for obtaining compounds with 1,2,3-triazinone moiety and in this paper we are describing the crystal structure of the title compound (**I**, Figure 1).

In the molecular structure of **I**, the N1=N2 bond [1.2636 (17) Å] is longer than the typical values for N=N double bonds (1.236 Å), whereas the N2–N3 bond [1.3735 (18) Å] is shorter than typical values for a N–N single bonds (1.404 Å) (Allen *et al.*, 1987). The structure of **I** shows co-planarity between two rings (1.30°). These measurements are in agreement with other benzo-1,2,3-triazinone crystal structure reports (Hjortås *et al.*, 1973; Hunt *et al.*, 1983; Reingruber *et al.*, 2009). Of interest to pharmaceutical applications, it has been suggested that co-planar structure in benzo-1,2,3-triazinones could give DNA-intercalating abilities such as those displayed by some anticancer agents (Reingruber *et al.*, 2009).

In the crystal structure, adjacent units are arranged into one-dimensional chain along [100] direction *via* O–H···O intermolecular hydrogen bonds (Figure 2 and Table 1).

S2. Experimental

The synthesis of the tittle compound included reagents and solvents of reagent grade, which were used without further purification. To a solution of 2-[(4*R*)-4-ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline (Gómez *et al.*, 2005) (0.89 g, 4.7 mmol, dissolved in 85 ml of methanol) was slowly added isoamyl nitrite (4.40 g, 37.6 mmol, 8 equiv) and the reaction mixture was stirred at room temperature until the disappearance of the aniline (followed by TLC, hexane/ethyl acetate, 3:1). The solvent was evaporated under reduced pressure to give a crude product that was purified by washing with petroleum ether and recrystallization from hexane/ethyl acetate. Crystalline colorless prisms of **I** were grown by slow diffusion of hexane over saturated ethyl acetate solutions of **I**. Yield > 99%, based on 2-[(4*R*)-4-Ethyl-4,5-dihydro-1,3-oxazol-2-yl]aniline; m.p., 89–90 °C. = -5.45° (*c* 0.22, MeOH). FTIR (KBr pellet, cm⁻¹): 3439, 1686, 1663, 1296. ¹H NMR [(CD₃)₂CO, 200 MHz] d 8.29 (ddd, *J* = 0.6, 1.5, 7.9 Hz, 2H), 8.16 (ddd, *J* = 0.6, 1.5, 8.1 Hz, 2H), 8.07 (ddd, *J* = 1.5, 7.0, 8.2 Hz, 2H), 7.91 (ddd,, *J* = 1.5, 7.0, 7.9 Hz, 2H), 5.22 (ddd, *J* = 5.1, 7.6, 15.5 Hz, 2H), 4.10 (dd, *J* = 8.4, 11.3 Hz, 2H), 3.96 (dd, J = 5.1, 11.3 Hz, 2H), 1.99 (dd, *J* = 7.5, 15.0 Hz, 4H), 0.90 (t, *J* = 7.4 Hz, 6H). ¹³C NMR [(CD₃)₂CO, 50 MHz] d 156.6, 144.5, 135.8, 133.2, 128.8, 125.7, 120.3, 64.2, 62.3, 24.2, 10.8. ESI-HRMS:220.1091 (100), calculated for [*M*+H]⁺, C₁₁H₁₄N₃O₂⁺, 220.1081; 192.1025 (8), calculated for [*M*+H—N₂]⁺, C₁₁H₁₄NO₂⁺, 192.1019. Anal for C₁₁H₁₃N₃O₂ (%

Calcd./found) C, 60.26/60.73; H, 5.98/6.45; N, 19.17/19.47.

S3. Refinement

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.98 for methyn, C—H = 0.97 Å for methylene H, and C—H= 0.96 Å for methyl H), and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms. The hydroxyl H atoms were located in a difference map and refined with O–H = 0.85±0.01 Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 2

Packing of I showing the H-bonds. The molecules are forming a one-dimensional chain in the [100] direction. H-bonds are indicated by dashed lines.

3-[(R)-1-Hydroxybutan-2-yl]-1,2,3-benzotriazin-4(3H)-one

Crystal data

C₁₁H₁₃N₃O₂ $M_r = 219.24$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.9668 (13) Å b = 10.1506 (15) Å c = 12.0238 (17) Å V = 1094.4 (3) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 0.83 pixels mm⁻¹
ω scans
9057 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.076$ S = 0.932000 reflections 149 parameters 1 restraint Primary atom site location: structure-invariant direct methods F(000) = 464 $D_x = 1.331 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4276 reflections $\theta = 2.6-25.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KPrism, colourless $0.32 \times 0.10 \times 0.10 \text{ mm}$

2000 independent reflections 1700 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0412P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.11$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.56004 (14)	0.68985 (11)	1.02583 (10)	0.0584 (4)
N1	0.87770 (16)	0.64809 (13)	0.79106 (11)	0.0438 (4)
O2	0.82337 (18)	0.99854 (13)	0.99816 (15)	0.0797 (5)
H2	0.885 (2)	0.9362 (16)	0.992 (2)	0.096*
N2	0.80536 (16)	0.75426 (13)	0.80106 (11)	0.0430 (4)
N3	0.70312 (14)	0.76906 (12)	0.88520 (11)	0.0372 (3)
C4	0.66320 (18)	0.67321 (15)	0.96026 (14)	0.0386 (4)
C4A	0.75154 (18)	0.55429 (16)	0.95179 (13)	0.0362 (4)
C5	0.7338 (2)	0.44941 (16)	1.02537 (14)	0.0469 (4)
Н5	0.6642	0.4546	1.0826	0.056*
C6	0.8194 (2)	0.33848 (17)	1.01301 (16)	0.0545 (5)
H6	0.8081	0.2686	1.0623	0.065*
C7	0.9226 (2)	0.32979 (18)	0.92741 (17)	0.0568 (5)
H7	0.9790	0.2535	0.9191	0.068*
C8	0.94229 (19)	0.43244 (17)	0.85511 (16)	0.0517 (5)
H8	1.0127	0.4266	0.7985	0.062*
C8A	0.85625 (17)	0.54564 (15)	0.86684 (13)	0.0382 (4)
C9	0.62783 (18)	0.89954 (14)	0.88408 (15)	0.0420 (4)
Н9	0.5594	0.9021	0.9476	0.050*
C10	0.7406 (2)	1.00892 (17)	0.89991 (17)	0.0553 (5)
H10A	0.8088	1.0088	0.8372	0.066*
H10B	0.6886	1.0927	0.8998	0.066*
C11	0.5352 (2)	0.91729 (17)	0.77929 (16)	0.0559 (5)
H11A	0.4838	1.0012	0.7833	0.067*
H11B	0.6015	0.9202	0.7156	0.067*
C12	0.4222 (2)	0.80997 (19)	0.76146 (19)	0.0765 (7)
H12A	0.3540	0.8081	0.8230	0.092*
H12B	0.4722	0.7266	0.7560	0.092*
H12C	0.3681	0.8266	0.6940	0.092*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0643 (8)	0.0449 (7)	0.0660 (9)	0.0042 (7)	0.0294 (8)	0.0035 (6)
N1	0.0471 (8)	0.0409 (8)	0.0434 (8)	0.0020 (7)	0.0101 (7)	-0.0012 (7)
O2	0.0754 (11)	0.0612 (10)	0.1026 (12)	0.0097 (8)	-0.0365 (10)	-0.0201 (9)

N2	0.0473 (8)	0.0401 (8)	0.0415 (8)	0.0014 (7)	0.0075 (7)	0.0013 (7)
N3	0.0410 (8)	0.0319 (7)	0.0387 (8)	0.0029 (6)	0.0047 (7)	0.0002 (6)
C4	0.0396 (9)	0.0364 (9)	0.0398 (9)	-0.0021 (8)	0.0043 (8)	-0.0018 (8)
C4A	0.0380 (9)	0.0339 (8)	0.0366 (9)	-0.0030 (7)	-0.0024 (8)	-0.0013 (7)
C5	0.0532 (11)	0.0426 (10)	0.0448 (10)	-0.0046 (9)	-0.0004 (9)	0.0019 (8)
C6	0.0638 (12)	0.0392 (10)	0.0604 (12)	-0.0009 (9)	-0.0109 (10)	0.0083 (9)
C7	0.0538 (12)	0.0365 (10)	0.0800 (14)	0.0100 (9)	-0.0071 (11)	-0.0013 (10)
C8	0.0435 (10)	0.0465 (11)	0.0651 (12)	0.0061 (9)	0.0060 (9)	-0.0089 (10)
C8A	0.0379 (9)	0.0352 (9)	0.0416 (10)	-0.0030 (7)	-0.0017 (8)	-0.0044 (8)
C9	0.0457 (9)	0.0337 (9)	0.0467 (10)	0.0058 (7)	0.0009 (9)	-0.0019 (8)
C10	0.0587 (11)	0.0362 (10)	0.0711 (12)	0.0034 (8)	-0.0022 (12)	-0.0055 (9)
C11	0.0648 (12)	0.0429 (10)	0.0600 (12)	0.0132 (9)	-0.0118 (10)	-0.0007 (9)
C12	0.0765 (14)	0.0602 (13)	0.0927 (17)	0.0111 (12)	-0.0357 (14)	-0.0133 (12)

Geometric parameters (Å, °)

01—C4	1.2271 (18)	C7—C8	1.368 (2)	
N1—N2	1.2636 (17)	C7—H7	0.9300	
N1—C8A	1.396 (2)	C8—C8A	1.391 (2)	
O2—C10	1.399 (2)	C8—H8	0.9300	
O2—H2	0.846 (9)	C9—C10	1.514 (2)	
N2—N3	1.3735 (18)	C9—C11	1.520 (2)	
N3—C4	1.3745 (19)	С9—Н9	0.9800	
N3—C9	1.4866 (19)	C10—H10A	0.9700	
C4—C4A	1.447 (2)	C10—H10B	0.9700	
C4A—C8A	1.390 (2)	C11—C12	1.503 (2)	
C4A—C5	1.393 (2)	C11—H11A	0.9700	
C5—C6	1.371 (2)	C11—H11B	0.9700	
С5—Н5	0.9300	C12—H12A	0.9600	
C6—C7	1.387 (3)	C12—H12B	0.9600	
С6—Н6	0.9300	C12—H12C	0.9600	
N2—N1—C8A	120.17 (13)	C8—C8A—N1	118.22 (15)	
C10—O2—H2	109.5 (17)	N3—C9—C10	110.42 (13)	
N1—N2—N3	120.40 (12)	N3—C9—C11	111.17 (14)	
N2—N3—C4	125.45 (12)	C10—C9—C11	112.49 (14)	
N2—N3—C9	113.20 (12)	N3—C9—H9	107.5	
C4—N3—C9	121.22 (13)	С10—С9—Н9	107.5	
O1—C4—N3	121.38 (14)	С11—С9—Н9	107.5	
O1—C4—C4A	124.93 (15)	O2-C10-C9	113.91 (15)	
N3—C4—C4A	113.68 (14)	O2-C10-H10A	108.8	
C8A—C4A—C5	119.70 (15)	C9—C10—H10A	108.8	
C8A—C4A—C4	118.29 (14)	O2-C10-H10B	108.8	
C5—C4A—C4	122.01 (15)	C9C10H10B	108.8	
C6—C5—C4A	119.66 (17)	H10A—C10—H10B	107.7	
С6—С5—Н5	120.2	C12—C11—C9	113.63 (15)	
С4А—С5—Н5	120.2	C12—C11—H11A	108.8	
С5—С6—С7	120.42 (17)	C9—C11—H11A	108.8	

С5—С6—Н6	119.8	C12—C11—H11B	108.8	
С7—С6—Н6	119.8	C9—C11—H11B	108.8	
С8—С7—С6	120.59 (17)	H11A-C11-H11B	107.7	
С8—С7—Н7	119.7	C11—C12—H12A	109.5	
С6—С7—Н7	119.7	C11—C12—H12B	109.5	
C7—C8—C8A	119.55 (17)	H12A—C12—H12B	109.5	
С7—С8—Н8	120.2	C11—C12—H12C	109.5	
C8A—C8—H8	120.2	H12A—C12—H12C	109.5	
C4A—C8A—C8	120.07 (15)	H12B—C12—H12C	109.5	
C4A—C8A—N1	121.71 (14)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O2—H2···O1 ⁱ	0.85 (1)	2.03 (1)	2.8712 (19)	171 (2)

Symmetry code: (i) x+1/2, -y+3/2, -z+2.