

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Iodido[1-(propan-2-vlidene)thiosemicarbazide- κS]bis(triphenylphosphane- κP)copper(I)

Yupa Wattanakanjana,^a* Chaveng Pakawatchai,^b Saowanit Saithong,^b Prapaporn Piboonphon^a and Ruthairat Nimthong^b

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Thailand, and ^bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Correspondence e-mail: yupa.t@psu.ac.th

Received 14 June 2012; accepted 24 October 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.084; data-to-parameter ratio = 20.7.

In the mononuclear title complex, $[CuI(C_4H_9N_3S)(C_{18}H_{15}P)_2]$, the Cu^I ion displays a distorted tetrahedral coordination geometry involving two P atoms of two triphenylphosphane molecules, one S atom of a 1-(propan-2-ylidene)thiosemicarbazide molecule and one iodide ion. In the crystal, $C-H\cdots\pi$ interactions [C-H···centroid distances = 3.443 (3) and 3.788 (3) Å] and N-H···S hydrogen bonds form layers parallel to (100). An intramolecular N-H···I hydrogen bond is also observed.

Related literature

For the potential applications of related complexes, see: Matesanz et al. (1999); Konstantinović et al. (2008); Zhang et al. (2008). For relevant examples of related discrete complexes, see: Cox et al. (2000); Nimthong et al. (2008); Pakawatchai et al. (2012).

Experimental

Crystal data

$CuI(C_4H_9N_3S)(C_{18}H_{15}P)_2]$	$\gamma = 114.056 \ (1)^{\circ}$
$M_r = 846.18$	V = 1903.04 (18) Å ³
Friclinic, $P\overline{1}$	Z = 2
a = 10.8832 (6) Å	Mo $K\alpha$ radiation
p = 12.5712 (7) Å	$\mu = 1.56 \text{ mm}^{-1}$
c = 16.0206 (8) Å	T = 293 K
$\alpha = 98.867 \ (1)^{\circ}$	$0.26 \times 0.21 \times 0.04 \text{ mm}$
$\beta = 100.517 \ (1)^{\circ}$	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.084$	independent and constrained
S = 1.02	refinement
9206 reflections	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
444 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3 - H3A \cdots S1^{i}$ N1 - H1 \cdots I1	0.85 (3) 0.80 (3)	2.62 (3) 2.93 (3)	3.447 (3) 3.723 (2)	166 (3) 173 (3)
Symmetry code: (i) _	$x \pm 2 = y \pm 1$	- 7 ⊥ 1		

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education and Department of Chemistry, Prince of Songkla University, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2025).

References

- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615-1620. Konstantinović, S. S., Radovanović, B. C., Sovilj, S. P. & Stanojević, S. (2008). J. Serb. Chem. Soc. 73, 7-13.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Matesanz, A. I., Pérez, J. M., Navarro, P., Moreno, J. M., Colacio, E. & Souza, P. (1999). J. Inorg. Biochem. 76, 29-37.
- Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.

26251 measured reflections 9206 independent reflections

 $R_{\rm int} = 0.033$

7690 reflections with $I > 2\sigma(I)$

metal-organic compounds

Pakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773-m774.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Zhang, H., Thomas, R., Oupicky, D. & Peng, F. (2008). J. Biol. Inorg. Chem. 13, 47–55.

supporting information

Acta Cryst. (2012). E68, m1417-m1418 [doi:10.1107/S1600536812044066]

Iodido[1-(propan-2-ylidene)thiosemicarbazide-κS]bis(triphenylphosphaneκP)copper(I)

Yupa Wattanakanjana, Chaveng Pakawatchai, Saowanit Saithong, Prapaporn Piboonphon and Ruthairat Nimthong

S1. Comment

Thiosemicarbazones and thiosemicarbazone derivatives as well as their complexes have been receiving more attention, because of their potentially beneficial biochemical properties, such as antimicrobial activity (Konstantinović *et al.*, 2008), anticancer activity on cisplatin-resistant neuroblastoma cells (Zhang *et al.*, 2008), important antitumor properties and DNA binding (Matesanz *et al.*, 1999).

The molecular structure of the title compound displays the distorted tetrahedral coordination of the Cu^I center. (Fig. 1) The arrangement is considerably distorted since the phosphorous angle at metal site, P2—Cu1—P1 with a value of 120.68 (2)°, is much larger than the tetrahedral value 109.5°, This higher angle is counterbalanced by the bond angles of P1—Cu1—I1, P2—Cu1—I1, P1—Cu1—S1 and P2—Cu1—S1 whose values are 104.358 (19)°, 106.92 (2)°, 109.32 (3)° and 104.67 (2)°, respectively. The tetrahedral distortion is due to steric imposition of the bulky of phosphane ligands and was observed previously in analogous complex. For instance, the P—Cu—P angles of 118.63 (5)° in [CuI(C₇H₈N₂S) $(C_{18}H_{15}P)_2$]. (Nimthong *et al.*, 2008). The two Cu1—P1 and Cu1—P2 bond distances of 2.2910 (7) Å and 2.2814 (6) Å are comparable to these in CuI(C₆H₈N₂S)(C₁₈H₁₅P)₂ (2.2897 (5)–2.3047 (5) Å) (Pakawatchai et al., 2012). The Cu1-S1 bond distance of 2.3866 (7) Å, which is larger than the value observed in tetrahedrally coordinated copper(I) halide complexes with S donors such as [CuBr(dppe)(py₂SH)]₂ with Cu—S bond distance of 2.3456 (13) Å (Cox et al., 2000). The non-bonding distance in the molecule, N1-H1...I1, can be accepted as an intramolecular hydrogen bond with the geometry N1…I1 = 3.723 (2) Å. In the crystal packing, the $C5(sp^2)$ —H5… π interactions [H5…Cg1 = 2.948 (3) Å, $C5(sp^2)$ $-H5\cdots Cg1 = 3.788$ (3) Å and $C5(sp^2)$ $-H5\cdots Cg1 = 134.62$ (8)°, Cg1 = C19-C20-C21-C22-C23-C24 ring] and N3—H3A···S1 hydrogen bonds can be linked each molecule forming one dimensional chain. In addition, chains are connected through $C_3(sp^2)$ —H3… π interactions [H3…Cg2 = 2.870 (3) Å, $C_3(sp^2)$ —H3…Cg2 = 3.443 (3) Å and $C_3(sp^2)$ $-H3\cdots Cg2 = 138.54$ (7)°, Cg2 = C7 - C8 - C9 - C10 - C11 - C12 ring] forming the two-dimensional layer networks (see Table 1 and Fig. 2).

S2. Experimental

Triphenylphosphane (0.28 g, 1.07 mmol) was dissolved in 30 cm³ of acetone at 338 K and then CuI (0.10 g, 0.53 mmol) was added. The mixture was stirred for 2 h and then thiosemicarbazide (0.05 g, 0.55 mmol) was added and the new reaction mixture was heated under reflux for 5 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline complex, which was deposited upon standing for several days, was filtered off and dried in *vacuo*.

S3. Refinement

The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 with $U_{iso}(H) = 1.2 U_{eq}(C)$ and 0.96 Å with $U_{iso}(H) = 1.5 U_{eq}(C)$ for for H atoms on $C(sp^2)$ and $C(sp^3)$, respectively. All H atoms bonded to N atoms were located in a difference Fourier map and refined isotropically.

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.

Figure 2

Part of the crystal structure with N—H…S hydrogen bonds and C—H…centroid interactions are linked into one dimensional chain shown as dashed lines.

Iodido[1-(propan-2-ylidene)thiosemicarbazide- κS]bis(triphenylphosphane-κP)copper(I)

Crystal data	
$[CuI(C_4H_9N_3S)(C_{18}H_{15}P)_2]$	Z = 2
$M_r = 846.18$	F(000) = 856
Triclinic, P1	$D_{\rm x} = 1.477 \ {\rm Mg} \ {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.8832 (6) Å	Cell parameters from 7509 reflections
b = 12.5712 (7) Å	$\theta = 2.2 - 26.4^{\circ}$
c = 16.0206 (8) Å	$\mu = 1.56 \text{ mm}^{-1}$
$\alpha = 98.867 \ (1)^{\circ}$	T = 293 K
$\beta = 100.517 \ (1)^{\circ}$	Plate, colourless
$\gamma = 114.056 (1)^{\circ}$	$0.26 \times 0.21 \times 0.04 \text{ mm}$
$V = 1903.04 (18) \text{ A}^3$	
Data collection	
Bruker SMART CCD area-detector	26251 measured reflections
diffractometer	9206 independent reflections
Radiation source: fine-focus sealed tube	7690 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
Frames, each covering 0.3 $^{\circ}$ in ω scans	$\theta_{\rm max} = 28.1^{\circ}, \theta_{\rm min} = 1.3^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2003)	$k = -16 \rightarrow 16$
$T_{\min} = 0.682, \ T_{\max} = 0.940$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.036$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.084$	map
S = 1.02	Hydrogen site location: inferred from
9206 reflections	neighbouring sites
444 parameters	H atoms treated by a mixture of independent
0 restraints	and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0373P)^{2} + 0.6367P] \qquad \Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.002$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent isotro	pic displacement	parameters	$(Å^2)$	ļ
-------------------------------	------------------	----------------------	------------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.9764 (3)	0.3109 (2)	0.05375 (16)	0.0384 (5)	
C2	0.8564 (3)	0.2797 (3)	-0.01226 (18)	0.0496 (7)	
H2	0.7874	0.2998	0.0006	0.060*	
C3	0.8377 (4)	0.2189 (3)	-0.0971 (2)	0.0630 (8)	
H3	0.7560	0.1977	-0.1402	0.076*	
C4	0.9382 (4)	0.1899 (3)	-0.1178 (2)	0.0627 (9)	
H4	0.9261	0.1508	-0.1751	0.075*	
C5	1.0567 (4)	0.2185 (3)	-0.05395 (19)	0.0544 (7)	
Н5	1.1252	0.1987	-0.0680	0.065*	
C6	1.0759 (3)	0.2770 (2)	0.03164 (17)	0.0435 (6)	
H6	1.1559	0.2939	0.0747	0.052*	
C7	1.1523 (3)	0.5247 (2)	0.20007 (17)	0.0402 (6)	
C8	1.2636 (3)	0.5503 (3)	0.1635 (2)	0.0606 (8)	
H8	1.2571	0.4948	0.1151	0.073*	
C9	1.3843 (3)	0.6576 (3)	0.1979 (3)	0.0781 (11)	
H9	1.4586	0.6733	0.1730	0.094*	
C10	1.3953 (4)	0.7406 (3)	0.2683 (3)	0.0765 (11)	
H10	1.4773	0.8121	0.2918	0.092*	
C11	1.2856 (4)	0.7183 (3)	0.3039 (2)	0.0780 (11)	
H11	1.2919	0.7758	0.3509	0.094*	
C12	1.1647 (4)	0.6105 (3)	0.2707 (2)	0.0606 (8)	
H12	1.0910	0.5957	0.2961	0.073*	
C13	0.8550 (3)	0.4181 (2)	0.16390 (16)	0.0371 (5)	
C14	0.7594 (3)	0.3687 (2)	0.21055 (18)	0.0435 (6)	
H14	0.7732	0.3200	0.2457	0.052*	
C15	0.6439 (3)	0.3907 (3)	0.2057 (2)	0.0526 (7)	
H15	0.5804	0.3565	0.2371	0.063*	
C16	0.6236 (3)	0.4628 (3)	0.1546 (2)	0.0594 (8)	
H16	0.5453	0.4767	0.1505	0.071*	
C17	0.7184 (3)	0.5151 (3)	0.1092 (2)	0.0590 (8)	
H17	0.7041	0.5645	0.0749	0.071*	
C18	0.8342 (3)	0.4947 (2)	0.11416 (19)	0.0487 (6)	

H18	0.8989	0.5319	0.0844	0.058*
C19	0.7536 (2)	-0.0101 (2)	0.13076 (15)	0.0360 (5)
C20	0.6175 (3)	-0.1014 (3)	0.10113 (19)	0.0613 (9)
H20	0.5629	-0.1203	0.1401	0.074*
C21	0.5629 (3)	-0.1644 (3)	0.0135 (2)	0.0762 (11)
H21	0.4716	-0.2255	-0.0060	0.091*
C22	0.6418 (3)	-0.1376 (3)	-0.04459 (19)	0.0640 (9)
H22	0.6039	-0.1794	-0.1035	0.077*
C23	0.7762 (3)	-0.0493 (3)	-0.01590 (18)	0.0511 (7)
H23	0.8309	-0.0322	-0.0550	0.061*
C24	0.8314 (3)	0.0147 (2)	0.07120 (16)	0.0404 (6)
H24	0.9227	0.0758	0.0899	0.048*
C25	0.7027 (3)	0.0710 (2)	0.29446 (17)	0.0377 (5)
C26	0.7158 (3)	0.0687 (3)	0.38138 (19)	0.0557 (7)
H26	0.7923	0.0628	0.4131	0.067*
C27	0.6157 (5)	0.0750 (3)	0.4216 (3)	0.0819 (12)
H27	0.6256	0.0734	0.4803	0.098*
C28	0.5032 (5)	0.0836 (4)	0.3762 (4)	0.0937 (15)
H28	0.4363	0.0875	0.4035	0.112*
C29	0.4888 (4)	0.0864 (4)	0.2902 (3)	0.0862 (13)
H29	0.4114	0.0915	0.2589	0.103*
C30	0.5887 (3)	0.0819 (3)	0.2494 (2)	0.0592 (8)
H30	0.5793	0.0861	0.1913	0.071*
C31	0.8974 (2)	-0.0266 (2)	0.29335 (15)	0.0340 (5)
C32	1.0122 (3)	0.0236 (3)	0.3647 (2)	0.0566 (8)
H32	1.0604	0.1069	0.3858	0.068*
C33	1.0572 (4)	-0.0485 (3)	0.4057 (2)	0.0738 (10)
H33	1.1339	-0.0134	0.4549	0.089*
C34	0.9894 (4)	-0.1706 (3)	0.3743 (2)	0.0640 (9)
H34	1.0204	-0.2188	0.4015	0.077*
C35	0.8769 (4)	-0.2213 (3)	0.3035 (2)	0.0599 (8)
H35	0.8305	-0.3047	0.2823	0.072*
C36	0.8299 (3)	-0.1508 (2)	0.26227 (18)	0.0478 (6)
H36	0.7527	-0.1870	0.2134	0.057*
C37	1.1977 (3)	0.4956 (2)	0.45169 (16)	0.0399 (5)
C38	1.5399 (3)	0.6307 (2)	0.43728 (17)	0.0436 (6)
C39	1.5519 (3)	0.5446 (3)	0.3685 (2)	0.0624 (8)
H39A	1.5303	0.4699	0.3847	0.094*
H39B	1.6455	0.5777	0.3627	0.094*
H39C	1.4875	0.5304	0.3135	0.094*
C40	1.6672 (3)	0.7473 (3)	0.4791 (2)	0.0663 (9)
H40A	1.6877	0.7931	0.4363	0.099*
H40B	1.7449	0.7321	0.5013	0.099*
H40C	1.6511	0.7921	0.5265	0.099*
N1	1.3115 (2)	0.5081 (2)	0.42585 (14)	0.0410 (5)
N2	1.4325 (2)	0.6151 (2)	0.46382 (14)	0.0467 (5)
N3	1.2117 (3)	0.5846 (2)	0.51463 (18)	0.0631 (8)
P1	0.99834 (6)	0.37784 (5)	0.16846 (4)	0.03298 (13)

P2	0.84194 (6)	0.07508 (5)	0.24472 (4)	0.03094 (13)	
S1	1.04319 (6)	0.36891 (6)	0.40876 (4)	0.04410 (16)	
Cu1	1.01628 (3)	0.26360 (2)	0.264156 (18)	0.03273 (8)	
I1	1.243129 (17)	0.239385 (16)	0.254284 (11)	0.04628 (7)	
H1	1.304 (3)	0.454 (3)	0.388 (2)	0.056*	
H3A	1.140 (3)	0.583 (3)	0.529 (2)	0.056*	
H3B	1.290 (3)	0.643 (3)	0.535 (2)	0.056*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0453 (14)	0.0323 (12)	0.0416 (13)	0.0173 (11)	0.0158 (11)	0.0157 (10)
C2	0.0542 (16)	0.0495 (16)	0.0475 (15)	0.0279 (14)	0.0099 (13)	0.0100 (13)
C3	0.077 (2)	0.065 (2)	0.0428 (16)	0.0356 (18)	0.0025 (15)	0.0104 (14)
C4	0.099 (3)	0.0581 (19)	0.0399 (16)	0.0413 (19)	0.0238 (17)	0.0133 (14)
C5	0.081 (2)	0.0505 (17)	0.0540 (17)	0.0397 (16)	0.0368 (16)	0.0217 (14)
C6	0.0530 (15)	0.0426 (14)	0.0453 (14)	0.0258 (13)	0.0202 (12)	0.0184 (12)
C7	0.0381 (13)	0.0318 (12)	0.0475 (14)	0.0119 (11)	0.0078 (11)	0.0167 (11)
C8	0.0480 (16)	0.0408 (16)	0.095 (2)	0.0169 (13)	0.0287 (17)	0.0216 (16)
C9	0.0428 (17)	0.052 (2)	0.136 (4)	0.0129 (15)	0.027 (2)	0.035 (2)
C10	0.055 (2)	0.0445 (19)	0.093 (3)	-0.0013 (15)	-0.0123 (19)	0.0233 (19)
C11	0.095 (3)	0.0460 (19)	0.0530 (19)	0.0045 (18)	0.0016 (19)	0.0034 (15)
C12	0.068 (2)	0.0408 (16)	0.0518 (17)	0.0064 (14)	0.0162 (15)	0.0069 (13)
C13	0.0378 (13)	0.0306 (12)	0.0417 (13)	0.0153 (10)	0.0112 (10)	0.0059 (10)
C14	0.0414 (14)	0.0405 (14)	0.0468 (15)	0.0174 (12)	0.0136 (12)	0.0067 (12)
C15	0.0418 (15)	0.0529 (17)	0.0617 (18)	0.0217 (13)	0.0204 (13)	0.0019 (14)
C16	0.0450 (16)	0.0563 (18)	0.073 (2)	0.0301 (15)	0.0085 (15)	-0.0055 (16)
C17	0.0617 (19)	0.0519 (18)	0.071 (2)	0.0360 (16)	0.0111 (16)	0.0134 (15)
C18	0.0525 (16)	0.0418 (15)	0.0600 (17)	0.0255 (13)	0.0207 (14)	0.0167 (13)
C19	0.0371 (12)	0.0321 (12)	0.0308 (12)	0.0103 (10)	0.0050 (10)	0.0060 (10)
C20	0.0433 (16)	0.069 (2)	0.0416 (15)	0.0014 (14)	0.0107 (12)	-0.0001 (14)
C21	0.0442 (17)	0.085 (3)	0.0500 (18)	-0.0024 (16)	0.0006 (14)	-0.0140 (17)
C22	0.064 (2)	0.071 (2)	0.0333 (14)	0.0187 (17)	0.0003 (14)	-0.0025 (14)
C23	0.0654 (18)	0.0476 (16)	0.0367 (14)	0.0218 (14)	0.0157 (13)	0.0088 (12)
C24	0.0442 (14)	0.0317 (12)	0.0387 (13)	0.0120 (11)	0.0105 (11)	0.0066 (10)
C25	0.0365 (12)	0.0275 (12)	0.0487 (14)	0.0112 (10)	0.0176 (11)	0.0105 (10)
C26	0.0610 (18)	0.0609 (19)	0.0456 (16)	0.0255 (15)	0.0230 (14)	0.0098 (14)
C27	0.098 (3)	0.080 (3)	0.076 (2)	0.035 (2)	0.057 (2)	0.014 (2)
C28	0.094 (3)	0.074 (3)	0.147 (4)	0.048 (2)	0.086 (3)	0.027 (3)
C29	0.067 (2)	0.082 (3)	0.154 (4)	0.055 (2)	0.060 (3)	0.056 (3)
C30	0.0519 (17)	0.0611 (19)	0.078 (2)	0.0312 (15)	0.0245 (16)	0.0308 (17)
C31	0.0380 (12)	0.0302 (12)	0.0339 (12)	0.0143 (10)	0.0117 (10)	0.0094 (9)
C32	0.0561 (17)	0.0380 (15)	0.0565 (17)	0.0128 (13)	-0.0086 (14)	0.0119 (13)
C33	0.068 (2)	0.062 (2)	0.074 (2)	0.0213 (17)	-0.0143 (17)	0.0292 (18)
C34	0.072 (2)	0.064 (2)	0.076 (2)	0.0413 (18)	0.0230 (18)	0.0379 (18)
C35	0.079 (2)	0.0348 (15)	0.067 (2)	0.0246 (15)	0.0236 (17)	0.0146 (14)
C36	0.0530 (16)	0.0369 (14)	0.0439 (15)	0.0144 (12)	0.0090 (12)	0.0050 (11)
C37	0.0336 (12)	0.0422 (14)	0.0366 (13)	0.0154 (11)	0.0074 (10)	-0.0022 (11)

supporting information

C38	0.0346 (13)	0.0481 (15)	0.0378 (13)	0.0128 (11)	0.0067 (10)	0.0030 (11)
C39	0.0486 (16)	0.062 (2)	0.065 (2)	0.0165 (15)	0.0251 (15)	-0.0037 (16)
C40	0.0389 (15)	0.059 (2)	0.070 (2)	0.0033 (14)	0.0133 (15)	-0.0095 (16)
N1	0.0322 (10)	0.0391 (12)	0.0392 (12)	0.0109 (9)	0.0082 (9)	-0.0073 (9)
N2	0.0338 (11)	0.0459 (13)	0.0429 (12)	0.0089 (10)	0.0072 (9)	-0.0067 (10)
N3	0.0371 (13)	0.0562 (16)	0.0702 (18)	0.0093 (12)	0.0176 (13)	-0.0246 (13)
P1	0.0333 (3)	0.0291 (3)	0.0381 (3)	0.0134 (2)	0.0130 (3)	0.0103 (2)
P2	0.0305 (3)	0.0283 (3)	0.0281 (3)	0.0090 (2)	0.0061 (2)	0.0057 (2)
S 1	0.0330 (3)	0.0448 (4)	0.0415 (3)	0.0101 (3)	0.0127 (3)	-0.0064 (3)
Cu1	0.03092 (14)	0.02914 (15)	0.03466 (15)	0.01103 (12)	0.00811 (11)	0.00656 (12)
I1	0.03963 (10)	0.05671 (12)	0.04491 (11)	0.02808 (9)	0.01026 (7)	0.00238 (8)

Geometric parameters (Å, °)

C1—C2	1.389 (4)	С23—Н23	0.9300
C1—C6	1.395 (4)	C24—H24	0.9300
C1—P1	1.828 (3)	C25—C26	1.380 (4)
C2—C3	1.387 (4)	C25—C30	1.385 (4)
С2—Н2	0.9300	C25—P2	1.824 (2)
C3—C4	1.364 (5)	C26—C27	1.386 (4)
С3—Н3	0.9300	C26—H26	0.9300
C4—C5	1.366 (5)	C27—C28	1.359 (6)
C4—H4	0.9300	С27—Н27	0.9300
C5—C6	1.387 (4)	C28—C29	1.365 (6)
С5—Н5	0.9300	C28—H28	0.9300
С6—Н6	0.9300	C29—C30	1.382 (5)
C7—C12	1.383 (4)	C29—H29	0.9300
С7—С8	1.383 (4)	С30—Н30	0.9300
C7—P1	1.831 (2)	C31—C32	1.370 (4)
C8—C9	1.382 (4)	C31—C36	1.384 (3)
С8—Н8	0.9300	C31—P2	1.836 (2)
C9—C10	1.364 (6)	C32—C33	1.387 (4)
С9—Н9	0.9300	С32—Н32	0.9300
C10—C11	1.362 (5)	C33—C34	1.362 (5)
C10—H10	0.9300	С33—Н33	0.9300
C11—C12	1.386 (4)	C34—C35	1.351 (4)
C11—H11	0.9300	C34—H34	0.9300
С12—Н12	0.9300	C35—C36	1.382 (4)
C13—C14	1.388 (3)	С35—Н35	0.9300
C13—C18	1.401 (4)	С36—Н36	0.9300
C13—P1	1.819 (3)	C37—N3	1.323 (3)
C14—C15	1.384 (4)	C37—N1	1.334 (3)
C14—H14	0.9300	C37—S1	1.701 (3)
C15—C16	1.367 (4)	C38—N2	1.267 (3)
С15—Н15	0.9300	C38—C39	1.484 (4)
C16—C17	1.377 (5)	C38—C40	1.490 (4)
С16—Н16	0.9300	С39—Н39А	0.9600
C17—C18	1.376 (4)	C39—H39B	0.9600

C17—H17	0.9300	С39—Н39С	0.9600
C18—H18	0.9300	C40—H40A	0.9600
C19—C24	1.377 (3)	C40—H40B	0.9600
C19—C20	1.388 (4)	C40—H40C	0.9600
C19—P2	1.823 (2)	N1—N2	1.388 (3)
C20—C21	1.385 (4)	N1—H1	0.80 (3)
С20—Н20	0.9300	N3—H3A	0.85 (3)
C21—C22	1.368 (4)	N3—H3B	0.83 (3)
C21—H21	0.9300	P1—Cu1	2.2910 (7)
C22—C23	1.362 (4)	P2—Cu1	2.2814 (6)
С22—Н22	0.9300	S1—Cu1	2.3866 (7)
C23—C24	1.382 (4)	Cu1—[1	2.6369 (3)
0			2.000 0 (0)
C2—C1—C6	117.4 (2)	С25—С26—Н26	119.8
C2-C1-P1	122.6 (2)	С27—С26—Н26	119.8
C6—C1—P1	119.7 (2)	C28—C27—C26	120.5 (4)
C3—C2—C1	121.0 (3)	C28—C27—H27	119.7
С3—С2—Н2	119.5	С26—С27—Н27	119.7
C1—C2—H2	119.5	C27—C28—C29	119.8 (3)
C4—C3—C2	120.6 (3)	C27—C28—H28	120.1
С4—С3—Н3	119.7	C29—C28—H28	120.1
С2—С3—Н3	119.7	C28—C29—C30	120.4 (4)
C3—C4—C5	119.6 (3)	С28—С29—Н29	119.8
C3—C4—H4	120.2	С30—С29—Н29	119.8
C5—C4—H4	120.2	C29—C30—C25	120.5 (3)
C4—C5—C6	120.7 (3)	С29—С30—Н30	119.8
С4—С5—Н5	119.7	С25—С30—Н30	119.8
С6—С5—Н5	119.7	C32—C31—C36	118.3 (2)
C5—C6—C1	120.7 (3)	C32—C31—P2	117.90 (19)
С5—С6—Н6	119.6	C36—C31—P2	123.84 (19)
С1—С6—Н6	119.6	C31—C32—C33	120.7 (3)
С12—С7—С8	118.0 (3)	С31—С32—Н32	119.7
C12—C7—P1	118.0 (2)	С33—С32—Н32	119.7
C8—C7—P1	123.7 (2)	C34—C33—C32	120.3 (3)
C9—C8—C7	120.7 (3)	С34—С33—Н33	119.9
С9—С8—Н8	119.7	С32—С33—Н33	119.9
С7—С8—Н8	119.7	C35—C34—C33	119.7 (3)
С10—С9—С8	120.5 (3)	С35—С34—Н34	120.1
С10—С9—Н9	119.7	С33—С34—Н34	120.1
С8—С9—Н9	119.7	C34—C35—C36	120.8 (3)
C11—C10—C9	119.7 (3)	С34—С35—Н35	119.6
C11—C10—H10	120.2	С36—С35—Н35	119.6
C9—C10—H10	120.2	C35—C36—C31	120.3 (3)
C10-C11-C12	120.4 (4)	C35—C36—H36	119.8
C10-C11-H11	119.8	C31—C36—H36	119.8
C12—C11—H11	119.8	N3—C37—N1	116.9 (2)
C7—C12—C11	120.7 (3)	N3—C37—S1	121.4 (2)
C7—C12—H12	119.6	N1-C37-S1	121.72 (19)
			(1))

C11—C12—H12	119.6	N2-C38-C39	126.6 (2)
C14—C13—C18	118.1 (2)	N2-C38-C40	116.9 (2)
C14—C13—P1	118.57 (19)	C39—C38—C40	116.5 (2)
C18—C13—P1	123.3 (2)	С38—С39—Н39А	109.5
C15—C14—C13	121.2 (3)	С38—С39—Н39В	109.5
C15—C14—H14	119.4	H39A—C39—H39B	109.5
C13—C14—H14	119.4	С38—С39—Н39С	109.5
C16—C15—C14	119.6 (3)	H39A—C39—H39C	109.5
С16—С15—Н15	120.2	H39B—C39—H39C	109.5
С14—С15—Н15	120.2	C38—C40—H40A	109.5
C15—C16—C17	120.4 (3)	C38—C40—H40B	109.5
C15—C16—H16	119.8	H40A—C40—H40B	109.5
C17—C16—H16	119.8	C_{38} C_{40} $H_{40}C$	109.5
C18 - C17 - C16	120 5 (3)	H40A - C40 - H40C	109.5
C18 - C17 - H17	119.8	H40B-C40-H40C	109.5
$C_{16} - C_{17} - H_{17}$	119.8	C_{37} N1 N2	107.3 117.7(2)
C_{17} C_{18} C_{13}	120.2 (3)	C_{37} N1_H1	117.7(2)
C17 C18 H18	110.0	N2 N1 H1	117(2) 125(2)
$C_{12} = C_{13} = H_{18}$	119.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123(2) 1186(2)
$C_{13} = C_{13} = C_{13}$	119.9	C_{30} N_{2} N_{3} H_{2A}	110.0(2)
$C_{24} = C_{19} = C_{20}$	116.3(2) 116.70(18)	$C_{37} = N_{3} = H_{3} = H_{3}$	119(2) 118(2)
$C_{24} = C_{19} = 12$	110.79(10) 124.8(2)	$U_2 \wedge N_2 \cup U_2 D$	110(2) 123(3)
$C_{20} = C_{19} = 12$	124.0(2) 120.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123(3)
$C_{21} = C_{20} = C_{19}$	120.0 (3)	C_{13} F_{1} C_{13}	103.89(11)
$C_{21} = C_{20} = H_{20}$	120.0	C1 = P1 = C7	102.83(11)
C19 - C20 - H20	120.0	C12 P1 - C7	100.01(12)
$C_{22} = C_{21} = C_{20}$	120.7 (3)	CI3—PI—Cui	115.50 (8)
C22—C21—H21	119.7	CI—PI—Cul	115.50 (8)
C20—C21—H21	119.7	C/PI - Cul	111.31 (8)
$C_{23} = C_{22} = C_{21}$	119.8 (3)	C19—P2—C25	105.23 (12)
C23—C22—H22	120.1	C19—P2—C31	103.20 (11)
C21—C22—H22	120.1	C25—P2—C31	102.33 (11)
C22—C23—C24	120.0 (3)	C19—P2—Cu1	115.17 (8)
С22—С23—Н23	120.0	C25—P2—Cu1	114.47 (8)
C24—C23—H23	120.0	C31—P2—Cu1	114.92 (8)
C19—C24—C23	121.2 (2)	C37—S1—Cu1	113.83 (9)
C19—C24—H24	119.4	P2—Cu1—P1	120.68 (2)
C23—C24—H24	119.4	P2—Cu1—S1	104.67 (2)
C26—C25—C30	118.3 (3)	P1—Cu1—S1	109.32 (3)
C26—C25—P2	120.0 (2)	P2—Cu1—I1	106.92 (2)
C30—C25—P2	121.4 (2)	P1—Cu1—I1	104.358 (19)
C25—C26—C27	120.4 (3)	S1—Cu1—I1	110.821 (19)
C6—C1—C2—C3	-1.0 (4)	C18—C13—P1—C7	53.7 (2)
P1—C1—C2—C3	-173.9 (2)	C14—C13—P1—Cu1	-6.2 (2)
C1—C2—C3—C4	-0.9 (5)	C18—C13—P1—Cu1	175.13 (19)
C2—C3—C4—C5	1.5 (5)	C2-C1-P1-C13	-11.9 (2)
C3—C4—C5—C6	-0.1 (5)	C6-C1-P1-C13	175.3 (2)
C4—C5—C6—C1	-1.9 (4)	C2-C1-P1-C7	-120.1 (2)

C2-C1-C6-C5	2.4 (4)	C6—C1—P1—C7	67.1 (2)
P1-C1-C6-C5	175.5 (2)	C2—C1—P1—Cu1	115.6 (2)
C12—C7—C8—C9	1.3 (5)	C6—C1—P1—Cu1	-57.2(2)
P1—C7—C8—C9	-171.6 (3)	C12—C7—P1—C13	48.9 (2)
C7—C8—C9—C10	-0.6 (5)	C8—C7—P1—C13	-138.1 (2)
C8-C9-C10-C11	-1.0(6)	C12—C7—P1—C1	157.9 (2)
C9-C10-C11-C12	1.8 (6)	C8-C7-P1-C1	-29.1(3)
C8-C7-C12-C11	-0.6(5)	C12—C7—P1—Cu1	-75.3(2)
P1-C7-C12-C11	172 8 (3)	C8-C7-P1-Cu1	97.6 (2)
C10-C11-C12-C7	-10(5)	C_{24} C_{19} P_{2} C_{25}	15656(19)
C18 - C13 - C14 - C15	24(4)	C_{20} C_{19} P_{2} C_{25}	-269(3)
P1-C13-C14-C15	-1764(2)	C_{24} C_{19} P_{2} C_{31}	-965(2)
$C_{13} = C_{14} = C_{15} = C_{16}$	-0.4(4)	$C_{24} = C_{10} = 12 = C_{31}$	90.5(2)
$C_{13} = C_{14} = C_{15} = C_{16} = C_{17}$	-1.0(4)	$C_{20} = C_{19} = 12 = C_{31}$	20.5(3)
$C_{14} = C_{15} = C_{10} = C_{17}$	1.0(4)	$C_{24} = C_{19} = 12 = C_{11}$	29.3(2)
C15 - C10 - C17 - C18	0.3(3)	$C_{20} = C_{19} = F_{2} = C_{10}$	-134.0(2)
C10-C17-C18-C13	1.5(5)	$C_{20} = C_{23} = P_2 = C_{19}$	140.3(2)
C14 - C13 - C18 - C17	-2.9(4)	$C_{30} = C_{25} = P_2 = C_{19}$	-39.7(2)
PI-CI3-CI8-CI7	1/5./(2)	$C_{26} = C_{25} = P_2 = C_{31}$	39.0 (2)
C24—C19—C20—C21	-0.4(5)	C_{30} $-C_{25}$ $-P_{2}$ $-C_{31}$	-147.3 (2)
P2—C19—C20—C21	-176.8 (3)	C26—C25—P2—Cul	-86.0 (2)
C19—C20—C21—C22	-0.1 (6)	C30—C25—P2—Cu1	87.8 (2)
C20—C21—C22—C23	1.0 (6)	C32—C31—P2—C19	153.3 (2)
C21—C22—C23—C24	-1.6(5)	C36—C31—P2—C19	-26.8 (2)
C20—C19—C24—C23	-0.2 (4)	C32—C31—P2—C25	-97.5 (2)
P2-C19-C24-C23	176.6 (2)	C36—C31—P2—C25	82.4 (2)
C22—C23—C24—C19	1.1 (4)	C32—C31—P2—Cu1	27.1 (2)
C30—C25—C26—C27	1.0 (4)	C36—C31—P2—Cu1	-153.0 (2)
P2-C25-C26-C27	175.0 (3)	N3—C37—S1—Cu1	156.4 (2)
C25—C26—C27—C28	0.0 (6)	N1—C37—S1—Cu1	-26.1 (3)
C26—C27—C28—C29	-0.3 (6)	C19—P2—Cu1—P1	35.40 (10)
C27—C28—C29—C30	-0.6 (6)	C25—P2—Cu1—P1	-86.79 (10)
C28—C29—C30—C25	1.7 (6)	C31—P2—Cu1—P1	155.17 (8)
C26—C25—C30—C29	-1.9 (5)	C19—P2—Cu1—S1	158.97 (9)
P2-C25-C30-C29	-175.8 (3)	C25—P2—Cu1—S1	36.78 (10)
C36—C31—C32—C33	-1.5 (5)	C31—P2—Cu1—S1	-81.26 (9)
P2—C31—C32—C33	178.4 (3)	C19—P2—Cu1—I1	-83.40(9)
C31—C32—C33—C34	1.4 (6)	C25—P2—Cu1—I1	154.41 (9)
C32—C33—C34—C35	-0.8(6)	C31—P2—Cu1—I1	36.36 (9)
C_{33} C_{34} C_{35} C_{36}	0.3 (5)	C_{13} P1 — C_{u1} — P2	63.00 (9)
C_{34} C_{35} C_{36} C_{31}	-0.4(5)	C1-P1-Cu1-P2	-58.48(10)
C_{32} C_{31} C_{36} C_{35}	10(4)	C7—P1—Cu1—P2	179 78 (10)
$P_{-C31} = C_{36} = C_{35}$	-178.9(2)	C_{13} P1 Cu1 S1	-5833(9)
N3-C37-N1-N2	-30(4)	C1 - P1 - Cu1 - S1	-17981(9)
S1 = C37 = N1 = N2	179 31 (19)	$C7_P1_Cu1_S1$	58 45 (10)
C39-C38-N2-N1	-0.5(5)	C_{13} P_{1} C_{11} I_{1}	-17692(9)
C40-C38-N2-N1	179 4 (3)	$C1_P1_Cu1_I1$	$(3)^{-1}(0,0)^{-1}(0,0)$
$C_{70} = C_{70} = 102 = 101$	-1769(3)	$C7_P1_Cu1_I1$	-60.14(10)
C_{14} C_{13} P_{1} C_{1}	121 3 (2)	$C_{1} = C_{11} = C_{11} = C_{11}$	161.80 (10)
	141.2 (4)	-51 - 51 - 51 - 12	101.07(10)

supporting information

C18—C13—P1—C1	-57.3 (2)	C37—S1—Cu1—P1	-67.52 (11)
C14—C13—P1—C7	-127.7 (2)	C37—S1—Cu1—I1	46.97 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N3—H3 <i>A</i> ···S1 ⁱ	0.85 (3)	2.62 (3)	3.447 (3)	166 (3)	
N1—H1…I1	0.80 (3)	2.93 (3)	3.723 (2)	173 (3)	

Symmetry code: (i) -x+2, -y+1, -z+1.