metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaquabis(6-chloropyridine-3carboxylato- κ O)cobalt(II) tetrahydrate

Qiao-Hua Xia,^a Yue Zhang,^b Li Liu,^a Lin-Fang Shi^a and Bing Li^a*

^aCollege of Sciences, Zhejiang A&F University, Lin'an Hangzhou, Zhejiang 311300, People's Republic of China, and ^bCollege of Engineering, Zheijang A&F University, Lin'an Hangzhou, Zhejiang 311300, People's Republic of China Correspondence e-mail: libingzjfc@163.com

Received 7 October 2012; accepted 17 October 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.085; data-to-parameter ratio = 17.9.

In the title compound, $[Co(C_6H_3CINO_2)_2(H_2O)_4] \cdot 4H_2O$, the Co^{II} cation is located on an inversion center and is coordinated by four water molecules and two 6-chloropyridine-3-carboxylate anions in a slightly distorted octahedral geometry. In the crystal, complex molecules and lattice water molecules are linked by $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds into a three-dimensional network.

Related literature

For background and related structures, see: Long et al. (2007); Li et al. (2006).

Experimental

Crystal data

$\gamma = 64.80 \ (3)^{\circ}$
$V = 528.7 (2) \text{ Å}^3$
Z = 1
Mo $K\alpha$ radiation
$\mu = 1.13 \text{ mm}^{-1}$
T = 293 K
$0.42 \times 0.37 \times 0.18 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID

diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.754, T_{\rm max} = 0.862$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	134 parameters
$wR(F^2) = 0.085$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
2394 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

5250 measured reflections

 $R_{\rm int} = 0.065$

2394 independent reflections

2094 reflections with $I > 2\sigma(I)$

Table 1

Hvdrogen-bond	geometry	(Å.	°)
i jai ogen oona	Securet,	· · · ·	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
OW1−H1WA···O1	0.86	1.81	2.644 (2)	162
$OW1 - H1WB \cdots OW4$	0.82	2.01	2.818 (2)	173
$OW2-H2WA\cdots OW4^{i}$	0.82	2.07	2.857 (2)	161
$OW2-H2WB\cdots OW3^{i}$	0.89	1.92	2.791 (2)	167
OW3−H3WA···N ⁱⁱ	0.85	2.00	2.842 (2)	172
OW3−H3WB···O1	0.81	1.95	2.763 (2)	176
$OW4-H4WA\cdots OW1^{iii}$	0.85	2.23	2.948 (2)	141
$OW4-H4WB\cdots OW3^{i}$	0.86	1.94	2.763 (2)	158
Symmetry codes: (i) $-x + 2, -y, -z + 1.$	-x + 1, -y + 2	1, -z + 1; (2)	ii) $-x + 1, -y$	+1, -z; (iii)

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation (No.21207117), the Zhejiang Provincial Municipal Science and Technology Project (2008 C12055) and the Natural Science Foundation of Zhejiang Province (No. LY12B02013).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5631).

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, F.-H., Yin, H.-D., Sun, L., Zhao, Q. & Liu, W.-L. (2006). Acta Cryst. E62, m1117-m1118.
- Long, S., Siegler, M. & Li, T. (2007). Acta Cryst. E63, o279-o281.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1394 [doi:10.1107/S160053681204319X]

Tetraaquabis(6-chloropyridine-3-carboxylato-κO)cobalt(II) tetrahydrate

Qiao-Hua Xia, Yue Zhang, Li Liu, Lin-Fang Shi and Bing Li

S1. Comment

In the crystal of the title compound, the Co(II) ion adopts a slightly distorted octahedral geometry and is located on a crystallographic inversion center. Four oxygen atoms from four coordination water molecules define the equatorial plane, while two oxygen atoms of two 6-chloro-3-carboxylate ligands occupy the axial sites (Figure 1). The Co—O bond lengths are in the range of 2.0723 (14)- 2.1162 (15) Å. The O—Co—O bond angles are 87.98 (6)–92.02 (6)° for the formally *cis* pairs of ligating atoms. The 6-chloropyridine-3-carboxylate carboxylate ligands are bound to the Co(II) ion in a monodentate mode through a carboxylate O atom. The three-dimensional supramolecular structure is formed by hydrogen bonds between six strong inter-molecular O—H…O and O—H…N hydrogen-bonding interactions and by additional intra-molecular O—H…O hydrogen bonds (Figure 2).

S2. Experimental

All commercially obtained reagent grade chemicals were used without further purication. A mixture of cobalt acetate tetrahydrate (0.4062 g) and 6-chloronicotinic acid (0.1310 g) were added into 20 ml water with 8 drops of 0.1 mol/*L* sodium hydroxide solution, and then stirred for 30 min. Finally, 5 ml 95% ethanol carefully layered above-mentioned solution in glass tube. After 1 day large pink platelet of the title compound suitable for X-ray diffraction were obtained.

S3. Refinement

H atoms bonded to C atoms were introduced in calculated positions and refined using a riding model [C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms. H atoms belonging to water molecules were found in difference Fourier map and refined isotropically.

Figure 1

The molecular structure of the title complex, with 50% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (A) 1 - x, -y, 1 - z.]

Figure 2

Crystal packing diagram for the title compound. All atoms are shown as isotropic spheres of arbitrary size. H atoms bonded to C atoms are omitted for clarity. The H-bonding interactions are shown as yellow dashed lines.

Tetraaquabis(6-chloropyridine-3-carboxylato-*kO*)cobalt(II) tetrahydrate

Crystal data	
$[Co(C_{6}H_{3}CINO_{2})_{2}(H_{2}O)_{4}] \cdot 4H_{2}O$ $M_{r} = 516.15$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.0314 (14) Å b = 7.3569 (15) Å c = 11.564 (2) Å $a = 86.41 (3)^{\circ}$ $\beta = 77.75 (3)^{\circ}$ $\gamma = 64.80 (3)^{\circ}$ $V = 528.7 (2) \text{ Å}^{3}$	Z = 1 F(000) = 265 $D_x = 1.621 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2394 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 1.13 \text{ mm}^{-1}$ T = 293 K Platelet, pink $0.42 \times 0.37 \times 0.18 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.754$, $T_{max} = 0.862$ 5250 measured reflections 2394 independent reflections

2094 reflections with $I > 2\sigma(I)$	
$R_{\rm int} = 0.065$	
$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$	

Refinement

Kejinemeni	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0248P)^2 + 0.0893P]$
<i>S</i> = 1.16	where $P = (F_o^2 + 2F_c^2)/3$
2394 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
134 parameters	$\Delta ho_{ m max} = 0.45$ e Å ⁻³
0 restraints	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.356 (12)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $h = -9 \longrightarrow 8$ $k = -9 \longrightarrow 9$ $l = -15 \longrightarrow 15$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Со	0.5000	0.0000	0.5000	0.02745 (15)	
Cl	0.00669 (8)	0.29228 (8)	-0.14887 (5)	0.04646 (18)	
O1	0.6093 (2)	0.1896 (2)	0.23682 (12)	0.0371 (3)	
O2	0.3932 (2)	0.0600(2)	0.34210 (12)	0.0362 (3)	
OW1	0.77755 (19)	0.0456 (2)	0.42492 (13)	0.0368 (3)	
H1WA	0.7475	0.0959	0.3580	0.055*	
H1WB	0.8053	0.1204	0.4606	0.055*	
OW2	0.3261 (2)	0.3039 (2)	0.55709 (14)	0.0460 (4)	
H2WA	0.2602	0.4021	0.5201	0.069*	
H2WB	0.3531	0.3527	0.6166	0.069*	
OW3	0.5269 (2)	0.5885 (2)	0.26396 (14)	0.0476 (4)	
H3WA	0.5745	0.6384	0.2029	0.071*	
H3WB	0.5535	0.4718	0.2526	0.071*	
OW4	0.8332 (2)	0.3212 (2)	0.55760 (15)	0.0482 (4)	
H4WB	0.7442	0.3244	0.6224	0.072*	
H4WA	0.9634	0.2619	0.5653	0.072*	
Ν	0.3076 (2)	0.2781 (2)	-0.04625 (14)	0.0331 (4)	
C1	0.1321 (3)	0.2467 (3)	-0.02902 (17)	0.0320 (4)	
C2	0.0458 (3)	0.1820 (3)	0.07433 (18)	0.0361 (4)	
H2A	-0.0791	0.1638	0.0813	0.043*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C3	0.1507 (3)	0.1451 (3)	0.16737 (18)	0.0347 (4)
H3A	0.0989	0.0992	0.2384	0.042*
C4	0.3362 (3)	0.1776 (2)	0.15307 (16)	0.0275 (4)
C5	0.4056 (3)	0.2444 (3)	0.04594 (17)	0.0312 (4)
H5A	0.5279	0.2678	0.0366	0.037*
C6	0.4549 (3)	0.1400 (2)	0.25230 (16)	0.0277 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Со	0.0297 (2)	0.0310(2)	0.0229 (2)	-0.01422 (15)	-0.00582 (13)	0.00395 (15)
Cl	0.0562 (3)	0.0444 (3)	0.0377 (3)	-0.0138 (2)	-0.0237 (2)	0.0020 (3)
01	0.0387 (6)	0.0463 (8)	0.0343 (8)	-0.0251 (6)	-0.0107 (6)	0.0093 (7)
O2	0.0438 (7)	0.0453 (7)	0.0270 (7)	-0.0250 (6)	-0.0123 (5)	0.0102 (6)
OW1	0.0376 (6)	0.0474 (8)	0.0324 (7)	-0.0245 (6)	-0.0085 (5)	0.0051 (6)
OW2	0.0636 (9)	0.0306 (7)	0.0398 (9)	-0.0127 (7)	-0.0177 (7)	-0.0007 (7)
OW3	0.0655 (9)	0.0427 (8)	0.0366 (8)	-0.0288 (7)	-0.0013 (7)	-0.0007 (7)
OW4	0.0412 (7)	0.0517 (9)	0.0476 (9)	-0.0152 (7)	-0.0116 (7)	0.0065 (8)
Ν	0.0375 (8)	0.0326 (8)	0.0254 (8)	-0.0124 (7)	-0.0047 (6)	0.0039 (7)
C1	0.0360 (8)	0.0247 (8)	0.0290 (10)	-0.0051 (7)	-0.0091 (7)	-0.0034 (8)
C2	0.0313 (8)	0.0437 (10)	0.0355 (11)	-0.0173 (8)	-0.0081 (8)	0.0013 (9)
C3	0.0342 (8)	0.0430 (10)	0.0288 (10)	-0.0201 (8)	-0.0027 (7)	0.0028 (9)
C4	0.0300 (8)	0.0241 (8)	0.0246 (9)	-0.0087 (7)	-0.0034 (7)	-0.0003 (7)
C5	0.0311 (8)	0.0331 (9)	0.0284 (9)	-0.0137 (7)	-0.0046 (7)	0.0036 (8)
C6	0.0312 (8)	0.0237 (8)	0.0252 (9)	-0.0090 (7)	-0.0048 (7)	0.0002 (7)

Geometric parameters (Å, °)

Co–O2 ⁱ	2.0717 (14)	OW3—H3WB	0.8101	
Co—O2	2.0717 (14)	OW4—H4WB	0.8629	
Co—OW2	2.1078 (15)	OW4—H4WA	0.8520	
Co–OW2 ⁱ	2.1078 (15)	N—C1	1.322 (2)	
Co-OW1	2.1157 (14)	N—C5	1.344 (2)	
Co-OW1 ⁱ	2.1157 (14)	C1—C2	1.375 (3)	
Cl—C1	1.7379 (19)	C2—C3	1.380 (3)	
01—C6	1.261 (2)	C2—H2A	0.9300	
O2—C6	1.250 (2)	C3—C4	1.398 (3)	
OW1—H1WA	0.8642	С3—Н3А	0.9300	
OW1—H1WB	0.8153	C4—C5	1.373 (3)	
OW2—H2WA	0.8246	C4—C6	1.504 (2)	
OW2—H2WB	0.8853	С5—Н5А	0.9300	
OW3—H3WA	0.8466			
O2 ⁱ —Co—O2	180.0	H3WA—OW3—H3WB	111.9	
O2 ⁱ —Co—OW2	88.51 (6)	H4WB—OW4—H4WA	112.2	
O2—Co—OW2	91.49 (6)	C1—N—C5	116.27 (18)	
O2 ⁱ —Co—OW2 ⁱ	91.49 (6)	NC1C2	125.08 (17)	
O2—Co—OW2 ⁱ	88.51 (6)	N—C1—Cl	115.68 (16)	

OW2—Co—OW2 ⁱ	180.0	C2—C1—Cl	119.24 (14)
O2 ⁱ —Co—OW1	88.00 (6)	C1—C2—C3	117.79 (17)
O2—Co—OW1	92.00 (6)	C1—C2—H2A	121.1
OW2—Co—OW1	91.76 (7)	C3—C2—H2A	121.1
OW2 ⁱ —Co—OW1	88.24 (7)	C2—C3—C4	118.94 (19)
O2 ⁱ —Co—OW1 ⁱ	92.00 (6)	С2—С3—НЗА	120.5
O2—Co—OW1 ⁱ	88.00 (6)	С4—С3—НЗА	120.5
OW2—Co—OW1 ⁱ	88.24 (7)	C5—C4—C3	117.88 (17)
OW2 ⁱ —Co—OW1 ⁱ	91.76 (7)	C5—C4—C6	121.45 (15)
OW1—Co—OW1 ⁱ	180.00 (3)	C3—C4—C6	120.67 (18)
С6—О2—Со	128.85 (12)	NC5C4	124.03 (16)
Co—OW1—H1WA	100.8	N—C5—H5A	118.0
Co—OW1—H1WB	117.8	C4—C5—H5A	118.0
H1WA—OW1—H1WB	110.1	O2—C6—O1	125.95 (17)
Co—OW2—H2WA	129.2	O2—C6—C4	116.96 (15)
Co—OW2—H2WB	121.6	O1—C6—C4	117.09 (17)
H2WA—OW2—H2WB	105.8		

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
OW1—H1WA…O1	0.86	1.81	2.644 (2)	162
O <i>W</i> 1—H1 <i>WB</i> ⋯O <i>W</i> 4	0.82	2.01	2.818 (2)	173
$OW2$ — $H2WA$ ···O $W4^{ii}$	0.82	2.07	2.857 (2)	161
OW2—H2WB⋯OW3 ⁱⁱ	0.89	1.92	2.791 (2)	167
OW3—H3WA····N ⁱⁱⁱ	0.85	2.00	2.842 (2)	172
OW3—H3WB…O1	0.81	1.95	2.763 (2)	176
$OW4$ — $H4WA$ ··· $OW1^{iv}$	0.85	2.23	2.948 (2)	141
OW4—H4WB⋯OW3 ⁱⁱ	0.86	1.94	2.763 (2)	158

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*; (iv) -*x*+2, -*y*, -*z*+1.