inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

LiNa₅Mo₉O₃₀

Hamadi Hamza, Ines Ennajeh, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 25 September 2012; accepted 6 October 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Mo–O) = 0.007 Å; R factor = 0.035; wR factor = 0.096; data-to-parameter ratio = 12.9.

The tite compound, lithium pentasodium nonamolybdate, $LiNa_5Mo_9O_{30}$, was synthesized by solid-state reaction. The three-dimensional $[Mo_9O_{30}]^{6-}$ framework is built up from MoO_6 octahedra and MoO_5 bipyramids, linked together by edges and corners. The framework delimits two types of intersecting tunnels running along [100] and [010] in which the Na⁺ and Li⁺ ions are located. The asymmetric unit contains one Mo, one Na and one Li site located on a twofold rotation axis. The crystal studied was a racemic twin with site a twin ratio of 0.51 (10):0.49 (10). Relationships between the structures of $K_2Mo_3O_{10}$, $K_2Mo_4O_{13}$, $Cs_2Mo_7O_{22}$, $Na_6Mo_{10}O_{33}$ and $Na_6Mo_{11}O_{36}$ compounds are discussed.

Related literature

For background to the physico-chemical properties of related compounds, see: Mizushima *et al.* (1980); Thackeray *et al.* (1984); Dahn *et al.* (1991); Tarascon *et al.* (1991); Kanno *et al.* (1994); Yuh *et al.* (1995); Broussely *et al.* (1995); Capitaine *et al.* (1996); Delmas *et al.* (1999); Bruce *et al.* (1999); Guilmard *et al.* (2003). For similar structure types, see: Caillet (1967); Seleborg (1967); Gatehouse *et al.* (1983). For background to their electronic properties, see: Aranda *et al.* (1992); Nguyen & Sleight, (1996); Daidouh *et al.* (1997); Ouerfelli *et al.* (2007). For details of structural relationships between these compounds, see: Gatehouse & Leverett (1968); Gatehouse & Miskin (1975); Eda *et al.* (2004). For the preparation, see: Bramnik & Ehrenberg (2004). For bond-valence sums, see: Brown & Altermatt (1985).

Experimental

Crystal data

LiMo₉Na₅O₃₀ $M_r = 1465.35$ Orthorhombic, *Fdd2* a = 7.1927 (8) Å b = 37.159 (4) Å c = 17.925 (2) Å $V = 4791.0 (9) Å^{3}$ Z = 8 Mo K\alpha radiation \(\mu = 4.77 \text{ mm}^{-1} \text{ } T = 298 \text{ K} \text{ } 0.30 \times 0.20 \text{ } 0.10 \text{ mm} \text{ mm} \text{}

Data collection

Enraf-Nonius CAD-4

diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.31, T_{\max} = 0.61$ 3006 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.096$ S = 1.132605 reflections 202 parameters 1 restraint 2605 independent reflections 2579 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ 2 standard reflections every 120 min intensity decay: 2.3%

 $\begin{array}{l} \Delta \rho_{\rm max} = 1.55 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{\rm min} = -1.65 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1259 \mbox{ Fridel pairs} \\ \mbox{ Flack parameter: } 0.51 \mbox{ (10)} \end{array}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2054).

References

- Aranda, M. A. G., Attfield, J. P., Bruque, S. & Martinez-Lara, M. (1992). Inorg. Chem. 31, 1045–1049.
- Bramnik, K. G. & Ehrenberg, H. (2004). Z. Anorg. Allg. Chem. 630, 1336– 1341.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Broussely, M., Perton, F., Biensan, P., Bodet, J. M., Labat, J., Lecerf, A., Delmas, C., Rougier, A. & Pérès, J. P. (1995). J. Power Sources, 54, 109–114. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
- Brown, T. D. & Anternaut, D. (1985). Acta Cryst. **B41**, 244–247. Bruce, P. G., Armstrong, A. R. & Gitzendanner, R. L. (1999). J. Mater. Chem.
- 9, 193–198.
- Caillet, P. (1967). Bull. Soc. Chim. Fr. pp. 4750-4757.
- Capitaine, F., Graverau, P. & Delmas, C. (1996). Solid State Ionics, 89, 197–202.
 Dahn, J. R., von Sacken, U., Juzkow, M. W. & Al-Janaby, H. (1991). J. Electrochem. Soc. 138, 2207–2211.
- Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28-34.
- Delmas, C., Ménétrier, M., Croguennec, L., Saadoune, I., Rougier, A., Pouillerie, C., Prado, G., Grüne, M. & Fournès, L. (1999). *Electrochim. Acta*, 45, 243–253.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Eda, K., Chin, K., Sotani, N. & Witlingham, M. S. (2004). J. Solid State Chem. 177, 916–921.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gatehouse, B. M., Jenkins, C. E. & Miskin, B. K. (1983). J. Solid State Chem. 46, 269–274.
- Gatehouse, B. M. & Leverett, P. (1968). J. Chem. Soc. A, pp. 1293-1298.
- Gatehouse, B. M. & Miskin, B. K. (1975). Acta Cryst. B31, 1293-1299.
- Guilmard, M., Croguennec, L. & Delmas, C. (2003). Chem. Mater. 15, 4484–4493.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Kanno, R., Kubo, H., Kawamoto, Y., Kamiyama, T., Izumi, F., Takeda, Y. & Takano, M. (1994). J. Solid State Chem. 110, 216–225.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. (1980). Mater. Res. Bull. 15, 783–789.
- Nguyen, P. T. & Sleight, A. W. (1996). J. Solid State Chem. 122, 259-265.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

- Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
- Seleborg, M. (1967). Acta Chem. Scand. 21, 499-504.
- Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Tarascon, J. M., Wang, E., Shokoohi, F. K., McKinnon, W. R. & Colson, S. (1991). J. Electrochem. Soc. 138, 2859-2864.
- Thackeray, M. M., Johnson, P. J., De Picciotto, L. A., Bruce, P. G. & Goodenough, J. B. (1984). *Mater. Res. Bull.* **19**, 179–187.
- Yuh, C., Johnsen, R., Farooque, M. & Maru, H. (1995). J. Power Sources, B56, 1–10.

supporting information

Acta Cryst. (2012). E68, i80-i81 [doi:10.1107/S1600536812041876]

LiNa₅Mo₉O₃₀

Hamadi Hamza, Ines Ennajeh, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

Les matériaux à structure ouverte, en particulier les oxydes mixtes à cations monovalents, constituent un vaste domaine de recherche dans lequel travaille actuellement un grand nombre de laboratoires dans le monde. Ces matériaux présentent des propriétés physiques intéressantes tels que la conductivité ionique (Daidouh et al., 1997), échange d'ions (Aranda et al., 1992), magnétiques (Ouerfelli et al., 2007) ou parfois catalytique (Nguyen & Sleight, 1996). La découverte des batteries de type Li-ion rechargeable tel que les batteries à base de LiCoO₂ (Yuh et al., 1995) a encouragé la recherche dans cet axe, en raison de leur forte densité énergétique, faible coût des matières premières et respect de l'environnement et de sécurité. Néanmoins, plusieurs travaux s'intéssent à remplacer l'oxyde LiCoO₂ par d'autres permettant un meilleur fonctionnement de la batterie telques les matériaux LixMO2 (M= Mn, Fe, Co, Ni) (Broussely et al., 1995; Mizushima et al., 1980; Kanno et al., 1994), LiMn₂O₄ (Thackeray et al., 1984; Tarascon et al., 1991), LiNiO₂ (Guilmard et al., 2003; Dahn et al., 1991), LiNi_{1-y}MyO₂ (M=Co, Fe) (Delmas et al., 1999) et LiMnO₂ (Capitaine et al., 1996; Bruce et al., 1999) qui ont pris un grand intérêt dans la réalisation des générateurs électrochimiques de haute densité d'énergie. Dans ce cadre, on a essayé d'une part, d'explorer le système Li₂O-MoO₃ et d'autre part d'augmenter la mobilité des ions monovalents dans les composés rencontrés dans la littérature Na₆Mo₁₁O₃₆ (Bramnik & Ehrenberg, 2004), Na₆Mo₁₀O₃₃ (Gatehouse et al., 1983), Na₂Mo₃O₁₀ et Na₂Mo₅O₁₆ (Caillet, 1967), Na₂Mo₂O₇ (Seleborg, 1967) en substituant l'ion sodium par le lithium de taille plus faible. Ceci nous a conduit à la synthèse, par réaction à l'état solide, d'un nouveau molybdène oxyde double de sodium et de lithium de formulation LiNa₅Mo₉O₃₀. L'unité asymétrique est construite par deux groupements identiques Mo₄O₁₇ reliés par mise en commun d'arêtes à un octaèdre MoO₆ (Fig. 1). Dans ces derniers clusters Mo_4O_{17} trois octaèdres MoO_6 se connectent au moyen d'une bipyramide trigonale MoO_5 (Fig. 1). En effet, dans la charpente anionique chaque unité structurale Mo₉O₃₀ se lie respectivement à quatre identiques par partage d'une arête et d'un sommet (Fig. 2). Il en résulte une charpente tridimensionnelle possédant des canaux, parallèles à la direction [100] (Fig. 3), où se situent les cations monovalents Li⁺ et Na⁺. La figure 4 montre l'emplacement de ces derniers en face des polyèdres et non en face des fenêtres disposées selon [010]. Les valeurs des charges des ions (BVS) dans la structure ont été calculées moyennant la formule empirique de Brown (Brown & Altermatt, 1985). Le résultat final: Mo1(5.93), Mo2(6.12), Mo3(6.04), Mo4(6.15), Mo5(6.27), Na1(1.21), Na2(1.13), Na3(1.15), et Li1(1.05) confirme bien les degrés d'oxydation des différents ions dans la phase étudiée. Une étude comparative de notre matériau avec des travaux antérieurs révèle une filiation structurale et un lien de parenté à celles de K₂Mo₃O₁₀ (Eda et al., 2004), K₂Mo₄O₁₃ (Gatehouse & Leverett, 1968), Cs₂Mo₇O₂₂ (Gatehouse & Miskin, 1975), Na₆Mo₁₀O₃₃ et Na₆Mo₁₁O₃₆ (Bramnik & Ehrenberg, 2004) qui peut être considéré comme un dérivé de la structure d'anatase. En effet, les octèdres MoO_6 et les pyramides MoO₅ se connectent dans K₂Mo₃O₁₀ pour former des chaînes ondulées se propageant selon la direction [001] (Fig. 5a). Ils s'associent dans la charpente anionique unidimensionnelle (one-dimensional) de $K_2Mo_4O_{13}$ pour conduire à des rubans disposés selon [010] (Fig. 5 b). Une disposition en dents de scie de ces polyèdres dans la charpente anionique bidimensionnelle (two-dimensional) de Cs₂Mo₇O₂₂ conduit à des couches orientées paralèllement au plan (100) (Fig. 5c).

La cohésion entre octèdres MoO_6 et pyramides MoO_5 par mise en commun d'arêtes et de sommets peut engendrer de différentes structures à charpente tridimensionnelles (three-dimensional) rencontrées dans les matériaux de formulation $Na_6Mo_{10}O_{33}$, $Na_6Mo_{11}O_{36}$ et aussi dans notre composé Li $Na_5Mo_9O_{30}$.

S2. Experimental

Dans le but de substituer l'ion Na⁺ par Li⁺ dans Na₆Mo₁₁O₃₆ (Bramnik & Ehrenberg, 2004), un mélange a été réalisé dans les rapports molaires Li:Na:Mo égaux à 1:5:11 à partir des réactifs solides LiNO₃ (Fluka, 62575), NaCO₃ (Fluka, 71350) e t (NH₄)₂Mo₄O₁₃ (Fluka, 69858). Il a été finement broyé et préchauffé à l'air à 573 K pendant une nuit. Après refroidissement et broyage, la préparation est portée, proche de la fusion pour favoriser la germination et la croissance des cristaux, à 858 K pendant deux jours. le résidu final est refroidi lentement (5 K/jour) dans un intervalle de 50 degrés puis rapide jusqu'à la température ambiante. Par lavage à l'eau chaude des cristaux de couleur jaunâtre de qualité et de taille suffisante, ont été séparés pour analyse par DRX.

S3. Refinement

À la fin des premiers cycles d'affinement un examen de la Fourier-différence finale révèle la présence d'un pic d'intensité faible situé à des distances interatomique des atomes d'oxygène correspondant bien au lithium mais ayant une agitation thermique variable. *L*'utilisation d'un facteur thermique isotrope pour l'ion O15 conduit à des ellipsoïdes bien définis. De plus, les densités d'électrons maximum et minimum restants dans la Fourier différence, sont acceptables et sont situées respectivements à 0.82 Å de O11 et à 0.86 Å de Mo2.

Figure 1

Unité *asym*étrique dans LiNa₅Mo₉O₃₀. Les éllipsoïdes ont été définis avec 50% de probabilité. [*Code de symétrie*: (i) 1/4 + x, 3/4 - y, 3/4 + z; (ii) x, 1/2 + y, 1/2 + z; (iii) x - 1/4, 3/4 - y, 1/4 + z; (iv) 1/2 + x, 1/2 + y, 1 + z; (v) 3/4 - x, 1/4 + y, 3/4 + z; (vi) 1 - x, 1/2 - y, 1/2 + z].

Figure 2

Jonction des unités Mo₉O₃₀ dans la charpente anionique de LiNa₅Mo₉O₃₀, selon **a**.

Projection de la structure de LiNa₅Mo₉O₃₀, selon **a**, mettant en évidence les canaux où logent les cations Na⁺.

Figure 4

Projection de la structure de LiNa₅Mo₉O₃₀, selon la direction [010], montrant l'emplacement des cations monovalents.

F(000) = 5408

 $\theta = 10-15^{\circ}$ $\mu = 4.77 \text{ mm}^{-1}$

T = 298 K

Prism, yellow

 $0.30 \times 0.20 \times 0.10$ mm

 $D_x = 4.063 \text{ Mg m}^{-3}$

Mo Ka radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Figure 5

(a) Chaînes ondulées dans K₂Mo₃O₁₀, (b) Rubans dans K₂Mo₄O₁₃, (c) Couches dans Cs₂Mo₇O₂₂.

Lithium pentasodium nonamolybdate

Crystal data

LiMo₉Na₅O₃₀ $M_r = 1465.35$ Orthorhombic, *Fdd2* Hall symbol: F 2 -2d a = 7.1927 (8) Å b = 37.159 (4) Å c = 17.925 (2) Å V = 4791.0 (9) Å³ Z = 8

Data collection

Enraf–Nonius CAD-4	2605 independent reflections
diffractometer	2579 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
Graphite monochromator	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
$\omega/2\theta$ scans	$h = -9 \rightarrow 1$
Absorption correction: ψ scan	$k = -1 \rightarrow 47$
(North <i>et al.</i> , 1968)	$l = -22 \rightarrow 22$
$T_{\min} = 0.31, \ T_{\max} = 0.61$	2 standard reflections every 120 min
3006 measured reflections	intensity decay: 2.3%

Refinement

•	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.064P)^2 + 107.1435P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.035$	$(\Delta/\sigma)_{\rm max} = 0.003$
$wR(F^2) = 0.096$	$\Delta \rho_{\rm max} = 1.55 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.13	$\Delta \rho_{\rm min} = -1.65 \text{ e } \text{\AA}^{-3}$
2605 reflections	Extinction correction: SHELXL,
202 parameters	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.000262 (18)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1259 Fridel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.51 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	v	Z	U_{ieo}^*/U_{eo}
0 29758 (9)	0 045998 (17)	0 10592 (3)	0.00887 (17)
0.21226(10)	0.150362(15)	0.29407 (3)	0.00799 (17)
0.30801 (11)	0.149366 (14)	0.10618 (4)	0.00796 (16)
0.21380 (9)	0.048223 (16)	0.28412 (3)	0.00822 (17)
0.2500	0.2500	0.12906 (7)	0.0084 (2)
0.7664 (7)	0.15195 (10)	0.1994 (3)	0.0243 (8)
0.7455 (7)	0.04660 (9)	0.1970 (3)	0.0217 (7)
0.5000	0.0000	-0.0485 (4)	0.0268 (11)
0.0000	0.0000	0.0442 (13)	0.027 (5)
0.0671 (12)	0.05040 (18)	0.2076 (4)	0.0148 (16)
0.7058 (9)	-0.00250 (17)	0.2884 (4)	0.0115 (13)
0.4672 (11)	0.14957 (17)	0.0356 (7)	0.0172 (16)
0.0839 (12)	0.15022 (16)	0.2111 (4)	0.0136 (14)
0.0454 (10)	0.05306 (15)	0.0490 (4)	0.0118 (13)
0.4433 (11)	0.15057 (18)	0.1869 (4)	0.0158 (17)
0.2996 (10)	0.10005 (14)	0.2950 (4)	0.0120 (14)
0.4585 (12)	0.05059 (17)	0.0345 (6)	0.0201 (17)
0.4246 (11)	0.05372 (18)	0.1904 (3)	0.0106 (13)
0.7429 (11)	0.0003 (2)	0.6076 (5)	0.0194 (14)
0.0513 (11)	0.14798 (17)	0.3632 (6)	0.0172 (17)
0.4310 (10)	0.2463 (2)	0.1896 (4)	0.0162 (14)
0.0668 (12)	0.05040 (16)	0.3598 (5)	0.0169 (14)
0.2252 (9)	0.19936 (15)	0.1018 (5)	0.0140 (14)
	x 0.29758 (9) 0.21226 (10) 0.30801 (11) 0.21380 (9) 0.2500 0.7664 (7) 0.7455 (7) 0.5000 0.0000 0.0671 (12) 0.7058 (9) 0.4672 (11) 0.0839 (12) 0.0454 (10) 0.4433 (11) 0.2996 (10) 0.4585 (12) 0.4246 (11) 0.7429 (11) 0.0668 (12) 0.2252 (9)	x y 0.29758 (9) 0.045998 (17) 0.21226 (10) 0.150362 (15) 0.30801 (11) 0.149366 (14) 0.21380 (9) 0.048223 (16) 0.2500 0.2500 0.7664 (7) 0.15195 (10) 0.7455 (7) 0.04660 (9) 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0671 (12) 0.05040 (18) 0.7058 (9) -0.00250 (17) 0.4672 (11) 0.14957 (17) 0.0839 (12) 0.15022 (16) 0.0454 (10) 0.05306 (15) 0.4433 (11) 0.15057 (18) 0.2996 (10) 0.10005 (14) 0.4585 (12) 0.05059 (17) 0.4246 (11) 0.05372 (18) 0.7429 (11) 0.14798 (17) 0.4310 (10) 0.2463 (2) 0.0668 (12) 0.05040 (16) 0.2252 (9) 0.19936 (15)	xyz 0.29758 (9) 0.045998 (17) 0.10592 (3) 0.21226 (10) 0.150362 (15) 0.29407 (3) 0.30801 (11) 0.149366 (14) 0.10618 (4) 0.21380 (9) 0.048223 (16) 0.28412 (3) 0.2500 0.2500 0.12906 (7) 0.7664 (7) 0.15195 (10) 0.1994 (3) 0.7455 (7) 0.04660 (9) 0.1970 (3) 0.5000 0.0000 -0.0485 (4) 0.0000 0.0000 -0.0485 (4) 0.0000 0.0000 0.0442 (13) 0.0671 (12) 0.05040 (18) 0.2076 (4) 0.7058 (9) -0.00250 (17) 0.2884 (4) 0.4672 (11) 0.14957 (17) 0.0356 (7) 0.0839 (12) 0.15022 (16) 0.2111 (4) 0.0454 (10) 0.05306 (15) 0.0490 (4) 0.2996 (10) 0.10005 (14) 0.2950 (4) 0.4585 (12) 0.05059 (17) 0.0345 (6) 0.4246 (11) 0.05372 (18) 0.1904 (3) 0.7429 (11) 0.0033 (2) 0.6076 (5) 0.0513 (11) 0.14798 (17) 0.3632 (6) 0.4310 (10) 0.2463 (2) 0.1896 (4) 0.0668 (12) 0.05040 (16) 0.3598 (5) 0.2252 (9) 0.19936 (15) 0.1018 (5)

					supportin	g informatio
015	0.2204 (8)) 0.10	0175 (16)	0.1040 (5)	0.0120 (13)	*
Atomic	displacement para	ameters ($Å^2$)				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0116 (3)	0.0054 (3)	0.0096 (3)	0.0007 (2)	-0.0008 (2)	-0.0001 (2)
Mo2	0.0108 (3)	0.0041 (3)	0.0090 (3)	0.00039 (19)	-0.0011 (2)	0.0003 (2)
Mo3	0.0109 (3)	0.0035 (3)	0.0095 (3)	-0.0002(2)	-0.0018 (2)	0.0001 (2)
Mo4	0.0107 (3)	0.0048 (3)	0.0092 (3)	-0.0004 (2)	-0.0006(2)	0.0001 (2)
Mo5	0.0140 (4)	0.0032 (4)	0.0079 (4)	-0.0019 (3)	0.000	0.000
Na1	0.0185 (18)	0.0236 (17)	0.0309 (19)	-0.0012 (15)	0.0031 (15)	-0.0018 (16)
Na2	0.0168 (16)	0.0188 (15)	0.0294 (18)	0.0012 (14)	0.0002 (14)	-0.0001 (17)
Na3	0.022 (2)	0.025 (3)	0.034 (3)	0.002 (2)	0.000	0.000
Li1	0.032 (12)	0.047 (15)	0.003 (9)	-0.007 (11)	0.000	0.000
01	0.019 (4)	0.014 (3)	0.011 (3)	0.005 (3)	-0.007(3)	0.000(2)
O2	0.019 (3)	0.008 (3)	0.007 (3)	0.002 (2)	-0.001 (2)	0.001 (2)
O3	0.019 (3)	0.017 (3)	0.016 (4)	0.000(2)	-0.001 (3)	0.004 (2)
O4	0.025 (4)	0.007 (3)	0.009 (3)	0.001 (2)	-0.003 (3)	-0.0006 (18)
05	0.012 (3)	0.009 (3)	0.015 (3)	-0.001 (2)	-0.001 (3)	0.000 (2)
06	0.015 (4)	0.016 (3)	0.016 (4)	0.002 (2)	-0.004 (3)	-0.001 (2)
O7	0.019 (3)	0.004 (3)	0.013 (3)	-0.001 (2)	-0.004 (3)	0.0008 (19)
08	0.020 (3)	0.017 (3)	0.023 (4)	0.001 (3)	0.001 (3)	0.003 (3)
09	0.009 (3)	0.011 (3)	0.012 (3)	-0.001 (2)	0.000 (2)	-0.001 (2)
O10	0.023 (3)	0.014 (3)	0.021 (3)	0.007 (2)	-0.011 (4)	-0.004 (3)
O11	0.019 (4)	0.020 (3)	0.013 (5)	0.003 (2)	0.006 (3)	-0.002 (3)
O12	0.021 (3)	0.016 (3)	0.012 (3)	0.001 (3)	-0.002 (3)	0.003 (2)
O13	0.018 (3)	0.020 (3)	0.013 (3)	0.000 (2)	0.007 (3)	-0.002 (3)
014	0.016 (3)	0.006 (3)	0.020 (3)	-0.002 (2)	0.000 (3)	-0.003 (2)

Geometric parameters (Å, °)

Mo1-08	1.735 (10)	Mo5—O2 ^{vi}	2.200 (8)
Mo1-O10 ⁱ	1.743 (8)	Mo5—O2 ⁱⁱⁱ	2.200 (8)
Mo1-09	1.792 (7)	Na1—O4 ^{vii}	2.294 (9)
Mo1—O5	2.098 (7)	Na1—O6	2.336 (9)
Mo1-015	2.145 (6)	Na1—O8 ⁱⁱ	2.369 (9)
Mo1-01	2.469 (8)	Na1—O13 ^{viii}	2.417 (8)
Mo2—O11	1.698 (10)	Na1—O11 ^{viii}	2.427 (9)
Mo2—O4	1.750 (8)	Na1—O3 ⁱⁱ	2.486 (11)
Mo2—O5 ⁱⁱ	1.833 (6)	Na2—O1 ^{vii}	2.326 (10)
Mo2—O7	1.973 (6)	Na2—O9	2.326 (9)
Mo2—O15 ⁱⁱ	2.147 (7)	Na2—O10 ^{ix}	2.370 (9)
Mo3—O3	1.707 (11)	Na2—O2	2.468 (8)
Mo3—O6	1.744 (7)	Na2—O3 ⁱⁱ	2.562 (9)
Mo3—O15	1.879 (6)	Na2—O11 ^{viii}	2.581 (10)
Mo3—O14	1.953 (6)	Na3—O12 ⁱⁱⁱ	2.309 (7)
Mo3—O7 ⁱⁱⁱ	2.158 (7)	Na3—O12 ^x	2.309 (7)
Mo3—O4	2.478 (8)	Na3—O8 ^{iv}	2.416 (10)

Mo4—O13	1.722 (9)	Na3—O8	2.416 (10)
Mo4—O1	1.732 (8)	Na3—O13 ^{xi}	2.537 (9)
Mo4—O2 ^{iv}	1.796 (6)	Na3—O13 ^{xii}	2.537 (9)
Mo4—O7	2.032 (6)	Li1—O5	2.000 (6)
Mo4—O14 ⁱⁱ	2.239 (7)	Li1—O5 ^{xiii}	2.000 (6)
Mo4—O9	2.271 (7)	Li1—O10 ⁱ	2.084 (15)
Mo5—O12	1.700 (7)	Li1—O10 ^{xii}	2.084 (15)
Mo5—O12 ^v	1.700 (7)	Li1—O12 ^{xiv}	2.29 (2)
Mo5—O14 ^v	1.952 (6)	Li1—O12 ⁱⁱⁱ	2.29 (2)
Mo5—O14	1.952 (6)	-	
O8—Mo1—O10 ⁱ	105.0 (4)	O12—Mo5—O2 ⁱⁱⁱ	87.7 (3)
O8—Mo1—O9	105.6 (4)	O12 ^v —Mo5—O2 ⁱⁱⁱ	169.4 (3)
O10 ⁱ —Mo1—O9	104.9 (3)	O14 ^v —Mo5—O2 ⁱⁱⁱ	73.3 (3)
O8—Mo1—O5	101.8 (4)	O14—Mo5—O2 ⁱⁱⁱ	85.2 (3)
O10 ⁱ —Mo1—O5	86.3 (3)	O2 ^{vi} —Mo5—O2 ⁱⁱⁱ	84.8 (4)
O9—Mo1—O5	146.3 (3)	O4 ^{vii} —Na1—O6	177.1 (3)
O8—Mo1—O15	93.8 (3)	O4 ^{vii} —Na1—O8 ⁱⁱ	97.9 (3)
O10 ⁱ —Mo1—O15	152.0 (3)	06—Na1—08 ⁱⁱ	84.4 (3)
09—Mo1—015	89.5 (3)	O4 ^{vii} —Na1—O13 ^{viii}	86.1 (3)
O5—Mo1—O15	69.4 (2)	06 —Na1— 013^{viii}	95.8 (3)
08—Mo1—O1	170.6 (3)	08 ⁱⁱ —Na1—O13 ^{viii}	84.8 (2)
$O10^{i}$ —Mo1—O1	84.3 (3)	04^{vii} Na1— 011^{viii}	86.2 (3)
09—Mo1—O1	73.0 (3)	06 —Na1— 011^{viii}	91.4 (3)
O5—Mo1—O1	76.7 (3)	$O8^{ii}$ —Na1—O11 ^{viii}	175.7 (4)
O15—Mo1—O1	76.9 (2)	O13 ^{viii} —Na1—O11 ^{viii}	97.0 (4)
011—Mo2—04	105.0 (4)	04^{vii} Na1— 03^{ii}	93.6 (3)
$011 - M_0 2 - 05^{ii}$	103.7 (3)	06—Na1—O3 ⁱⁱ	84.3 (3)
$O4-Mo2-O5^{ii}$	102.4 (3)	$O8^{ii}$ —Na1—O3 ⁱⁱ	98.5 (4)
O11—Mo2—O7	99.3 (3)	O13 ^{viii} —Na1—O3 ⁱⁱ	176.7 (4)
04—Mo2—07	99.9 (3)	011^{viii} Na1 -03^{ii}	79.7 (2)
O5 ⁱⁱ —Mo2—O7	142.2 (3)	01 ^{vii} —Na2—O9	169.8 (3)
O11—Mo2—O15 ⁱⁱ	102.9 (4)	O1 ^{vii} —Na2—O10 ^{ix}	93.7 (3)
O4—Mo2—O15 ⁱⁱ	151.8 (3)	O9—Na2—O10 ^{ix}	94.8 (3)
O5 ⁱⁱ —Mo2—O15 ⁱⁱ	74.2 (3)	O1 ^{vii} —Na2—O2	96.1 (3)
O7—Mo2—O15 ⁱⁱ	71.7 (2)	O9—Na2—O2	90.2 (3)
O3—Mo3—O6	103.9 (4)	O10 ^{ix} —Na2—O2	84.8 (2)
O3—Mo3—O15	102.3 (3)	O1 ^{vii} —Na2—O3 ⁱⁱ	88.9 (3)
O6—Mo3—O15	103.2 (3)	O9—Na2—O3 ⁱⁱ	82.2 (3)
O3—Mo3—O14	99.8 (3)	O10 ^{ix} —Na2—O3 ⁱⁱ	175.1 (4)
O6—Mo3—O14	100.3 (3)	O2—Na2—O3 ⁱⁱ	99.0 (4)
O15—Mo3—O14	142.5 (3)	O1 ^{vii} —Na2—O11 ^{viii}	81.0 (3)
O3—Mo3—O7 ⁱⁱⁱ	101.6 (4)	O9—Na2—O11 ^{viii}	92.0 (3)
O6—Mo3—O7 ⁱⁱⁱ	154.4 (3)	O10 ^{ix} —Na2—O11 ^{viii}	100.8 (3)
O15—Mo3—O7 ⁱⁱⁱ	73.2 (2)	O2—Na2—O11 ^{viii}	173.8 (3)
O14—Mo3—O7 ⁱⁱⁱ	73.0 (2)	O3 ⁱⁱ —Na2—O11 ^{viii}	75.5 (2)
O3—Mo3—O4	178.2 (4)	O12 ⁱⁱⁱ —Na3—O12 ^x	169.4 (5)
O6—Mo3—O4	74.5 (3)	O12 ⁱⁱⁱ —Na3—O8 ^{iv}	103.1 (3)

O15—Mo3—O4	79.0 (3)	O12 ^x —Na3—O8 ^{iv}	83.5 (3)
O14—Mo3—O4	79.6 (3)	O12 ⁱⁱⁱ —Na3—O8	83.5 (3)
O7 ⁱⁱⁱ —Mo3—O4	80.0 (3)	O12 ^x —Na3—O8	103.1 (3)
O13—Mo4—O1	104.3 (4)	O8 ^{iv} —Na3—O8	104.0 (5)
O13—Mo4—O2 ^{iv}	102.0 (3)	O12 ⁱⁱⁱ —Na3—O13 ^{xi}	94.8 (3)
O1-Mo4-O2 ^{iv}	105.9 (3)	O12 ^x —Na3—O13 ^{xi}	78.2 (3)
O13—Mo4—O7	93.8 (3)	O8 ^{iv} —Na3—O13 ^{xi}	161.8 (2)
O1—Mo4—O7	102.5 (3)	O8—Na3—O13 ^{xi}	81.24 (19)
O2 ^{iv} —Mo4—O7	142.6 (3)	O12 ⁱⁱⁱ —Na3—O13 ^{xii}	78.2 (3)
O13—Mo4—O14 ⁱⁱ	95.0 (4)	O12 ^x —Na3—O13 ^{xii}	94.8 (3)
O1—Mo4—O14 ⁱⁱ	159.8 (3)	O8 ^{iv} —Na3—O13 ^{xii}	81.24 (19)
O2 ^{iv} —Mo4—O14 ⁱⁱ	75.2 (3)	O8—Na3—O13 ^{xii}	161.8 (2)
O7—Mo4—O14 ⁱⁱ	69.8 (2)	O13 ^{xi} —Na3—O13 ^{xii}	99.3 (4)
O13—Mo4—O9	171.1 (3)	O5—Li1—O5 ^{xiii}	175.1 (14)
O1—Mo4—O9	79.5 (3)	O5—Li1—O10 ⁱ	80.5 (5)
O2 ^{iv} —Mo4—O9	84.4 (3)	O5 ^{xiii} —Li1—O10 ⁱ	96.8 (5)
O7—Mo4—O9	77.4 (3)	O5—Li1—O10 ^{xii}	96.8 (5)
O14 ⁱⁱ —Mo4—O9	80.6 (3)	O5 ^{xiii} —Li1—O10 ^{xii}	80.5 (5)
O12—Mo5—O12 ^v	100.7 (5)	O10 ⁱ —Li1—O10 ^{xii}	113.9 (12)
O12—Mo5—O14 ^v	99.7 (3)	O5—Li1—O12 ^{xiv}	100.8 (7)
O12 ^v —Mo5—O14 ^v	98.7 (3)	O5 ^{xiii} —Li1—O12 ^{xiv}	83.2 (5)
O12—Mo5—O14	98.7 (3)	$O10^{i}$ —Li1—O12 ^{xiv}	157.6 (9)
O12 ^v —Mo5—O14	99.7 (3)	O10 ^{xii} —Li1—O12 ^{xiv}	88.3 (4)
O14 ^v —Mo5—O14	151.0 (5)	O5—Li1—O12 ⁱⁱⁱ	83.2 (5)
O12—Mo5—O2 ^{vi}	169.4 (3)	O5 ^{xiii} —Li1—O12 ⁱⁱⁱ	100.8 (7)
O12 ^v —Mo5—O2 ^{vi}	87.7 (3)	O10 ⁱ —Li1—O12 ⁱⁱⁱ	88.3 (4)
O14 ^v —Mo5—O2 ^{vi}	85.2 (3)	O10 ^{xii} —Li1—O12 ⁱⁱⁱ	157.6 (9)
O14—Mo5—O2 ^{vi}	73.3 (3)	O12 ^{xiv} —Li1—O12 ⁱⁱⁱ	69.8 (8)

Symmetry codes: (i) *x*-1/2, *y*, *z*-1/2; (ii) *x*+1/4, -*y*+1/4, *z*+1/4; (iii) *x*-1/4, -*y*+1/4, *z*-1/4; (iv) -*x*+1, -*y*, *z*; (v) -*x*+1/2, -*y*+1/2, *z*; (vi) -*x*+3/4, *y*+1/4, *z*-1/4; (vii) *x*+1, *y*, *z*; (viii) *x*+3/4, -*y*+1/4, *z*-1/4; (ix) -*x*+3/2, -*y*, *z*-1/2; (x) -*x*+5/4, *y*-1/4, *z*-1/4; (xi) *x*+1/2, *y*, *z*-1/2; (xii) -*x*+1/2, -*y*, *z*-1/2; (xiii) -*x*, -*y*, *z*; (xiv) -*x*+1/4, *y*-1/4, *z*-1/4.