organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4,5-Trimethoxyphenol

Xiao-Chuan Jia,* Jing Li, Zhi-Rui Yu, Hui Zhang and Lei Zhou

Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300201, People's Republic of China

Correspondence e-mail: xiaochuanjia2012@163.com

Received 12 October 2012; accepted 15 October 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.051; wR factor = 0.123; data-to-parameter ratio = 13.4.

The asymmetric unit of the title compound, $C_9H_{12}O_4$, consists of two crystallographically independent molecules with similar conformations: essentially planar [r.m.s deviations for $C_6O_4 =$ 0.0057 and 0.0137 Å] except for the central methoxy-methyl group $[C-C-O-C \text{ torsion angles} = 83.3 (2) \text{ and } 83.9 (2)^{\circ}].$ In the crystal, $O-H \cdots O$ hydrogen bonds link the molecules, generating supramolecular chains along the b axis. The threedimensional crystal structure is stabilized by C-H···O and $C-H\cdots\pi$ interactions.

Related literature

For background information on the energetics and antioxidant potential of phenolic compounds, see: Matos et al. (2008); Gong et al. (2009).

Experimental

Crystal data $C_9H_{12}O_4$ $M_r = 184.19$

Monoclinic, $P2_1/c$ a = 15.355 (3) Å b = 11.139 (2) Å

Z = 8Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.981, T_{\rm max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ 243 parameters $wR(F^2) = 0.123$ $\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$ S = 1.05 $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ 3257 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C3,C5,C7,C9 and C10-C12,C14,C16,C18 benzene rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D5-H5\cdots O7^{i}$	0.82	1.93	2.7484 (18)	179
$O1 - H1 \cdots O3^{ii}$	0.82	1.90	2.7204 (17)	175
$C6-H6A\cdotsO1^{iii}$	0.96	2.57	3.256 (3)	129
$C15 - H15A \cdots O5^{iv}$	0.96	2.59	3.270 (3)	128
$C4 - H4B \cdots Cg1^{v}$	0.96	2.86	3.777 (2)	160
$C17 - H17B \cdot \cdot \cdot Cg2^{vi}$	0.96	2.85	3.736 (2)	154
$C13 - H13B \cdots O1^{vii}$	0.96	2.49	3.303 (3)	142

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2};$ (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 2, -z; (v) $x, -y + \frac{1}{2}, z - \frac{1}{2};$ (vi) $x, -y + \frac{1}{2}, z - \frac{3}{2};$ (vii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Tianjin Entry-Exit Inspection and Quarantine Bureau for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5160).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gong, J. X., Huang, K. X., Wang, F., Yang, L. X., Feng, Y. B., Li, H. B., Li, X. K., Zeng, S., Wu, X. M., Stöckigt, J., Zhao, Y. & Qu, J. (2009). Bioorg. Med. Chem. 17, 3414-3425.

Matos, M. A. R., Miranda, M. S. & Morais, V. M. F. (2008). J. Chem. Thermodyn 40 625-631

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

3257 independent reflections 2957 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

16747 measured reflections

 $0.20 \times 0.15 \times 0.10 \text{ mm}$

H-atom parameters constrained

supporting information

Acta Cryst. (2012). E68, o3160 [doi:10.1107/S1600536812042997]

3,4,5-Trimethoxyphenol

Xiao-Chuan Jia, Jing Li, Zhi-Rui Yu, Hui Zhang and Lei Zhou

S1. Comment

The study of the energetics of phenolic compounds (Matos *et al.*, 2008) has considerable practical interest since this class of chemical compound includes a large number of synthetic and naturally occurring antioxidants. They inhibit the oxidation of materials of both commercial and biological importance. This antioxidant function is due to the ability of phenols to trap the peroxyl radicals *via* the hydrogen transfer reaction (Gong *et al.*, 2009). In order to expand this field, we now report the structure of the title compound.

The molecule of the title compound (Fig. 1), consists of two crystallographically independent molecules, A and B, with similar conformations. All O-atoms in both molecules are coplanar with the benzene rings they are attached to, and the mean r.s.m in molecules A and B are 0.0057 and 0.0137 Å, respectively.

In the crystal, it is worth mentioning that strong intermolecular O—H···O hydrogen bonds link molecules A and B to generate a one dimensional chain (Fig. 2 and Table 1) along the *b* axis. These are connected into a supramolecular layer in the *bc* plane by C—H···O and C-H··· π interactions (Table 1). The layers are connected into a three-dimensional crystal structure by C—H···O hydrogen bonds (Table 2) involving the C13 and O1 atoms (Table 1).

S2. Experimental

3,4,5-Trimethoxyphenol was obtained commercially from Aldrich Chemical Co. Single crystals suitable for X-ray diffraction were obtained by recrystallizing the prude product from its chloroform solution by slow evaporation at room temperature over a period of seven days.

S3. Refinement

All H atoms were placed in idealized positions (C—H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.

Figure 2

A potion of the unit cell contents highlighting the chain structure of the title compound, linked *via* O—H···O hydrogen bonds (dashed lines). H atoms have been omitted for clarity, except for those involved in hydrogen-bonded interactions.

3,4,5-Trimethoxyphenol

Crystal data	
$C_9H_{12}O_4$	F(000) = 784
$M_r = 184.19$	$D_{\rm x} = 1.331 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5944 reflections
a = 15.355 (3) Å	$\theta = 3.3 - 25.4^{\circ}$
b = 11.139 (2) Å	$\mu=0.11~\mathrm{mm^{-1}}$
c = 11.546 (2) Å	T = 296 K
$\beta = 111.38 \ (3)^{\circ}$	Block, colourless
V = 1839.0 (6) Å ³	$0.20 \times 0.15 \times 0.10 \text{ mm}$
Z = 8	

Data collection

Bruker SMART CCD area-detector	16747 measured reflections
diffractometer	3257 independent reflections
Radiation source: fine-focus sealed tube	2957 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.025$
φ and ω scans	$\theta_{max} = 25.1^{\circ}, \theta_{min} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 17$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.981, T_{\max} = 0.990$	$l = -11 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.05	H-atom parameters constrained
3257 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 0.3972P]$
243 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.12$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.16$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.33376 (8)	0.41617 (11)	0.19861 (12)	0.0525 (3)	
H1	0.3521	0.3629	0.1642	0.079*	
O4	0.64034 (9)	0.58079 (12)	0.27042 (13)	0.0602 (4)	
03	0.61501 (8)	0.74092 (10)	0.42789 (11)	0.0509 (3)	
C2	0.39182 (12)	0.57694 (14)	0.33613 (15)	0.0445 (4)	
H2	0.3366	0.5772	0.3520	0.053*	
C3	0.46239 (12)	0.65836 (14)	0.39471 (15)	0.0443 (4)	
C5	0.54480 (11)	0.65824 (14)	0.37034 (15)	0.0443 (4)	
C7	0.55643 (11)	0.57554 (15)	0.28722 (15)	0.0447 (4)	
O2	0.45748 (9)	0.74281 (11)	0.47812 (13)	0.0579 (4)	
C9	0.48632 (11)	0.49346 (15)	0.22769 (15)	0.0452 (4)	
H9	0.4938	0.4384	0.1715	0.054*	
C1	0.40488 (11)	0.49505 (14)	0.25354 (15)	0.0426 (4)	
C8	0.64850 (16)	0.5093 (2)	0.1731 (2)	0.0805 (7)	
H8A	0.6423	0.4261	0.1903	0.121*	
H8B	0.7085	0.5225	0.1673	0.121*	

H8C	0.6002	0.5309	0.0958	0.121*
C6	0.67555 (14)	0.7061 (2)	0.55005 (19)	0.0676 (6)
H6A	0.6420	0.7098	0.6057	0.101*
H6B	0.7281	0.7596	0.5786	0.101*
H6C	0.6972	0.6256	0.5478	0.101*
C4	0.38077 (15)	0.73582 (19)	0.5198 (2)	0.0644 (5)
H4A	0.3235	0.7519	0.4514	0.097*
H4B	0.3890	0.7940	0.5843	0.097*
H4C	0.3782	0.6568	0.5517	0.097*
O7	0.11271 (9)	0.75191 (10)	0.18255 (12)	0.0519 (3)
O5	-0.16694 (8)	1.08198 (11)	0.13218 (12)	0.0557 (3)
Н5	-0.1501	1.1323	0.1878	0.084*
O6	0.13740 (8)	0.91453 (12)	0.36143 (12)	0.0587 (4)
C16	-0.03779 (12)	0.83857 (15)	0.06267 (15)	0.0462 (4)
C12	0.05455 (11)	0.92090 (15)	0.26236 (15)	0.0440 (4)
C18	-0.10754 (12)	0.92213 (15)	0.05119 (16)	0.0479 (4)
H18	-0.1617	0.9235	-0.0197	0.058*
C14	0.04348 (11)	0.83728 (14)	0.16863 (15)	0.0439 (4)
C11	-0.01507 (11)	1.00391 (15)	0.25244 (15)	0.0456 (4)
H11	-0.0079	1.0590	0.3158	0.055*
08	-0.04248 (9)	0.75347 (11)	-0.02475 (12)	0.0606 (4)
C10	-0.09552 (11)	1.00336 (15)	0.14650 (16)	0.0450 (4)
C17	-0.11899 (15)	0.75973 (19)	-0.14040 (19)	0.0659 (6)
H17A	-0.1765	0.7496	-0.1266	0.099*
H17B	-0.1131	0.6974	-0.1945	0.099*
H17C	-0.1190	0.8365	-0.1782	0.099*
C15	0.17645 (16)	0.7822 (2)	0.1232 (2)	0.0735 (6)
H15A	0.1450	0.7779	0.0346	0.110*
H15B	0.2279	0.7268	0.1487	0.110*
H15C	0.1994	0.8622	0.1463	0.110*
C13	0.14821 (16)	0.9927 (2)	0.46273 (19)	0.0749 (6)
H13A	0.1435	1.0744	0.4348	0.112*
H13B	0.2084	0.9798	0.5267	0.112*
H13C	0.1001	0.9766	0.4953	0.112*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0433 (6)	0.0543 (8)	0.0560 (7)	-0.0037 (5)	0.0135 (6)	-0.0136 (6)
O4	0.0501 (7)	0.0696 (9)	0.0688 (9)	-0.0055 (6)	0.0311 (7)	-0.0059 (7)
O3	0.0527 (7)	0.0453 (7)	0.0509 (7)	-0.0101 (5)	0.0143 (6)	0.0044 (5)
C2	0.0429 (9)	0.0426 (9)	0.0496 (10)	0.0027 (7)	0.0186 (8)	0.0017 (7)
C3	0.0492 (9)	0.0375 (9)	0.0460 (9)	0.0017 (7)	0.0172 (7)	0.0010 (7)
C5	0.0463 (9)	0.0387 (9)	0.0454 (9)	-0.0035 (7)	0.0139 (7)	0.0049 (7)
C7	0.0438 (9)	0.0461 (10)	0.0458 (9)	0.0033 (7)	0.0182 (7)	0.0074 (7)
02	0.0614 (8)	0.0503 (7)	0.0698 (9)	-0.0090 (6)	0.0330 (7)	-0.0185 (6)
C9	0.0490 (9)	0.0439 (9)	0.0427 (9)	0.0047 (8)	0.0167 (7)	-0.0002 (7)
C1	0.0406 (8)	0.0418 (9)	0.0408 (8)	0.0029 (7)	0.0092 (7)	0.0035 (7)

supporting information

C8	0.0706 (14)	0.0924 (17)	0.0975 (17)	-0.0050 (12)	0.0533 (13)	-0.0198 (14)
C6	0.0596 (12)	0.0693 (13)	0.0594 (12)	-0.0081 (10)	0.0047 (10)	0.0066 (10)
C4	0.0720 (13)	0.0632 (12)	0.0698 (13)	-0.0076 (10)	0.0399 (11)	-0.0177 (10)
07	0.0555 (7)	0.0461 (7)	0.0579 (8)	0.0084 (5)	0.0253 (6)	0.0097 (5)
05	0.0506 (7)	0.0549 (8)	0.0590 (8)	0.0072 (6)	0.0167 (6)	-0.0080 (6)
O6	0.0483 (7)	0.0689 (9)	0.0505 (7)	0.0006 (6)	0.0079 (6)	-0.0046 (6)
C16	0.0547 (10)	0.0395 (9)	0.0449 (9)	-0.0035 (8)	0.0188 (8)	-0.0016 (7)
C12	0.0416 (9)	0.0468 (10)	0.0434 (9)	-0.0064 (7)	0.0151 (7)	0.0038 (7)
C18	0.0481 (9)	0.0477 (10)	0.0437 (9)	-0.0014 (8)	0.0117 (8)	-0.0004 (7)
C14	0.0459 (9)	0.0402 (9)	0.0478 (9)	0.0005 (7)	0.0197 (8)	0.0048 (7)
C11	0.0493 (10)	0.0442 (9)	0.0448 (9)	-0.0058 (8)	0.0189 (8)	-0.0047 (7)
08	0.0676 (8)	0.0514 (8)	0.0547 (8)	0.0062 (6)	0.0126 (6)	-0.0130 (6)
C10	0.0444 (9)	0.0419 (9)	0.0516 (10)	-0.0010 (7)	0.0210 (8)	0.0019 (7)
C17	0.0733 (13)	0.0658 (13)	0.0511 (11)	0.0015 (10)	0.0139 (10)	-0.0141 (9)
C15	0.0728 (14)	0.0749 (14)	0.0894 (16)	0.0121 (11)	0.0492 (13)	0.0126 (12)
C13	0.0688 (13)	0.0847 (16)	0.0551 (12)	-0.0053 (12)	0.0034 (10)	-0.0148 (11)

Geometric parameters (Å, °)

01—C1	1.364 (2)	O7—C14	1.391 (2)
01—H1	0.8200	O7—C15	1.425 (2)
O4—C7	1.372 (2)	O5—C10	1.366 (2)
O4—C8	1.420 (2)	O5—H5	0.8200
O3—C5	1.389 (2)	O6—C12	1.368 (2)
O3—C6	1.431 (2)	O6—C13	1.418 (2)
C2—C3	1.386 (2)	C16—O8	1.367 (2)
C2—C1	1.386 (2)	C16—C18	1.388 (2)
С2—Н2	0.9300	C16—C14	1.393 (2)
C3—O2	1.368 (2)	C12—C11	1.386 (2)
C3—C5	1.393 (2)	C12—C14	1.391 (2)
С5—С7	1.388 (2)	C18—C10	1.384 (2)
С7—С9	1.389 (2)	C18—H18	0.9300
O2—C4	1.428 (2)	C11—C10	1.386 (2)
C9—C1	1.388 (2)	C11—H11	0.9300
С9—Н9	0.9300	O8—C17	1.423 (2)
C8—H8A	0.9600	C17—H17A	0.9600
C8—H8B	0.9600	C17—H17B	0.9600
C8—H8C	0.9600	C17—H17C	0.9600
С6—Н6А	0.9600	C15—H15A	0.9600
C6—H6B	0.9600	C15—H15B	0.9600
С6—Н6С	0.9600	C15—H15C	0.9600
C4—H4A	0.9600	C13—H13A	0.9600
C4—H4B	0.9600	C13—H13B	0.9600
C4—H4C	0.9600	C13—H13C	0.9600
C1 O1 H1	100 5	C14 O7 C15	114 27 (14)
$C1 = 01 = \Pi1$	109.5	C14 - 07 - C13	114.57 (14)
$C_{1} = 04 = 08$	110.31(13) 112.91(12)	C10-03-03	109.5
03-03-00	113.81 (13)	U12 - U0 - U13	110.83 (13)

C3—C2—C1	118.89 (16)	O8—C16—C18	124.27 (16)
С3—С2—Н2	120.6	O8—C16—C14	115.49 (15)
C1—C2—H2	120.6	C18—C16—C14	120.24 (15)
O2—C3—C2	124.04 (15)	O6—C12—C11	123.91 (15)
O2—C3—C5	115.48 (15)	O6—C12—C14	115.38 (15)
C2—C3—C5	120.48 (15)	C11—C12—C14	120.71 (15)
C7—C5—O3	119.84 (15)	C10—C18—C16	119.19 (16)
C7—C5—C3	119.71 (15)	C10—C18—H18	120.4
03-C5-C3	120 44 (15)	C16—C18—H18	120.4
04	115.70 (15)	C12-C14-O7	119.76 (15)
04	123 82 (15)	C12 - C14 - C16	119 52 (15)
C5-C7-C9	120.48 (15)	07	120.71(15)
$C_{3} - C_{4}$	117 63 (14)	C10-C11-C12	118 84 (15)
$C_1 - C_2 - C_7$	118 82 (15)	C10-C11-H11	120.6
C1-C9-H9	120.6	C12—C11—H11	120.6
C7-C9-H9	120.6	$C_{16} - 08 - C_{17}$	120.0 117.52(14)
01 - C1 - C2	116.85 (15)	05-C10-C18	117.02(11) 117.03(15)
01 - C1 - C9	121 55 (15)	05-C10-C11	121.48(15)
C_{2} C_{1} C_{9}	121.55 (15)	C18 - C10 - C11	121.40 (15)
04 $C8$ $H8A$	100 5	O_{8} C_{17} H_{17A}	100 5
$04 C_8 H_{8B}$	109.5	$O_8 C_{17} H_{17} R$	109.5
	109.5	H17A C17 H17B	109.5
04 C8 H8C	109.5	M/A = C17 = M17B	109.5
$H_{8A} \subset S \to H_{8C}$	109.5	$H_{17A} = C_{17} = H_{17C}$	109.5
	109.5	H17R C17 H17C	109.5
$O_3 C_6 H_{6A}$	109.5	07 C15 H15A	109.5
$O_3 = C_6 = H_6 R$	109.5	07 C15 H15R	109.5
	109.5	H15A C15 H15B	109.5
10A - C0 - 10B	109.5	07 C15 H15C	109.5
	109.5		109.5
	109.5	HISA-CIS-HISC	109.5
$H_{0} = C_{0} = H_{0} C_{0}$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
02 - C4 - H4R	109.5	06 C12 U12D	109.5
02-04-04	109.5		109.5
$\Pi_{A} - C_{A} - \Pi_{A} D$	109.5		109.5
$U_2 = U_4 = H_4 C$	109.5	$U_0 - C_{13} - H_{13}C$	109.5
$\Pi 4A - C4 - \Pi 4C$	109.5	ПІЗА—СІЗ—ПІЗС	109.5
H4B—C4—H4C	109.5	HI3B-CI3-HI3C	109.5
C_1 C_2 C_3 O_2	-170.75(15)	C12 O6 C12 C11	47(2)
$C_1 = C_2 = C_3 = C_2$	1/3.73(13) 0.4 (2)	$C_{13} = 06 = C_{12} = C_{14}$	(2)
$C_1 = C_2 = C_3 = C_3$	-07.21(10)	$C_{13} = 00 = C_{12} = C_{14}$	173.34(17)
$C_{0} = 0_{3} = 0_{3} = 0_{7}$	-97.21(19)	$C_{14} = C_{16} = C_{18} = C_{10}$	1/9.30(10)
$C_0 = C_3 = C_5 = C_7$	83.3(2)	C14 - C10 - C18 - C10	-0.4(3)
02 - 03 - 03 - 07	-0.2(2)	$C_{11} = C_{12} = C_{14} = C_{7}$	2.0(2)
$C_2 - C_3 - C_7 - C_7$	-0.3(2)	$C_{11} - C_{12} - C_{14} - C_{16}$	-1/1.00(14)
$0_2 - 0_3 - 0_3$	-0.7(2)	00-012-014-010	-1/8.3/(13)
$C_2 = C_3 = C_3 = C_3$	1/9.10(14)	C11 - C12 - C14 - C10	1.2(2)
10 - 04 - 07 - 03	-1/1.18(1/)	C15 - 07 - C14 - C12	-9/.3(2)
U8	9.5 (3)	C15—O/—C14—C16	83.9 (2)

O3—C5—C7—O4	1.5 (2)	O8—C16—C14—C12	179.76 (15)
C3—C5—C7—O4	-179.02 (15)	C18—C16—C14—C12	-0.5 (2)
O3—C5—C7—C9	-179.10 (14)	O8—C16—C14—O7	-1.5 (2)
C3—C5—C7—C9	0.4 (2)	C18—C16—C14—O7	178.29 (15)
C2—C3—O2—C4	8.9 (2)	O6-C12-C11-C10	178.80 (15)
C5—C3—O2—C4	-171.24 (16)	C14—C12—C11—C10	-0.9 (2)
O4—C7—C9—C1	178.85 (15)	C18—C16—O8—C17	7.3 (3)
C5-C7-C9-C1	-0.5 (2)	C14—C16—O8—C17	-173.01 (16)
C3-C2-C1-O1	179.64 (14)	C16—C18—C10—O5	-178.55 (15)
C3—C2—C1—C9	-0.5 (2)	C16-C18-C10-C11	0.7 (3)
C7—C9—C1—O1	-179.58 (14)	C12-C11-C10-O5	179.19 (15)
C7—C9—C1—C2	0.6 (2)	C12-C11-C10-C18	0.0 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C3,C5,C7,C9 and C10–C12,C14,C16,C18 benzene rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
05—H5…O7 ⁱ	0.82	1.93	2.7484 (18)	179
O1—H1…O3 ⁱⁱ	0.82	1.90	2.7204 (17)	175
C6—H6A···O1 ⁱⁱⁱ	0.96	2.57	3.256 (3)	129
C15—H15A····O5 ^{iv}	0.96	2.59	3.270 (3)	128
C4—H4 B ··· $Cg1^{v}$	0.96	2.86	3.777 (2)	160
C17—H17 B ···· $Cg2^{vi}$	0.96	2.85	3.736 (2)	154
C13—H13 <i>B</i> ····O1 ^{vii}	0.96	2.49	3.303 (3)	142

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+2, -*z*; (v) *x*, -*y*+1/2, *z*-1/2; (vi) *x*, -*y*+1/2, *z*-3/2; (vii) *x*, -*y*+3/2, *z*+1/2.