Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[aqua (μ_{2}-pyrimidine-2-carboxylato$\left.\kappa^{4} O, N: O^{\prime}, N^{\prime}\right)($ nitrato- $\kappa O)$ cadmium]

Orrasa In-noi, ${ }^{\mathbf{a}}$ Kittipnog Chainok ${ }^{\text {b }}$ and David J. Harding ${ }^{\text {c }}$

${ }^{\text {a D Department }}$ of Chemistry, Faculty of Science, Ubon Ratchathani Ratjabhat University, Muang, Ubon Ratchathani 34000, Thailand, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand, and ${ }^{c}$ Molecular Technology Research Unit, Department of Chemistry, Walailak University, Nakhon Si Thammarat 80161, Thailand
Correspondence e-mail: kittipongc@nu.ac.th

Received 28 September 2012; accepted 5 October 2012

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; R factor $=0.028 ; w R$ factor $=0.070$; data-to-parameter ratio $=12.5$.

In the title polymer, $\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ atom is seven-coordinate in a distorted capped octahedral geometry by two N atoms of two different pyrimidine dicarboxylate (pmc) ligands, three O atoms from three separate pmc ligands, and two O atoms of disordered nitrate anions or water molecules. The $\mathrm{Cd}^{\mathrm{II}}$ atoms are bridged by the pmc ligands in a chelating/bridging bis-bidentate and chelating bidentate mode, forming sheets parallel to ($20 \overline{1}$). The sheets are further linked into a three-dimensional supramolecular network via classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the nitrate anions and coordinating water molecules. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is also observed. The non-coordinating nitrate O atoms are disordered over two sets of sites with occupancies of 0.57 (7) and 0.43 (7).

Related literature

For the synthesis, structures and properties of related cadmium coordination polymers with the pyrimidine dicarboxylate ligand, see: Sava et al. (2008); Zhang et al. (2008); Rodríguez-Diéguez et al. (2007). For $\pi-\pi$ interactions, see: Janiak (2000).

Experimental

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=315.52$
Monoclinic, $P 2_{1} / n$
$a=8.1963$ (2) A
$b=10.1554$ (3) A
$c=11.0057$ (3) \AA
$\beta=107.435(3)^{\circ}$
$V=873.99(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.52 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.23 \times 0.20 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.596, T_{\text {max }}=0.720$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.070$
$S=1.04$
2030 reflections
163 parameters
56 restraints

5450 measured reflections 2030 independent reflections 1780 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=1.52$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.376(3)$	$\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.411(2)$
$\mathrm{Cd} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.353(3)$	$\mathrm{Cd} 1-\mathrm{O} 3$	$2.382(3)$
$\mathrm{Cd} 1-\mathrm{O} 1$	$2.463(2)$	$\mathrm{Cd} 1-\mathrm{O} 4$	$2.339(2)$
$\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{ii}}$	$2.371(2)$		

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3A \cdots O $^{\text {ii }}$	$0.90(1)$	$1.98(1)$	$2.871(4)$	$173(5)$
O3-H3B	O5 $A^{\text {iii }}$	$0.90(1)$	$2.17(2)$	$3.045(14)$
O3-H3B \cdots O5 $^{\text {iii }}$	$0.90(1)$	$2.04(3)$	$2.876(13)$	154 (6)

Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $x+1, y, z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Professor Ian D. Williams and Dr Herman H.-Y. Sung of the Department of Chemistry, The Hong Kong University of Science and Technology, for their kind help during the X-ray study and for valuable discussions. KC thanks the Thailand Research Funds (project approval No. MRG5480189) for financial support.

[^0]
metal-organic compounds

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Janiak, C. (2000). Dalton Trans. pp. 3885-3896.

Rodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. \& Colacio, E. (2007). Inorg. Chem. 46, 2503-2510.

Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. \& Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768-3770.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. \& Gao, E.-Q. (2008). Chem. Commun. pp. 847-849.

supporting information

Acta Cryst. (2012). E68, m1349-m1350 [doi:10.1107/S1600536812041645]

Poly[aqua (μ_{2}-pyrimidine-2-carboxylato- $\left.\kappa^{4} O, N: O^{\prime}, N^{\prime}\right)($ nitrato- κO)cadmium]
 Orrasa In-noi, Kittipnog Chainok and David J. Harding

S1. Comment

Pyrimidine-2-carboxylate (pmc) ligand exhibits a $\mathrm{N}_{2} \mathrm{O}_{2}$ donor set with a charge of -1. Due it is rigidity and directionality, the pmc ligand has been used in the construction of coordination polymers exhibiting permanent microporosity for gas storage (Sava et al., 2008) and antiferromagnetism with $T_{\mathrm{N}}=21 \mathrm{~K}$ (Rodríguez-Diéguez et al., 2007). Here, we report the crystal structure of a novel cadmium(II) coordination polymer containing the pmc ligand, $\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NO}_{3}\right)\right]$ (I). The pmc ligand was unexpectedly hydrolyzed in situ from the 1,4-dihydro-3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine $\left(\mathrm{H}_{2} \mathrm{bmtz}\right)$ ligand during the crystallization process.

The immediate coordination environment about the cadmium atom in I is shown in Fig. 1 revealing that the $\mathrm{Cd}(\mathrm{II})$ atom is heptacoordinate in a distorted capped octahedral geometry constructed by two N and two O atoms from two different pcm ligands, one O atom from a third pcm ligand, and two O atoms of disordered nitrate anions or water molecules. The $\mathrm{Cd}-\mathrm{N}$ and $\mathrm{Cd}-\mathrm{O}$ bond distances (Table 1) agree with those found in other N, O-chelate $\mathrm{Cd}(\mathrm{II})$ complexes (Sava et al., 2008; Zhang et al., 2008). Each Cd(II) is connected to four other Cd atoms through three pmc ligands generating two dimensional sheets parallel to (201), Fig. 2. Within the sheets, the $\mathrm{Cd} \cdots \mathrm{Cd}$ distances through the $\mu_{2}-$ carboxylate bridge and the $\mathrm{Cd} \cdots \mathrm{Cd}$ distances across the pmc ligands are 3.9714 (4) and 6.2427 (3) \AA, respectively. The sheets are stabilized by inversion-related pairs of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the coordinated water and nitrate molecules (Table 2). There are, however, no $\pi-\pi$ interactions between adjacent pyrimidine rings within the sheets. The distance between C_{g} to C_{g} of the pyrimidine rings of the pmc ligands is 4.114 (3) \AA, which is out the range ($3.3-3.8 \AA$) considered for significant $\pi-\pi$ interactions (Janiak, 2000). Further intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the nitrate anions and coordinated water molecules (Table 2) link the sheets into a three dimensional supramolecular network, Fig. 3.

S2. Experimental

Cadmium nitrate tetrahydrate ($30 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in 2 ml acetonitrile in a glass vial. A solution of 1,4 -di-hydro-3,6-bis(2^{\prime}-pyrimidyl)-1,2,4,5-tetrazine ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$) in 2 ml dichloromethane was carefully layered on top of the acetonitrile solution. The reaction mixture was allowed to stand undisturbed at room temperature. Pale-green platelike crystals of \mathbf{I} were obtained after three months (yield $c a .7 \%$ based on Cd source).

S3. Refinement

The carbon-bound hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atom positions with C-H distances of $0.93 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the aromatic H atoms. The hydrogen atoms attached to oxygen atoms of the water molecules were located in a difference Fourier map and refined as riding in their as-found positions with a $D F I X$ restraint of $\mathrm{O}-\mathrm{H}$ distance at $0.900 \pm 0.001 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The nitrate anion was shown to be disordered over two sites in a 0.57 (7) and 0.43 (7) ratio. The $\mathrm{N}-\mathrm{O}$ bond lengths were
restrained to $1.25 \pm 0.01 \AA$ and the $\mathrm{O} \cdots \mathrm{O}$ distances to $2.17 \pm 0.01 \AA$. The highest peak in the final electron density difference map is located $0.85 \AA$ from Cd1 atom.

Figure 1
Displacement ellipsoid plot at the 35% probability level of the immediate coordination geometry about the cadmium(II) centre in \mathbf{I}. The asymmetric unit is labelled.

Figure 2
View of the two dimensional sheets parallel to (201) in \mathbf{I}, showing inversion-related pairs of intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines).

Figure 3
View of the three-dimensional supramolecular network showing the intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) between adjacent layered sheets of \mathbf{I}.

Poly[aqua $\left(\mu_{2}\right.$-pyrimidine-2-carboxylato- $\left.\kappa^{4} O, N: O^{\prime}, N^{\prime}\right)($ nitrato- $\kappa O)$ cadmium]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=315.52$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=8.1963$ (2) \AA
$b=10.1554(3) \AA$
$c=11.0057(3) \AA$
$\beta=107.435(3)^{\circ}$
$V=873.99(4) \AA^{3}$

Data collection

Bruker SMART APEX CCD area detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.596, T_{\text {max }}=0.720$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.070$
$S=1.04$
2030 reflections
163 parameters
$Z=4$
$F(000)=608$
$D_{\mathrm{x}}=2.398 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\mu=2.52 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate, pale-green
$0.23 \times 0.20 \times 0.14 \mathrm{~mm}$

5450 measured reflections
2030 independent reflections
1780 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.7^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-9 \rightarrow 14$

56 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0397 P)^{2}+0.7721 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.52 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	0.6403 (5)	0.4196 (4)	0.3921 (3)	0.0363 (8)	
H1	0.5792	0.4287	0.3064	0.044*	
C2	0.7507 (5)	0.5181 (4)	0.4522 (3)	0.0376 (8)	
H2	0.7663	0.5931	0.4085	0.045*	
C3	0.8371 (4)	0.5016 (4)	0.5793 (3)	0.0311 (7)	
H3	0.9123	0.5668	0.6218	0.037*	
C4	0.7102 (4)	0.3012 (3)	0.5773 (3)	0.0224 (6)	
C5	0.6984 (4)	0.1763 (3)	0.6481 (3)	0.0225 (6)	
Cd1	0.42986 (3)	0.13550 (2)	0.364191 (19)	0.02405 (10)	
N1	0.6194 (3)	0.3106 (3)	0.4549 (2)	0.0274 (6)	
N2	0.8160 (3)	0.3947 (3)	0.6429 (2)	0.0255 (6)	
N3	0.0877 (2)	0.1564 (3)	0.4301 (2)	0.0448 (8)	
O1	0.5992 (3)	0.0886 (2)	0.5857 (2)	0.0275 (5)	
O2	0.7882 (3)	0.1688 (2)	0.7600 (2)	0.0346 (6)	
O3	0.6725 (3)	0.0370 (3)	0.3242 (2)	0.0417 (6)	
H3A	0.701 (6)	-0.031 (3)	0.379 (4)	0.073 (17)*	
H3B	0.766 (5)	0.088 (5)	0.356 (6)	0.11 (3)*	
O4	0.2444 (2)	0.1673 (3)	0.4869 (2)	0.0429 (7)	
O5A	-0.0195 (4)	0.192 (4)	0.4840 (14)	0.090 (4)	0.57 (7)
O5B	-0.0159 (7)	0.143 (4)	0.4926 (5)	0.073 (5)	0.43 (7)
O6A	0.0390 (5)	0.116 (3)	0.3175 (9)	0.080 (4)	0.57 (7)
O6B	0.0359 (8)	0.156 (5)	0.3109 (3)	0.092 (7)	0.43 (7)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0401(18)$	$0.040(2)$	$0.0222(16)$	$-0.0017(16)$	$-0.0007(14)$	$0.0075(15)$
C2	$0.048(2)$	$0.032(2)$	$0.0294(17)$	$-0.0030(15)$	$0.0072(15)$	$0.0079(15)$
C3	$0.0363(17)$	$0.0264(17)$	$0.0306(16)$	$-0.0060(13)$	$0.0098(14)$	$-0.0011(14)$
C4	$0.0221(13)$	$0.0235(16)$	$0.0191(14)$	$0.0011(11)$	$0.0023(11)$	$-0.0007(12)$
C5	$0.0202(13)$	$0.0266(16)$	$0.0180(13)$	$-0.0018(11)$	$0.0018(11)$	$-0.0024(12)$

Cd1	$0.02407(13)$	$0.02804(16)$	$0.01425(13)$	$0.00143(8)$	$-0.00306(8)$	$-0.00004(9)$
N1	$0.0257(12)$	$0.0317(15)$	$0.0193(12)$	$-0.0019(11)$	$-0.0017(10)$	$0.0007(11)$
N2	$0.0265(13)$	$0.0273(14)$	$0.0186(12)$	$-0.0021(10)$	$0.0007(10)$	$-0.0023(10)$
N3	$0.0348(17)$	$0.0335(18)$	$0.062(2)$	$-0.0006(13)$	$0.0087(16)$	$-0.0008(16)$
O1	$0.0282(11)$	$0.0268(12)$	$0.0208(10)$	$-0.0077(9)$	$-0.0031(9)$	$-0.0001(9)$
O2	$0.0408(14)$	$0.0335(13)$	$0.0181(11)$	$-0.0079(10)$	$-0.0085(10)$	$0.0021(10)$
O3	$0.0318(13)$	$0.0595(19)$	$0.0308(13)$	$0.0029(12)$	$0.0047(10)$	$0.0026(13)$
O4	$0.0283(12)$	$0.0520(17)$	$0.0459(16)$	$0.0024(11)$	$0.0075(11)$	$0.0073(13)$
O5A	$0.052(5)$	$0.066(10)$	$0.172(9)$	$0.000(3)$	$0.064(5)$	$-0.036(5)$
O5B	$0.047(6)$	$0.059(12)$	$0.128(10)$	$0.006(4)$	$0.049(6)$	$-0.024(5)$
O6A	$0.113(9)$	$0.062(9)$	$0.053(5)$	$-0.044(5)$	$0.005(5)$	$-0.006(3)$
O6B	$0.088(9)$	$0.089(16)$	$0.071(6)$	$-0.067(7)$	$-0.017(6)$	$0.000(6)$

Geometric parameters ($\hat{A},{ }^{\circ}$)

C1-N1	1.342 (5)	$\mathrm{Cd1}-\mathrm{Ol}^{\text {ii }}$	2.371 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.378 (5)	$\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	2.411 (2)
C1-H1	0.9300	Cd1-O3	2.382 (3)
C2-C3	1.375 (5)	Cd1-O4	2.339 (2)
C2-H2	0.9300	$\mathrm{N} 2-\mathrm{Cd} 1{ }^{\text {iii }}$	2.353 (3)
C3-N2	1.331 (4)	N3-O5A	1.2514 (9)
C3-H3	0.9300	N3-O6B	1.2513 (9)
$\mathrm{C} 4-\mathrm{N} 1$	1.333 (4)	N3-O5B	1.2515 (9)
$\mathrm{C} 4-\mathrm{N} 2$	1.342 (4)	N3-O6A	1.2515 (9)
C4-C5	1.506 (5)	N3-O4	1.2541 (8)
C5-O2	1.233 (4)	$\mathrm{O} 1-\mathrm{Cd} 1^{\text {ii }}$	2.371 (2)
C5-O1	1.261 (4)	$\mathrm{O} 2-\mathrm{Cd} 1{ }^{\text {iii }}$	2.411 (2)
Cd 1 - N 1	2.376 (3)	O3-H3A	0.9000 (10)
$\mathrm{Cd} 1-\mathrm{N} 2^{\mathrm{i}}$	2.353 (3)	O3-H3B	0.9000 (11)
Cd1-O1	2.463 (2)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.1 (3)	$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 1$	74.11 (8)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{H} 1$	119.4	$\mathrm{N} 2^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{O} 1$	158.49 (9)
C2- $\mathrm{C} 1-\mathrm{H} 1$	119.4	O1i- ${ }^{\text {idd }}$-O1	69.52 (8)
C3-C2-C1	117.7 (3)	N1-Cd1-O1	67.99 (8)
C3-C2-H2	121.2	O3-Cd1-O1	81.24 (9)
C1-C2-H2	121.2	$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{O} 1$	132.71 (8)
N2-C3-C2	121.7 (3)	C4-N1-C1	117.5 (3)
N2-C3-H3	119.1	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cd} 1$	117.9 (2)
C2-C3-H3	119.1	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	124.6 (2)
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	124.6 (3)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	117.4 (3)
N1-C4-C5	118.7 (3)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cd1}{ }^{\text {iii }}$	125.3 (2)
N2-C4-C5	116.7 (3)	C4-N2-Cd1 iii	117.1 (2)
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	126.5 (3)	O5A-N3-O6B	115.6 (6)
O2-C5-C4	117.1 (3)	O5A-N3-O5B	23.4 (9)
O1-C5-C4	116.3 (3)	O6B-N3-O5B	120.16 (10)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{N} 2^{\text {i }}$	119.42 (8)	O5A-N3-O6A	120.16 (10)
O4-Cd1-O1i	82.55 (9)	O6B-N3-O6A	18.7 (19)

$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{O} 1^{\text {ii }}$	94.55 (8)
O4-Cd1-N1	96.32 (9)
N2 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	122.64 (9)
O1ii-Cd1-N1	136.01 (8)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 3$	152.61 (9)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$	81.25 (9)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 3$	77.73 (9)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 3$	85.12 (10)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O}^{2}$	81.79 (9)
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	68.29 (9)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	146.55 (8)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	75.17 (9)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$	124.59 (10)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.8(6)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	0.0 (6)
N1-C4-C5-O2	177.6 (3)
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	-0.9 (4)
N1-C4-C5-O1	-1.2 (4)
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	-179.7 (3)
N2-C4-N1-C1	2.4 (5)
C5-C4-N1-C1	-176.0 (3)
N2-C4-N1-Cd1	-176.8 (2)
C5-C4-N1-Cd1	4.8 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	-0.4 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	178.8 (3)
O4-Cd1-N1-C4	65.6 (2)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 4$	-163.3 (2)
$\mathrm{O} 1 \mathrm{i}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 4$	-20.2 (3)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 4$	-86.9 (2)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 4$	145.4 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 4$	-4.4 (2)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-113.5 (3)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	17.6 (3)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	160.7 (3)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	94.0 (3)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-33.8 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	176.5 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	1.8 (5)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cd} 1{ }^{\text {iii }}$	-172.5 (3)
N1-C4-N2-C3	-3.2 (5)
C5-C4-N2-C3	175.3 (3)
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2-\mathrm{Cd} 1^{\text {iii }}$	171.6 (2)

O5B-N3-O6A	116.1 (5)
O5A-N3-O4	119.88 (10)
O6B-N3-O4	119.92 (10)
O5B-N3-O4	119.88 (10)
O6A-N3-O4	119.88 (10)
C5-O1-Cd1 ${ }^{\text {ii }}$	130.1 (2)
C5-O1-Cd1	118.9 (2)
$\mathrm{Cd} 1{ }^{\text {ii- }} \mathrm{O} 1-\mathrm{Cd} 1$	110.48 (8)
C5-O2- $\mathrm{Cd} 1{ }^{\text {iii }}$	118.9 (2)
$\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	105 (3)
Cd1-O3-H3B	110 (5)
H3A-O3-H3B	99 (3)
$\mathrm{N} 3-\mathrm{O} 4-\mathrm{Cd} 1$	116.46 (16)
C5-C4-N2-Cd1 ${ }^{\text {iii }}$	-9.9 (4)
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1-\mathrm{Cd1}{ }^{\text {ii }}$	-11.1 (5)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1-\mathrm{Cd} 1^{\text {ii }}$	167.56 (19)
O2-C5-O1-Cd1	178.3 (3)
C4-C5-O1-Cd1	-3.0 (4)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 5$	-99.9 (2)
N2 - $\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 5$	128.0 (3)
O1i- ${ }^{\text {ii- }} \mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 5$	172.3 (3)
N1-Cd1-O1-C5	3.9 (2)
O3-Cd1-O1-C5	92.2 (2)
O 2 - $\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 5$	-37.6 (3)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd} 1{ }^{\text {ii }}$	87.84 (11)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd} 1^{\mathrm{ii}}$	-44.3 (3)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd1}{ }^{1 i}$	0.0
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd1}^{\text {ii }}$	-168.36 (13)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd1}^{\text {ii }}$	-80.10 (11)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cd} 1^{\text {ii }}$	150.15 (10)
O1-C5-O2-Cd1ii	-170.1 (2)
C4-C5-O2-Cd1 ${ }^{\text {iii }}$	11.2 (4)
O5A-N3-O4-Cd1	-169 (2)
O6B-N3-O4-Cd1	-14 (2)
O5B-N3-O4-Cd1	164 (2)
O6A-N3-O4-Cd1	7.7 (15)
N2 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{N} 3$	5.6 (3)
$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{N} 3$	-85.4 (3)
N1-Cd1-O4-N3	138.9 (3)
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{N} 3$	-129.5 (3)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{N} 3$	64.9 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4-\mathrm{N} 3$	-156.2 (3)

[^1]Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {ii }}$	$0.90(1)$	$1.98(1)$	$2.871(4)$	$173(5)$
$\mathrm{O} 3 — \mathrm{H} 3 B \cdots \mathrm{O} 5 A^{\text {iv }}$	$0.90(1)$	$2.17(2)$	$3.045(14)$	$164(6)$
$\mathrm{O} 3 — \mathrm{H} 3 B \cdots \mathrm{O} 5 B^{\text {iv }}$	$0.90(1)$	$2.04(3)$	$2.876(13)$	$154(6)$

Symmetry codes: (ii) $-x+1,-y,-z+1$; (iv) $x+1, y, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5156).

[^1]: Symmetry codes: (i) $x-1 / 2,-y+1 / 2, z-1 / 2$; (ii) $-x+1,-y,-z+1$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$.

