# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4-(Dimethylamino)pyridinium octaaquaerbium(III) tetrachloride monohydrate

# Meriem Benslimane,<sup>a</sup>\* Hocine Merazig,<sup>a</sup> Jean-Claude Daran<sup>b</sup> and Ouahida Zeghouan<sup>a</sup>

<sup>a</sup>Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and <sup>b</sup>Laboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France

Correspondence e-mail: b\_meriem80@yahoo.fr

Received 10 October 2012; accepted 15 October 2012

Key indicators: single-crystal X-ray study; T = 180 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.015; wR factor = 0.038; data-to-parameter ratio = 20.5.

In the title compound,  $(C_7H_{11}N_2)[Er(H_2O)_8]Cl_4 H_2O$ , the asymmetric unit consists of one 4-(dimethylamino)pyridinium and one octaaquaerbium cation balanced by four Cl<sup>-</sup> anions, and one water molecule. The 4-(dimethylamino)pyridinium cation is protonated at the pyridine N atom. The dimethylamino group (C/N/C) lies close to the plane of the pyridinium ring, making a dihedral angle of 4.5 (3)°. In the crystal, the  $[Er(H_2O)_8]^{3+}$  cations are linked *via* O-H···O and O-H···Cl hydrogen bonds, forming two-dimensional networks propagating in the *ab* plane. These networks are linked *via* O-H···O and O-H···Cl hydrogen bonds, forming a three-dimensional network. The 4-(dimethylamino)pyridinium cations are located in the cavities and are linked to the framework *via* N-H···Cl, C-H···O and C-H···Cl hydrogen bonds.

#### **Related literature**

For similar structures in this series involving 4-(dimethylamino)pyridinium, see: Benslimane *et al.* (2012*a,b*). For details of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs see: Bernstein *et al.* (1995).



### Experimental

#### Crystal data

 $(C_7H_{11}N_2)[Er(H_2O)_8]Cl_4 \cdot H_2O$   $M_r = 594.38$ Triclinic,  $P\overline{1}$  a = 7.8775 (3) Å b = 9.3601 (4) Å c = 15.2593 (6) Å  $\alpha = 105.831$  (3)°  $\beta = 101.498$  (3)°

#### Data collection

Agilent Xcalibur Sapphire1 diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) *T*<sub>min</sub> = 0.415, *T*<sub>max</sub> = 0.666

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.015$  $wR(F^2) = 0.038$ S = 1.124315 reflections

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$            | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|------|-------------------------|-------------------------|--------------------------------------|
| N1-H1···Cl1                            | 0.86 | 2.53                    | 3.229 (2)               | 139                                  |
| $O1W - H1W \cdot \cdot \cdot Cl3^{i}$  | 0.85 | 2.44                    | 3.2686 (18)             | 165                                  |
| $O1W - H2W \cdot \cdot \cdot Cl3^{ii}$ | 0.85 | 2.25                    | 3.0874 (18)             | 171                                  |
| O1−H11···Cl4 <sup>iii</sup>            | 0.85 | 2.29                    | 3.1036 (18)             | 160                                  |
| $O1 - H12 \cdot \cdot \cdot Cl1$       | 0.85 | 2.24                    | 3.0863 (17)             | 172                                  |
| $O2-H21\cdots Cl1$                     | 0.85 | 2.25                    | 3.0708 (17)             | 164                                  |
| $O2 - H22 \cdot \cdot \cdot Cl2$       | 0.84 | 2.31                    | 3.1372 (17)             | 167                                  |
| $O3-H31\cdots O1W$                     | 0.85 | 1.82                    | 2.671 (2)               | 177                                  |
| O3−H32···Cl3                           | 0.84 | 2.37                    | 3.1826 (17)             | 162                                  |
| $O4-H41\cdots Cl4$                     | 0.85 | 2.25                    | 3.0925 (17)             | 169                                  |
| $O4 - H42 \cdot \cdot \cdot Cl2$       | 0.85 | 2.23                    | 3.0685 (16)             | 168                                  |
| $O5-H51\cdots Cl4$                     | 0.85 | 2.33                    | 3.1469 (18)             | 160                                  |
| $O5-H52\cdots Cl2^{iv}$                | 0.85 | 2.27                    | 3.0819 (18)             | 161                                  |
| $O6-H61\cdots Cl4^{v}$                 | 0.85 | 2.27                    | 3.1164 (17)             | 171                                  |
| $O6-H62\cdots Cl1^{vi}$                | 0.85 | 2.25                    | 3.0858 (17)             | 169                                  |
| O7−H71···Cl3                           | 0.84 | 2.19                    | 3.0304 (18)             | 173                                  |
| $O7-H72\cdots Cl1^{iv}$                | 0.85 | 2.30                    | 3.1132 (18)             | 159                                  |
| O8−H81···Cl4 <sup>vii</sup>            | 0.85 | 2.29                    | 3.1377 (17)             | 173                                  |
| O8−H82···Cl2 <sup>vii</sup>            | 0.85 | 2.31                    | 3.1464 (17)             | 166                                  |
| $C2-H2\cdots Cl3^{viii}$               | 0.93 | 2.77                    | 3.683 (3)               | 169                                  |
| $C3-H3\cdots O1W^{iii}$                | 0.93 | 2.51                    | 3.332 (3)               | 148                                  |
| $C6-H6B\cdots O4^{ii}$                 | 0.96 | 2.47                    | 3.379 (3)               | 158                                  |
|                                        |      |                         |                         |                                      |

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) x + 1, y, z; (v) -x + 2, -y + 1, -z; (vi) -x + 1, -y, -z; (vii) -x + 1, -y + 1, -z; (viii) -x + 2, -y, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

Technical support (X-ray measurements) from Laboratory of Coordination Chemistry, UPR-CNRS 8241, Toulouse, are acknowledged.



 $\gamma = 90.919 \ (3)^{\circ}$ 

Z = 2

V = 1057.77 (8) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.35 \times 0.17 \times 0.09 \text{ mm}$ 

21843 measured reflections

4315 independent reflections

4110 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 4.51 \text{ mm}^{-1}$ 

T = 180 K

 $R_{\rm int} = 0.031$ 

210 parameters

 $\Delta \rho_{\text{max}} = 0.38 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.84 \text{ e } \text{\AA}^{-3}$ 

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2511).

#### References

- Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Allen, F. H. (2002). Acta Cryst. B58, 380–388.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Benslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012*a*). *Acta Cryst.* E68, m1321–m1322.
- Benslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012*b*). *Acta Cryst.* E**68**, m1342–m1343.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2012). E68, m1388-m1389 [doi:10.1107/S1600536812043048]

# 4-(Dimethylamino)pyridinium octaaquaerbium(III) tetrachloride monohydrate

## Meriem Benslimane, Hocine Merazig, Jean-Claude Daran and Ouahida Zeghouan

### S1. Comment

The title compound is part of a series of lanthanide complexes with the organic cation 4-(dimethylamino)pyridinium, for example:  $(C_7H_{10}N_2)_2$ LaCl(H<sub>2</sub>O)<sub>8</sub>Cl<sub>4</sub>3H<sub>2</sub>O (I) (Benslimane *et al.*, 2012*a*) and  $(C_7H_{10}N_2)_3$ .[Nd<sub>2</sub>Cl<sub>4</sub>(H<sub>2</sub>O)<sub>10</sub>].Cl<sub>5</sub>.2H<sub>2</sub>O (II) (Benslimane *et al.*, 2012*b*).

The title compound (III) contains an inorganic  $[Er(H_2O)_8]^{3+}$  and an organic  $(C_7H_{10}N_2)^+$  cation equilibrated by four Cl anions, and one lattice water molecule (Fig. 1). Atom Er1 is coordinated by eight water molecules with Er-O bond distances ranging from 2.2989 (15) to 2.3807 (15) Å. The  $[Er(H_2O)_8]^{3+}$  cations are linked to the organic cations via Cl<sup>-</sup> anions through intermolecular O-H···Cl and N-H···Cl hydrogen bonds. Each Cl<sup>-</sup> anion acts as an acceptor of hydrogen bonds from the pyridinium groups and the water molecules. The water molecules, which act as bridging units between the cations, form cooperative infinite chains parallel to the (100) plane through O-H···Cl hydrogen bonds generating centrosymmetric  $R^2_4(8)$  ring motives (Bernstein *et al.*, 1995), as shown in Fig. 2 and Table 1.

In the three compounds, (I) - (III), there is a decrease in the bond lengths of the metal-O(water) bonds, from 2.5101 (15) - 2.5632 (15) Å in (I), 2.404 (3) - 2.479 (4) Å in (II) and 2.2989 (15) - 2.3807 (15) Å in (III). This trend corresponds to the decreasing metallic radius of the lanthanide ion involved; La<sup>3+</sup>, Nd<sup>3+</sup> and Er<sup>3+</sup>, respectively. In addition, the 4-(di-methylamino)pyridinium cation in the three compounds is protonated at the pyridine N atom. The N-C bond linking the dimethylamino substituent to the pyridinium ring is short, 1.321 (3), 1.324 (3)Å for (I), 1.330 (5), 1.2855 (2) Å for (II) and 1.331 (3) Å for (III), suggesting some delocalization in the cation. A search of the Cambridge Structural Database (CSD, V5.33, Update 4, August 2012; Allen, 2002) reveals similar structures incorporating the 4-(dimethylamino)-pyridinium cation for which the corresponding mean N-C distance is 1.34 (1) Å. The dimethylamino group lies close to the plane of the pyridinium ring, with dihedral angles of 3.5 (3) and 2.0 (3)° for (I), 1.6 (6)° and 6.5 (3)° for (II) and 4.5 (3)° for (III).

In conclusion, on the structural level the atomic arrangement in all three compounds, (I) - (III), consists of networks of alternating organic–inorganic layers. The chloride anions are located between these entities forming hydrogen bonds with the NH atoms of the 4-(dimethylamino)pyridinium cations and the water molecules. There are also C—H…Cl interactions present involving one of the 4-(dimethylamino)pyridinium cations. The result is the formation of three-dimensional supramolecular architectures.

### S2. Experimental

4-(Dimethylamino)pyridine (1 mmol, 0.051g) and hydrochloric acid (1M) was added slowly to a solution of ErCl<sub>3</sub>.6H<sub>2</sub>O (1mmol, 0.08g). The mixture was refluxed at 353 K for about 1 h and then cooled to room temperature. Slow evaporation of the solvent at room temperature lead to the formation of pink plate-like crystals of the title compound.

#### **S3. Refinement**

The H-atoms of the coordinated water molecules were located in difference Fourier syntheses and were initially refined using distance restraints: O-H = 0.85 (2) Å, and H···H= 1.40 (2) Å, with  $U_{iso}(H) = 1.5U_{eq}(O)$ . In the last cycles of refinement they were constrained to ride on their parent O atoms. The N-bound H atom was located in a difference Fourier map but like the C-bound H atoms it was included in calculated positions and treated as riding: N-H=0.86 Å, C-H = 0.93 (aromatic), 0.96 (methyl), with  $U_{iso}(H) = 1.5U_{eq}(C)$  for the methyl groups and  $1.2U_{eq}(N,C)$  for the other H atoms.



### Figure 1

The molecular structure of the title compound, showing the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level. The O-H…Cl and N-H…Cl hydrogen bonds are shown as double dashed lines.



## Figure 2

A view of part of the crystal structure of the title compound lying parallel to (100), showing the formation of rings *via* O-H···Cl and N-H···Cl hydrogen-bonds. Hydrogen bonds are drawn as dashed lines [symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z].

Z = 2 F(000) = 586 $D_x = 1.866 \text{ Mg m}^{-3}$ 

 $\theta = 2.8-28.5^{\circ}$   $\mu = 4.51 \text{ mm}^{-1}$  T = 180 KPlate, pink

 $0.35 \times 0.17 \times 0.09 \text{ mm}$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 17643 reflections

### 4-(Dimethylamino)pyridinium octaaquaerbium(III) tetrachloride monohydrate

### Data collection

| Agilent Xcalibur Sapphire1                          | 21843 measured reflections                                                |
|-----------------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                                      | 4315 independent reflections                                              |
| Radiation source: fine-focus sealed tube            | 4110 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                              | $R_{\rm int} = 0.031$                                                     |
| Detector resolution: 8.2632 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$ |
| $\omega$ scan                                       | $h = -9 \rightarrow 9$                                                    |
| Absorption correction: multi-scan                   | $k = -11 \rightarrow 11$                                                  |
| (CrysAlis PRO; Agilent, 2011)                       | $l = -19 \rightarrow 19$                                                  |
| $T_{\min} = 0.415, \ T_{\max} = 0.666$              |                                                                           |
|                                                     |                                                                           |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier      |
|-------------------------------------------------|-------------------------------------------------------|
| Least-squares matrix: full                      | map                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.015$                 | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.038$                               | neighbouring sites                                    |
| S = 1.12                                        | H-atom parameters constrained                         |
| 4315 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0184P)^2 + 0.1863P]$     |
| 210 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.013$                   |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{\min} = -0.84 \text{ e} \text{ Å}^{-3}$  |
|                                                 |                                                       |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|---------------|---------------|--------------|-----------------------------|
| Er1 | 0.784214 (11) | 0.328931 (10) | 0.139815 (6) | 0.01301 (4)                 |
| 01  | 0.6913 (2)    | 0.08907 (17)  | 0.13083 (13) | 0.0290 (4)                  |
| H11 | 0.7409        | 0.0112        | 0.1094       | 0.043*                      |
| H12 | 0.5921        | 0.0645        | 0.1382       | 0.043*                      |
| O2  | 0.49910 (19)  | 0.33181 (16)  | 0.16570 (11) | 0.0196 (3)                  |
| H21 | 0.4352        | 0.2530        | 0.1551       | 0.029*                      |
| H22 | 0.4382        | 0.4056        | 0.1716       | 0.029*                      |
| O3  | 0.8148 (2)    | 0.37949 (19)  | 0.29989 (11) | 0.0246 (4)                  |
| H31 | 0.7391        | 0.4245        | 0.3275       | 0.037*                      |
| H32 | 0.9063        | 0.3747        | 0.3382       | 0.037*                      |
| O4  | 0.71203 (19)  | 0.58031 (16)  | 0.18827 (11) | 0.0202 (3)                  |
| H41 | 0.7442        | 0.6380        | 0.1593       | 0.030*                      |
| H42 | 0.6119        | 0.6010        | 0.1983       | 0.030*                      |
| 05  | 0.9675 (2)    | 0.48121 (18)  | 0.09471 (12) | 0.0231 (4)                  |
| H51 | 0.9316        | 0.5525        | 0.0728       | 0.035*                      |
| Н52 | 1.0724        | 0.5045        | 0.1238       | 0.035*                      |
| O6  | 0.8996 (2)    | 0.16376 (17)  | 0.02461 (11) | 0.0222 (3)                  |
| H61 | 0.9847        | 0.1931        | 0.0055       | 0.033*                      |
| H62 | 0.8278        | 0.1097        | -0.0222      | 0.033*                      |
| 07  | 1.0635 (2)    | 0.27890 (19)  | 0.20245 (12) | 0.0275 (4)                  |
| H71 | 1.1090        | 0.3133        | 0.2597       | 0.041*                      |
| H72 | 1.1158        | 0.2053        | 0.1770       | 0.041*                      |
| 08  | 0.6080 (2)    | 0.33727 (19)  | 0.00199 (11) | 0.0253 (4)                  |
| H81 | 0.4987        | 0.3160        | -0.0103      | 0.038*                      |
| H82 | 0.6398        | 0.3342        | -0.0486      | 0.038*                      |

| N1  | 0.5425 (3)  | -0.0329 (2) | 0.34543 (14) | 0.0269 (5)   |
|-----|-------------|-------------|--------------|--------------|
| H1  | 0.4717      | -0.0651     | 0.2923       | 0.032*       |
| N2  | 0.8825 (3)  | 0.1213 (2)  | 0.59717 (14) | 0.0255 (4)   |
| C1  | 0.7717 (3)  | 0.0707 (3)  | 0.51542 (16) | 0.0205 (5)   |
| C2  | 0.7091 (3)  | -0.0813 (3) | 0.47840 (17) | 0.0228 (5)   |
| H2  | 0.7453      | -0.1490     | 0.5117       | 0.027*       |
| C3  | 0.5969 (3)  | -0.1280 (3) | 0.39497 (17) | 0.0250 (5)   |
| H3  | 0.5568      | -0.2279     | 0.3715       | 0.030*       |
| C4  | 0.5976 (3)  | 0.1126 (3)  | 0.37797 (18) | 0.0290 (6)   |
| H4  | 0.5576      | 0.1769      | 0.3428       | 0.035*       |
| C5  | 0.7091 (3)  | 0.1666 (3)  | 0.46032 (18) | 0.0264 (5)   |
| Н5  | 0.7456      | 0.2674      | 0.4814       | 0.032*       |
| C6  | 0.9502 (4)  | 0.2769 (3)  | 0.6311 (2)   | 0.0363 (6)   |
| H6A | 0.9889      | 0.3059      | 0.5822       | 0.054*       |
| H6B | 1.0459      | 0.2891      | 0.6832       | 0.054*       |
| H6C | 0.8602      | 0.3383      | 0.6504       | 0.054*       |
| C7  | 0.9373 (3)  | 0.0284 (3)  | 0.65895 (18) | 0.0331 (6)   |
| H7A | 0.8482      | -0.0493     | 0.6484       | 0.050*       |
| H7B | 0.9571      | 0.0883      | 0.7226       | 0.050*       |
| H7C | 1.0427      | -0.0150     | 0.6465       | 0.050*       |
| C11 | 0.32218 (7) | 0.03390 (6) | 0.16034 (4)  | 0.01959 (11) |
| Cl2 | 0.33046 (7) | 0.63783 (6) | 0.19098 (4)  | 0.02174 (12) |
| Cl4 | 0.78967 (7) | 0.76450 (6) | 0.05870 (4)  | 0.02396 (12) |
| C13 | 1.20318 (8) | 0.38429 (7) | 0.41119 (4)  | 0.03275 (15) |
| O1W | 0.5751 (2)  | 0.5134 (2)  | 0.38849 (12) | 0.0326 (4)   |
| H1W | 0.4701      | 0.4892      | 0.3866       | 0.049*       |
| H2W | 0.6335      | 0.5310      | 0.4439       | 0.049*       |
|     |             |             |              |              |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Er1 | 0.01068 (5) | 0.01438 (6) | 0.01302 (6) | 0.00048 (4)  | 0.00106 (4)  | 0.00335 (4)  |
| O1  | 0.0269 (9)  | 0.0144 (8)  | 0.0502 (12) | 0.0028 (7)   | 0.0212 (8)   | 0.0073 (8)   |
| O2  | 0.0153 (8)  | 0.0132 (7)  | 0.0304 (9)  | 0.0007 (6)   | 0.0061 (7)   | 0.0052 (7)   |
| O3  | 0.0201 (8)  | 0.0383 (10) | 0.0147 (8)  | 0.0082 (7)   | 0.0020 (7)   | 0.0075 (7)   |
| O4  | 0.0182 (8)  | 0.0181 (8)  | 0.0250 (9)  | 0.0000 (6)   | 0.0059 (7)   | 0.0062 (7)   |
| O5  | 0.0150 (8)  | 0.0236 (9)  | 0.0343 (10) | 0.0008 (6)   | 0.0043 (7)   | 0.0149 (8)   |
| O6  | 0.0164 (8)  | 0.0263 (9)  | 0.0194 (8)  | -0.0032 (6)  | 0.0059 (6)   | -0.0024 (7)  |
| O7  | 0.0196 (9)  | 0.0364 (10) | 0.0200 (9)  | 0.0126 (7)   | -0.0023 (7)  | 0.0014 (7)   |
| 08  | 0.0152 (8)  | 0.0432 (11) | 0.0168 (8)  | 0.0004 (7)   | 0.0002 (6)   | 0.0097 (8)   |
| N1  | 0.0245 (11) | 0.0337 (12) | 0.0179 (10) | -0.0012 (9)  | -0.0032 (8)  | 0.0052 (9)   |
| N2  | 0.0265 (11) | 0.0243 (11) | 0.0207 (11) | -0.0009 (8)  | -0.0026 (9)  | 0.0036 (9)   |
| C1  | 0.0179 (11) | 0.0228 (12) | 0.0202 (12) | 0.0011 (9)   | 0.0055 (9)   | 0.0042 (10)  |
| C2  | 0.0237 (12) | 0.0214 (12) | 0.0229 (12) | 0.0016 (9)   | 0.0032 (10)  | 0.0069 (10)  |
| C3  | 0.0264 (13) | 0.0210 (12) | 0.0250 (13) | -0.0021 (10) | 0.0045 (10)  | 0.0031 (10)  |
| C4  | 0.0290 (14) | 0.0299 (14) | 0.0295 (14) | 0.0029 (11)  | 0.0021 (11)  | 0.0136 (11)  |
| C5  | 0.0301 (13) | 0.0207 (12) | 0.0285 (13) | -0.0004 (10) | 0.0032 (11)  | 0.0091 (10)  |
| C6  | 0.0373 (15) | 0.0268 (14) | 0.0338 (15) | -0.0051 (11) | -0.0026 (12) | -0.0021 (12) |
|     |             |             |             |              |              |              |

# supporting information

| C7  | 0.0323 (14) | 0.0390 (16) | 0.0246 (14) | 0.0000 (12) | -0.0044 (11) | 0.0108 (12) |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| Cl1 | 0.0179 (3)  | 0.0183 (3)  | 0.0215 (3)  | -0.0010 (2) | 0.0016 (2)   | 0.0057 (2)  |
| Cl2 | 0.0182 (3)  | 0.0212 (3)  | 0.0242 (3)  | 0.0015 (2)  | 0.0031 (2)   | 0.0048 (2)  |
| Cl4 | 0.0187 (3)  | 0.0194 (3)  | 0.0383 (3)  | 0.0041 (2)  | 0.0103 (2)   | 0.0123 (2)  |
| C13 | 0.0335 (3)  | 0.0336 (3)  | 0.0244 (3)  | -0.0001 (3) | -0.0101 (3)  | 0.0088 (3)  |
| O1W | 0.0283 (10) | 0.0454 (11) | 0.0188 (9)  | 0.0036 (8)  | 0.0020 (7)   | 0.0022 (8)  |

Geometric parameters (Å, °)

| Er1—O8           | 2.2989 (15) | O8—H82                 | 0.8517    |
|------------------|-------------|------------------------|-----------|
| Er1—O1           | 2.3097 (16) | N1—C3                  | 1.341 (3) |
| Er1—O3           | 2.3195 (16) | N1—C4                  | 1.347 (3) |
| Er1—O7           | 2.3263 (15) | N1—H1                  | 0.8600    |
| Er1—O5           | 2.3356 (15) | N2—C1                  | 1.331 (3) |
| Er1—O6           | 2.3465 (15) | N2—C6                  | 1.458 (3) |
| Er1—O2           | 2.3561 (15) | N2—C7                  | 1.459 (3) |
| Er1—O4           | 2.3807 (15) | C1—C2                  | 1.419 (3) |
| O1—H11           | 0.8493      | C1—C5                  | 1.420 (3) |
| O1—H12           | 0.8484      | C2—C3                  | 1.352 (3) |
| O2—H21           | 0.8455      | C2—H2                  | 0.9300    |
| O2—H22           | 0.8425      | С3—Н3                  | 0.9300    |
| O3—H31           | 0.8495      | C4—C5                  | 1.344 (4) |
| O3—H32           | 0.8439      | C4—H4                  | 0.9300    |
| O4—H41           | 0.8497      | С5—Н5                  | 0.9300    |
| O4—H42           | 0.8485      | С6—Н6А                 | 0.9600    |
| O5—H51           | 0.8522      | С6—Н6В                 | 0.9600    |
| O5—H52           | 0.8499      | С6—Н6С                 | 0.9600    |
| O6—H61           | 0.8514      | С7—Н7А                 | 0.9600    |
| O6—H62           | 0.8480      | C7—H7B                 | 0.9600    |
| O7—H71           | 0.8439      | С7—Н7С                 | 0.9600    |
| O7—H72           | 0.8498      | O1W—H1W                | 0.8471    |
| O8—H81           | 0.8520      | O1W—H2W                | 0.8491    |
| 08—Fr1—01        | 95 94 (6)   | Fr1—06—H61             | 120.3     |
| 08—Er1—O3        | 146 14 (6)  | Fr1 - O6 - H62         | 117.0     |
| 01— $Fr1$ — $03$ | 86 60 (6)   | $H_{61} = 06 = H_{62}$ | 108.2     |
| 08—Er1— $07$     | 142.03 (6)  | Fr1 - 07 - H71         | 122.0     |
| O1—Er1— $O7$     | 88.39 (6)   | Fr1 - 07 - H72         | 124.1     |
| 03—Er1—07        | 71.64 (6)   | H71—O7—H72             | 111.0     |
| 08—Er1—05        | 81.09 (6)   | Er1-08-H81             | 122.4     |
| 01—Er1—O5        | 146.98 (6)  | Er1—O8—H82             | 126.5     |
| O3—Er1—O5        | 114.04 (6)  | H81—O8—H82             | 108.6     |
| 07—Er1—05        | 75.30 (6)   | C3—N1—C4               | 120.7 (2) |
| 08—Er1—06        | 75.79 (6)   | C3—N1—H1               | 119.7     |
| O1—Er1—O6        | 71.78 (6)   | C4—N1—H1               | 119.7     |
| O3—Er1—O6        | 135.91 (6)  | C1—N2—C6               | 120.7 (2) |
| O7—Er1—O6        | 69.84 (6)   | C1—N2—C7               | 122.8 (2) |
| O5—Er1—O6        | 75.65 (6)   | C6—N2—C7               | 116.4 (2) |
|                  |             |                        |           |

| O8—Er1—O2  | 74.29 (6)  | N2—C1—C2    | 122.3 (2) |
|------------|------------|-------------|-----------|
| O1—Er1—O2  | 71.93 (5)  | N2          | 121.6 (2) |
| O3—Er1—O2  | 74.51 (6)  | C2—C1—C5    | 116.2 (2) |
| O7—Er1—O2  | 141.61 (6) | C3—C2—C1    | 120.3 (2) |
| O5—Er1—O2  | 136.56 (5) | C3—C2—H2    | 119.9     |
| O6—Er1—O2  | 129.45 (5) | C1—C2—H2    | 119.9     |
| O8—Er1—O4  | 81.90 (6)  | N1—C3—C2    | 121.2 (2) |
| O1—Er1—O4  | 141.90 (6) | N1—C3—H3    | 119.4     |
| O3—Er1—O4  | 75.79 (6)  | С2—С3—Н3    | 119.4     |
| O7—Er1—O4  | 116.47 (6) | C5—C4—N1    | 121.3 (2) |
| O5—Er1—O4  | 70.61 (5)  | С5—С4—Н4    | 119.3     |
| O6—Er1—O4  | 141.89 (6) | N1-C4-H4    | 119.3     |
| O2—Er1—O4  | 70.91 (5)  | C4—C5—C1    | 120.4 (2) |
| Er1—O1—H11 | 125.4      | C4—C5—H5    | 119.8     |
| Er1—O1—H12 | 124.1      | C1—C5—H5    | 119.8     |
| H11—O1—H12 | 109.5      | N2—C6—H6A   | 109.5     |
| Er1—O2—H21 | 122.4      | N2—C6—H6B   | 109.5     |
| Er1—O2—H22 | 125.8      | H6A—C6—H6B  | 109.5     |
| H21—O2—H22 | 109.7      | N2—C6—H6C   | 109.5     |
| Er1—O3—H31 | 121.3      | H6A—C6—H6C  | 109.5     |
| Er1—O3—H32 | 126.0      | H6B—C6—H6C  | 109.5     |
| Н31—О3—Н32 | 111.3      | N2—C7—H7A   | 109.5     |
| Er1—O4—H41 | 115.9      | N2—C7—H7B   | 109.5     |
| Er1—O4—H42 | 121.1      | H7A—C7—H7B  | 109.5     |
| H41—O4—H42 | 108.9      | N2—C7—H7C   | 109.5     |
| Er1—O5—H51 | 122.7      | H7A—C7—H7C  | 109.5     |
| Er1—O5—H52 | 121.2      | H7B—C7—H7C  | 109.5     |
| H51—O5—H52 | 108.1      | H1W—O1W—H2W | 109.7     |
|            |            |             |           |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                       | D—H  | Н…А  | D····A      | <i>D</i> —H··· <i>A</i> |
|-----------------------------------------------|------|------|-------------|-------------------------|
| N1—H1···Cl1                                   | 0.86 | 2.53 | 3.229 (2)   | 139                     |
| O1W—H1W···Cl3 <sup>i</sup>                    | 0.85 | 2.44 | 3.2686 (18) | 165                     |
| O1 <i>W</i> —H2 <i>W</i> ···Cl3 <sup>ii</sup> | 0.85 | 2.25 | 3.0874 (18) | 171                     |
| O1—H11····Cl4 <sup>iii</sup>                  | 0.85 | 2.29 | 3.1036 (18) | 160                     |
| O1—H12···Cl1                                  | 0.85 | 2.24 | 3.0863 (17) | 172                     |
| O2—H21…Cl1                                    | 0.85 | 2.25 | 3.0708 (17) | 164                     |
| O2—H22···Cl2                                  | 0.84 | 2.31 | 3.1372 (17) | 167                     |
| O3—H31…O1 <i>W</i>                            | 0.85 | 1.82 | 2.671 (2)   | 177                     |
| O3—H32…Cl3                                    | 0.84 | 2.37 | 3.1826 (17) | 162                     |
| O4—H41…Cl4                                    | 0.85 | 2.25 | 3.0925 (17) | 169                     |
| O4—H42…Cl2                                    | 0.85 | 2.23 | 3.0685 (16) | 168                     |
| O5—H51…Cl4                                    | 0.85 | 2.33 | 3.1469 (18) | 160                     |
| O5—H52····Cl2 <sup>iv</sup>                   | 0.85 | 2.27 | 3.0819 (18) | 161                     |
| O6—H61···Cl4 <sup>v</sup>                     | 0.85 | 2.27 | 3.1164 (17) | 171                     |
| O6—H62···Cl1 <sup>vi</sup>                    | 0.85 | 2.25 | 3.0858 (17) | 169                     |
| O7—H71···Cl3                                  | 0.84 | 2.19 | 3.0304 (18) | 173                     |
|                                               |      |      |             |                         |

# supporting information

| 0.85 | 2.30                                         | 3.1132 (18)                                      | 159                                                                                                          |
|------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 0.85 | 2.29                                         | 3.1377 (17)                                      | 173                                                                                                          |
| 0.85 | 2.31                                         | 3.1464 (17)                                      | 166                                                                                                          |
| 0.93 | 2.77                                         | 3.683 (3)                                        | 169                                                                                                          |
| 0.93 | 2.51                                         | 3.332 (3)                                        | 148                                                                                                          |
| 0.96 | 2.47                                         | 3.379 (3)                                        | 158                                                                                                          |
|      | 0.85<br>0.85<br>0.85<br>0.93<br>0.93<br>0.96 | 0.852.300.852.290.852.310.932.770.932.510.962.47 | 0.852.303.1132 (18)0.852.293.1377 (17)0.852.313.1464 (17)0.932.773.683 (3)0.932.513.332 (3)0.962.473.379 (3) |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) *x*+1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*; (vi) -*x*+1, -*y*, -*z*; (vii) -*x*+1, -*y*+1, -*z*; (viii) -*x*+2, -*y*, -*z*+1.