organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-*tert*-butyl *N*-{[1-(pyridin-4-yl)-1*H*-1,2,3-triazol-4-yl]methyl}iminodiacetate

Alison François,^a Louise Marty,^a Claude Picard,^a Sonia Mallet-Ladeira^b and Eric Benoist^a*

^aLSPCMIB, UMR-CNRS 5068, Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 9, and ^bUniversité de Toulouse, UPS and CNRS, Institut de Chimie de Toulouse, FR2599, 118 route de Narbonne, F-31062 Toulouse cedex 9, France

Correspondence e-mail: benoist@chimie.ups-tlse.fr

Received 5 October 2012; accepted 11 October 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.005 Å; R factor = 0.059; wR factor = 0.122; data-to-parameter ratio = 13.2.

In the title compound, $C_{20}H_{29}N_5O_4$, the pyridine ring makes a dihedral angle of 10.41 (16)° with the triazole ring, which exhibits an azo-like character. In the crystal, molecules are linked by C–H···O and C–H···N hydrogen bonds, and C–H··· π interactions involving a methyl group and the pyridine ring of a neighbouring molecule, leading to the formation of a three-dimensional network.

Related literature

For 4-pyridyl-1,2,3-triazoles as building blocks in the synthesis of chelating agents for biomedical applications, see: Bonnet *et al.* (2012); Pellegatti *et al.* (2008). For the crystal structures of structural isomers such as 2-pyridyl-1,2,3-triazoles, see: Obata *et al.* (2008); Schweinfurth *et al.* (2008); Boulay *et al.* (2010); Seridi *et al.* (2011); Crowley *et al.* (2010); Kilpin *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{29}N_5O_4\\ M_r = 403.48\\ \text{Monoclinic, } P2_1\\ a = 9.1568 \ (8) \ \text{\AA}\\ b = 11.4452 \ (10) \ \text{\AA}\\ c = 11.4928 \ (11) \ \text{\AA}\\ \beta = 110.840 \ (4)^\circ \end{array}$

$V = 1125.66 (18) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 193 K
$0.2 \times 0.1 \times 0.04 \ \text{mm}$

Data collection

Bruker Kappa APEXII Quazar diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.989, T_{max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.122$ S = 1.003530 reflections 268 parameters

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

Cg1 is the centroid of the N1/C1-C5 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.95	2.54	3.443 (4)	160
$C6-H6\cdots N1^{n}$ $C9-H9B\cdots N3^{iii}$	0.95 0.99	2.31 2.50	3.252 (4) 3.449 (4)	173 160
C18-H18 $A \cdots Cg1^{iv}$	0.98	2.91	3.864 (4)	166

11329 measured reflections

 $R_{\rm int} = 0.077$

1 restraint

 $\Delta \rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

3530 independent reflections

1947 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 2, y - \frac{1}{2}, -z + 2$; (iii) $-x + 1, y - \frac{1}{2}, -z + 1$; (iv) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *APEX2* and *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2012) and *publCIF* (Westrip, 2010).

We gratefully acknowledge the French Ministère de l'Education Nationale, de la Recherche et de la Technologie for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2510).

References

- Bonnet, C. S., Buron, F., Caille, F., Shade, C. M., Drahos, B., Pellegatti, L., Zhang, J., Villette, S., Helm, L., Pichon, C., Suzenet, F., Petoud, S. & Toth, E. (2012). *Chem. Eur. J.* 18, 1419–1431.
- Boulay, A., Seridi, A., Zedde, C., Ladeira, S., Picard, C., Maron, L. & Benoist, E. (2010). *Eur. J. Inorg. Chem.* pp. 5058–5062.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Crowley, J. D., Bandeen, P. H. & Hanton, L. R. (2010). Polyhedron, 29, 70–83.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kilpin, K. J., Gavey, E. L., McAdam, C. J., Anderson, C. B., Lind, S. J., Keep, C. C., Gordon, K. C. & Crowley, J. D. (2011). *Inorg. Chem.* 50, 6334–6346.

- Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. & Yano, S. (2008). *Dalton Trans.* pp. 3292–3300.
- Pellegatti, L., Zhang, J., Drahos, B., Villette, S., Suzenet, F., Guillaumet, G., Petoud, S. & Toth, E. (2008). *Chem. Commun.* pp. 6591–6593.
- Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203–2205.
- Seridi, A., Wolff, M., Boulay, A., Saffon, N., Coulais, Y., Picard, C., Machura, B. & Benoist, E. (2011). *Inorg. Chem. Commun.* 14, 238–242.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o3162 [doi:10.1107/S1600536812042596]

Di-tert-butyl N-{[1-(pyridin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}iminodiacetate

Alison François, Louise Marty, Claude Picard, Sonia Mallet-Ladeira and Eric Benoist

S1. Comment

If 1,2,3-Triazoles are well known for their biological properties, particular attention has been recently devoted to the development of 2-pyridyl-1,2,3-triazole derivatives (or pyta) as alternative ligands to 2,2'-bipyridines. This interest is explained by the easy preparation of such ligands using a click chemistry strategy (Obata *et al.*, 2008; Schweinfurth *et al.*, 2008), and the use of pyta derivatives as efficient chelator systems for $Tc(CO)_3^+$ or $Re(CO)_3^+$ organometallic cores (Boulay *et al.*, 2010; Seridi *et al.*, 2011). Recently, structural pyta isomers like 4-pyridyl-1,2,3-triazole have been described as building blocks in the synthesis of chelating agents for biomedical applications (Bonnet *et al.*, 2012; Pellegatti *et al.*, 2008). In this paper, we report on the first X-ray structure analysis of a 4-pyridyl-1,2,3-triazole derivative.

The title molecule, Fig. 1, can be considered as a ditopic ligand with two distinct transition metal complexing sites, the iminodiacetate (IDA) pincer and the 4-pyridine moiety. Bond lengths and angles are within normal ranges, and comparable with values found for structural isomers, such as 2-pyridyl-1,2,3-triazole derivatives (Obata *et al.* 2008; Schweinfurth *et al.*, 2008; Seridi *et al.*, 2011; Boulay *et al.*, 2010). As is often observed in these ligand systems, the pyridyl and triazole units are coplanar (Crowley *et al.*, 2010; Kilpin *et al.*, 2011). Unarguably, the structure exhibits a practically planar geometry with slight deviation of the pyridyl moiety, which makes a dihedral angle of 10.41 (16)° with the mean plane of the triazole ring. As expected, the N3–N4 distance of the 1,2,3-triazole at 1.308 (4) Å is shorter than the N4–C7 and N2–N3 bonds, 1.358 (4) and 1.356 (3) Å respectively, confirming the azo character of the triazolyl entity. In the crystal, molecules are linked by C–H···O and C–H···N hydrogen bonds (Table 1 and Fig. 2). It is noteworthy that

in the crystal, molecules are linked by C–H···O and C–H···N hydrogen bonds (Table 1 and Fig. 2). It is noteworthy that a C–H··· π interaction between of the hydrogen H18A of one methyl group and the π cloud of the pyridine ring was also observed, this interaction participates in the cohesion of the crystal.

S2. Experimental

Freshly prepared 4-azidopyridine (0.4 g, 3.3 mmol), 3-[bis(*tert*-butoxycarbonylmeth-yl) amino]-prop-1-yne (0.94 g, 3.3 mmol), copper(II) acetate monohydrate (130 mg, 0.66 mmol) and sodium ascorbate (260 mg, 1.32 mmol) were mixed in acetonitrile (5 ml) and stirred overnight at 303 K. The resulting brown solution was cooled then diluted with chloroform (10 ml) and washed twice with saturated Na₂edta solution (2x15 ml). The aqueous solutions were extracted with chloroform (3x7 ml). The organic extracts were combined, dried over Na₂SO₄ and the solvent was taken off under reduce pressure. The crude product was purified by column chromatography on neutral alumina (eluent: CH_2Cl_2) to give 1.03 g of the title compound [Yield: 77%]. Analysis calculated for $C_{20}H_{29}N_5O_4$: C 59.54, H 7.24, N 17.36%; found: C 59.24, H 7.32, N 17.44%. Plate-like colourless crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a methanol-dichloromethane (1:1 / v:v) solution. Further spectroscopic data for the title compound are available in the archived CIF.

S3. Refinement

All the H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (aromatic), 0.99 Å (methylene) and 0.98 Å (methyl) with $U_{iso}(H) = 1.2U_{eq}(aromatic, methylene)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 2547 Friedel pairs were merged and \Df " set to zero.

Figure 1

The molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the crystal packing of the title compound, showing the C-H···O and C-H···N hydrogen bonds and the C—H··· π interactions (dashed lines). H atoms not involved in these interactions have been omitted for clarity.

Di-tert-butyl N-{[1-(pyridin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}iminodiacetate

Crystal data

 $C_{20}H_{29}N_5O_4$ $M_r = 403.48$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 9.1568 (8) Å b = 11.4452 (10) Å c = 11.4928 (11) Å $\beta = 110.840$ (4)° V = 1125.66 (18) Å³ Z = 2

Data collection

Bruker Kappa APEXII Quazar diffractometer Radiation source: microfocus sealed tube Multilayer optics monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.989, T_{\max} = 0.997$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.122$ S = 1.00 F(000) = 432 $D_x = 1.19 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1261 reflections $\theta = 2.4-21.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 193 KPlate, colourless $0.2 \times 0.1 \times 0.04 \text{ mm}$

11329 measured reflections 3530 independent reflections 1947 reflections with $I > 2\sigma(I)$ $R_{int} = 0.077$ $\theta_{max} = 30.6^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -13 \rightarrow 11$ $k = -14 \rightarrow 16$ $l = -16 \rightarrow 16$

3530 reflections268 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2]$ where $P = (F_o^2 + 2F^2)/3$
Hydrogen site location: inferred from neighbouring sites	$(\Delta/\sigma)_{max} = 0.001$ $\Delta \sigma_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Spectroscopic data for the title compound: ¹H NMR (300 MHz, CDCl₃): δ /p.p.m. = 1.45 (s, 18H, CH₃); 3.49 (s, 4H, CH₂); 4.12 (s, 2H, CH₂); 7.72 (m, 2H, CH_{Ar}); 8.24 (s, 1H, CH_{1a}); 8.75 (m, 2H, CH_{Ar}); ¹³C NMR (75 MHz, CDCl₃): δ /p.p.m. = 28.1 (9CH₃); 49.0 (CH₂); 55.5 (2CH₂); 81.3 (2C_{IV}); 113.6, 151.6 (4CH_{Ar}); 120.7 (CH_{1a}); 143.1, 147.5 (2C_{IV}); 170.3 (2CO); IR (KBr): $v_{C=O} = 1735$ cm⁻¹; MS (DCI/NH₃): m/z 404, [*M*⁺]; 426, [*M*+Na⁺]; 443, [*M*+K⁺]. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O2	0.8574 (2)	0.02696 (19)	0.4779 (2)	0.0380 (5)
N1	1.0194 (3)	0.7418 (2)	0.9730 (2)	0.0392 (7)
O3	0.6055 (3)	0.0266 (2)	0.8927 (2)	0.0521 (7)
O4	0.5024 (3)	-0.13966 (19)	0.7905 (2)	0.0378 (6)
N5	0.6572 (3)	0.1115 (2)	0.6817 (2)	0.0276 (6)
N3	0.5993 (3)	0.5068 (2)	0.6577 (2)	0.0407 (7)
N4	0.5251 (3)	0.4092 (3)	0.6151 (2)	0.0393 (7)
C4	0.9274 (3)	0.5441 (3)	0.9510 (3)	0.0342 (8)
H4	0.9346	0.4682	0.9859	0.041*
C17	0.4539 (4)	-0.1904 (3)	0.8901 (3)	0.0442 (9)
C6	0.7207 (4)	0.3635 (3)	0.7862 (3)	0.0293 (7)
H6	0.7926	0.3216	0.8537	0.035*
C7	0.5962 (3)	0.3197 (3)	0.6918 (3)	0.0278 (7)
C10	0.8501 (4)	0.0438 (3)	0.5901 (3)	0.0323 (7)
C9	0.7146 (3)	0.1245 (3)	0.5787 (3)	0.0290 (7)
H9A	0.7481	0.2064	0.576	0.035*
H9B	0.6281	0.1081	0.4993	0.035*
N2	0.7201 (3)	0.4797 (2)	0.7634 (2)	0.0277 (6)
C5	0.8218 (3)	0.5684 (3)	0.8340 (3)	0.0279 (7)
C8	0.5345 (3)	0.1981 (3)	0.6690 (3)	0.0335 (8)
H8A	0.4823	0.1794	0.7288	0.04*
H8B	0.4551	0.1931	0.584	0.04*
01	0.9358 (3)	0.0025 (2)	0.6860 (2)	0.0511 (7)
C16	0.5703 (4)	-0.0346 (3)	0.8019 (3)	0.0339 (7)
C15	0.5930 (4)	-0.0054 (3)	0.6821 (3)	0.0299 (7)
H15A	0.6644	-0.0636	0.6672	0.036*
H15B	0.4912	-0.0113	0.6128	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C2	0.9161 (4)	0.7613 (3)	0.8589 (3)	0.0408 (8)
H2	0.9119	0.8378	0.8258	0.049*
C3	1.0224 (4)	0.6337 (3)	1.0161 (3)	0.0393 (8)
Н3	1.0948	0.6169	1.097	0.047*
C11	0.9656 (4)	-0.0587(3)	0.4568 (3)	0.0440 (9)
C14	0.9375 (5)	-0.1775 (3)	0.5026 (5)	0.0735 (14)
H14A	0.9729	-0.177	0.5937	0.11*
H14B	0.9957	-0.2369	0.4755	0.11*
H14C	0.8256	-0.1957	0.4682	0.11*
C19	0.3794 (6)	-0.3030 (4)	0.8319 (4)	0.0722 (13)
H19A	0.2924	-0.2864	0.7542	0.108*
H19B	0.34	-0.3444	0.8893	0.108*
H19C	0.4569	-0.3516	0.814	0.108*
C1	0.8158 (4)	0.6794 (3)	0.7858 (3)	0.0380 (8)
H1	0.7448	0.6984	0.705	0.046*
C12	1.1312 (4)	-0.0187 (4)	0.5169 (4)	0.0566 (11)
H12A	1.1436	0.0581	0.484	0.085*
H12B	1.2012	-0.0749	0.499	0.085*
H12C	1.1573	-0.0133	0.6072	0.085*
C18	0.5965 (5)	-0.2123 (4)	1.0045 (4)	0.0658 (12)
H18A	0.6712	-0.2602	0.9821	0.099*
H18B	0.5658	-0.2534	1.067	0.099*
H18C	0.6451	-0.1375	1.0386	0.099*
C20	0.3373 (5)	-0.1108 (4)	0.9149 (4)	0.0656 (12)
H20A	0.3908	-0.0407	0.9584	0.098*
H20B	0.2886	-0.1516	0.9667	0.098*
H20C	0.2567	-0.0884	0.8357	0.098*
C13	0.9166 (5)	-0.0569 (4)	0.3165 (4)	0.0776 (15)
H13A	0.8057	-0.0775	0.279	0.116*
H13B	0.9791	-0.1135	0.2904	0.116*
H13C	0.933	0.0215	0.2892	0.116*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0374 (12)	0.0399 (14)	0.0433 (13)	0.0053 (11)	0.0224 (10)	0.0003 (11)
N1	0.0382 (15)	0.0331 (17)	0.0403 (16)	-0.0034 (14)	0.0067 (12)	-0.0002 (13)
O3	0.0732 (17)	0.0544 (16)	0.0345 (13)	-0.0248 (14)	0.0262 (12)	-0.0158 (12)
O4	0.0505 (13)	0.0322 (13)	0.0355 (12)	-0.0114 (11)	0.0213 (10)	0.0007 (10)
N5	0.0300 (13)	0.0248 (14)	0.0315 (13)	-0.0036 (12)	0.0151 (11)	-0.0047 (10)
N3	0.0432 (15)	0.0378 (17)	0.0291 (14)	0.0000 (14)	-0.0020 (12)	0.0014 (12)
N4	0.0437 (16)	0.0287 (16)	0.0354 (15)	-0.0019 (14)	0.0015 (13)	0.0022 (12)
C4	0.0378 (18)	0.0237 (17)	0.0341 (17)	0.0005 (15)	0.0044 (14)	0.0039 (14)
C17	0.058 (2)	0.043 (2)	0.043 (2)	-0.012 (2)	0.0311 (18)	0.0024 (16)
C6	0.0325 (16)	0.0212 (16)	0.0337 (17)	0.0046 (14)	0.0112 (13)	0.0041 (13)
C7	0.0296 (16)	0.0232 (17)	0.0307 (16)	0.0021 (14)	0.0107 (13)	-0.0003 (13)
C10	0.0341 (16)	0.0273 (18)	0.0374 (18)	-0.0035 (15)	0.0150 (14)	0.0013 (14)
C9	0.0305 (15)	0.0227 (17)	0.0354 (17)	-0.0017 (14)	0.0136 (13)	0.0010 (13)

N2	0.0302 (12)	0.0239 (15)	0.0259 (13)	0.0025 (12)	0.0061 (10)	0.0020 (11)
C5	0.0308 (15)	0.0259 (17)	0.0280 (15)	-0.0020 (14)	0.0118 (13)	-0.0014 (13)
C8	0.0284 (15)	0.034 (2)	0.0391 (18)	-0.0007 (15)	0.0129 (14)	-0.0032 (14)
01	0.0452 (13)	0.0633 (18)	0.0441 (14)	0.0205 (14)	0.0151 (11)	0.0161 (13)
C16	0.0348 (17)	0.0346 (19)	0.0352 (18)	-0.0056 (15)	0.0160 (14)	-0.0026 (14)
C15	0.0347 (16)	0.0261 (17)	0.0297 (15)	-0.0065 (15)	0.0124 (13)	-0.0057 (13)
C2	0.051 (2)	0.0250 (18)	0.0391 (19)	-0.0054 (17)	0.0077 (16)	0.0046 (15)
C3	0.0398 (18)	0.033 (2)	0.0362 (19)	-0.0009 (16)	0.0027 (15)	0.0052 (15)
C11	0.041 (2)	0.037 (2)	0.063 (2)	0.0023 (17)	0.0302 (18)	-0.0075 (17)
C14	0.075 (3)	0.035 (2)	0.129 (4)	0.000 (2)	0.060 (3)	-0.011 (3)
C19	0.098 (3)	0.058 (3)	0.074 (3)	-0.034 (3)	0.047 (3)	0.001 (2)
C1	0.0471 (18)	0.0270 (19)	0.0316 (17)	-0.0006 (17)	0.0039 (14)	0.0083 (14)
C12	0.039 (2)	0.054 (3)	0.087 (3)	0.006 (2)	0.035 (2)	-0.001 (2)
C18	0.079 (3)	0.077 (3)	0.046 (2)	0.002 (3)	0.029 (2)	0.019 (2)
C20	0.067 (3)	0.082 (3)	0.067 (3)	-0.006 (3)	0.048 (2)	0.005 (2)
C13	0.074 (3)	0.106 (4)	0.065 (3)	0.016 (3)	0.041 (2)	-0.023 (3)

Geometric parameters (Å, °)

O2—C10	1.328 (4)	C8—H8B	0.99
O2—C11	1.474 (4)	C16—C15	1.501 (4)
N1—C3	1.329 (4)	C15—H15A	0.99
N1—C2	1.335 (4)	C15—H15B	0.99
O3—C16	1.202 (4)	C2—C1	1.371 (4)
O4—C16	1.339 (4)	C2—H2	0.95
O4—C17	1.486 (4)	С3—Н3	0.95
N5-C15	1.461 (4)	C11—C12	1.497 (5)
N5—C9	1.464 (4)	C11—C13	1.512 (5)
N5—C8	1.466 (4)	C11—C14	1.513 (5)
N3—N4	1.308 (4)	C14—H14A	0.98
N3—N2	1.356 (3)	C14—H14B	0.98
N4—C7	1.358 (4)	C14—H14C	0.98
C4—C5	1.377 (4)	C19—H19A	0.98
C4—C3	1.379 (4)	C19—H19B	0.98
C4—H4	0.95	C19—H19C	0.98
С17—С19	1.499 (5)	C1—H1	0.95
C17—C20	1.506 (5)	C12—H12A	0.98
C17—C18	1.508 (5)	C12—H12B	0.98
C6—N2	1.355 (4)	C12—H12C	0.98
С6—С7	1.359 (4)	C18—H18A	0.98
С6—Н6	0.95	C18—H18B	0.98
С7—С8	1.489 (4)	C18—H18C	0.98
C10—O1	1.200 (4)	C20—H20A	0.98
С10—С9	1.514 (4)	C20—H20B	0.98
С9—Н9А	0.99	C20—H20C	0.98
С9—Н9В	0.99	C13—H13A	0.98
N2-C5	1.421 (4)	C13—H13B	0.98
C5—C1	1.380 (4)	C13—H13C	0.98

C10-O2-C11 121.7 (2) H15A-C15-H15B 107. C3-N1-C2 115.8 (3) N1-C2-C1 125. C16-O4-C17 122.2 (2) N1-C2-H2 117. C15-N5-C9 110.9 (2) C1-C2-H2 117. C15-N5-C8 109.0 (2) N1-C3-C4 124. C9-N5-C8 109.5 (2) N1-C3-H3 117. N4-N3-N2 106.8 (2) C4-C3-H3 117. N3-N4-C7 109.6 (2) O2-C11-C12 110. C5-C4-C3 117.9 (3) O2-C11-C13 101.	8 0 (3) 5 5 4 (3) 8 8 5 (3) 3 (3) 3 (3) 4 (3)
C1002C11121.7 (2)H15AC15H15B107.C3N1C2115.8 (3)N1C2C1125.C16O4C17122.2 (2)N1C2H2117.C15N5C9110.9 (2)C1C2H2117.C15N5C8109.0 (2)N1C3C4124.C9N5C8109.5 (2)N1C3H3117.N4N3N2106.8 (2)C4C3H3117.N3N4C7109.6 (2)O2C11C12110.C5C4C3117.9 (3)O2C11C13101.	8 0 (3) 5 5 4 (3) 8 8 5 (3) 8 (3) 3 (3) 4 (3)
C3-N1-C2115.8 (3)N1-C2-C1123.C16-O4-C17122.2 (2)N1-C2-H2117.C15-N5-C9110.9 (2)C1-C2-H2117.C15-N5-C8109.0 (2)N1-C3-C4124.C9-N5-C8109.5 (2)N1-C3-H3117.N4-N3-N2106.8 (2)C4-C3-H3117.N3-N4-C7109.6 (2)O2-C11-C12110.C5-C4-C3117.9 (3)O2-C11-C13101.	5 5 4 (3) 8 8 5 (3) 8 (3) 3 (3) 4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 4 (3) 8 8 5 (3) 8 (3) 3 (3) 4 (3)
C15—N5—C9 110.9 (2) C1—C2—H2 117. C15—N5—C8 109.0 (2) N1—C3—C4 124. C9—N5—C8 109.5 (2) N1—C3—H3 117. N4—N3—N2 106.8 (2) C4—C3—H3 117. N3—N4—C7 109.6 (2) O2—C11—C12 110. C5—C4—C3 117.9 (3) O2—C11—C13 101.	5 4 (3) 8 8 5 (3) 8 (3) 3 (3) 4 (3)
C15—N5—C8 $109.0 (2)$ N1—C3—C4 $124.$ C9—N5—C8 $109.5 (2)$ N1—C3—H3 $117.$ N4—N3—N2 $106.8 (2)$ C4—C3—H3 $117.$ N3—N4—C7 $109.6 (2)$ $O2$ —C11—C12 $110.$ C5—C4—C3 $117.9 (3)$ $O2$ —C11—C13 $101.$	4 (3) 8 3 5 (3) 8 (3) 8 (3) 4 (3)
C9-N5-C8 109.5 (2) N1-C3-H3 117. N4-N3-N2 106.8 (2) C4-C3-H3 117. N3-N4-C7 109.6 (2) O2-C11-C12 110. C5-C4-C3 117.9 (3) O2-C11-C13 101.	8 8 5 (3) 8 (3) 8 (3) 4 (3)
N4-N3-N2 $106.8 (2)$ $C4-C3-H3$ $117.$ $N3-N4-C7$ $109.6 (2)$ $02-C11-C12$ $110.$ $C5-C4-C3$ $117.9 (3)$ $02-C11-C13$ $101.$	8 5 (3) 8 (3) 8 (3) 4 (3)
N3-N4-C7 $109.6 (2)$ $02-C11-C12$ $110.$ C5-C4-C3 $117.9 (3)$ $02-C11-C13$ $101.$	5 (3) 8 (3) 8 (3) 4 (3)
C5-C4-C3 $117.9(3)$ $O2-C11-C13$ 101.	8 (3) 8 (3) 4 (3)
	8 (3) 4 (3)
C5-C4-H4 121 C12-C11-C13 110.	4 (3)
$C_3 - C_4 - H_4$ 121 $O_2 - C_{11} - C_{14}$ 109.	
04-C17-C19 $101.9(3)$ $C12-C11-C14$ $112.$	5 (3)
04-C17-C20 109.6 (3) $C13-C11-C14$ 111.	l (4)
C19—C17—C20 111.3 (3) C11—C14—H14A 109.	5
O4—C17—C18 109.4 (3) C11—C14—H14B 109.	5
C19—C17—C18 111.2 (3) H14A—C14—H14B 109.	5
C20—C17—C18 112.8 (3) C11—C14—H14C 109.	5
N2—C6—C7 105.3 (3) H14A—C14—H14C 109.	5
N2—C6—H6 127.4 H14B—C14—H14C 109.	5
С7—С6—Н6 127.4 С17—С19—Н19А 109.	5
N4—C7—C6 108.2 (3) C17—C19—H19B 109.	5
N4—C7—C8 121.8 (3) H19A—C19—H19B 109.	5
C6—C7—C8 130.0 (3) C17—C19—H19C 109.	5
O1—C10—O2 126.3 (3) H19A—C19—H19C 109.	5
O1—C10—C9 124.6 (3) H19B—C19—H19C 109.	5
O2—C10—C9 109.1 (2) C2—C1—C5 117.	5 (3)
N5—C9—C10 112.8 (2) C2—C1—H1 121.	2
N5—C9—H9A 109 C5—C1—H1 121.	2
C10—C9—H9A 109 C11—C12—H12A 109.	5
N5—C9—H9B 109 C11—C12—H12B 109.	5
C10—C9—H9B 109 H12A—C12—H12B 109.	5
H9A—C9—H9B 107.8 C11—C12—H12C 109.	5
C6—N2—N3 110.1 (3) H12A—C12—H12C 109.	5
C6—N2—C5 129.3 (2) H12B—C12—H12C 109.	5
N3—N2—C5 120.5 (2) C17—C18—H18A 109.	5
C4—C5—C1 119.4 (3) C17—C18—H18B 109.	5
C4—C5—N2 120.3 (3) H18A—C18—H18B 109.	5
C1—C5—N2 120.3 (3) C17—C18—H18C 109.	5
N5—C8—C7 112.6 (2) H18A—C18—H18C 109.	5
N5—C8—H8A 109.1 H18B—C18—H18C 109.	5
С7—С8—Н8А 109.1 С17—С20—Н20А 109.	5
N5—C8—H8B 109.1 C17—C20—H20B 109.	5
С7—С8—Н8В 109.1 Н20А—С20—Н20В 109.	5
H8A—C8—H8B 107.8 C17—C20—H20C 109.	5
O3—C16—O4 125.4 (3) H20A—C20—H20C 109.	5
O3—C16—C15 125.8 (3) H20B—C20—H20C 109.	5

O4—C16—C15	108.8 (2)	C11—C13—H13A	109.5
N5-C15-C16	113.2 (2)	C11—C13—H13B	109.5
N5-C15-H15A	108.9	H13A—C13—H13B	109.5
C16—C15—H15A	108.9	C11—C13—H13C	109.5
N5—C15—H15B	108.9	H13A—C13—H13C	109.5
C16—C15—H15B	108.9	H13B—C13—H13C	109.5

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H···A	<i>D</i> —Н	Н…А	D··· A	D—H···A
C2—H2…O1 ⁱ	0.95	2.54	3.443 (4)	160
C6—H6…N1 ⁱⁱ	0.95	2.31	3.252 (4)	173
С9—H9 <i>B</i> …N3 ⁱⁱⁱ	0.99	2.50	3.449 (4)	160
C18—H18 A ···· $Cg1^{iv}$	0.98	2.91	3.864 (4)	166

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+2, *y*–1/2, –*z*+2; (iii) –*x*+1, *y*–1/2, –*z*+1; (iv) *x*, *y*–1, *z*.