Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[(μ_{3}-hydrogenphosphato)(4H-1,2,4-triazole- κN^{1})zinc]

Hafid Aitenneite, ${ }^{\text {a* }}$ Abdeslam El Bouari, ${ }^{\text {a }}$ Said Sebti, ${ }^{\text {b }}$ Mohamed Saadi, ${ }^{\text {c }}$ Lahcen El Ammari ${ }^{\text {d }}$ and Karim Adil ${ }^{\text {e }}$
${ }^{\text {a }}$ Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M'sik Casablanca, Morocco, ${ }^{\mathbf{b}}$ Laboratoire de Chimie Organique Catalyse et Environnement, Faculté des Sciences Ben M'sik Casablanca, Morocco, ${ }^{\text {c Laboratoire de Chimie }}$ du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, ${ }^{\text {d Laboratoire de Chimie du Solide Appliquée, }}$ Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco., and ${ }^{\text {e} L U N A M ~ U n i v e r s i t e ́, ~ U n i v e r s i t e ́ ~ d u ~ M a i n e, ~ C N R S ~ U M R ~ 6283, ~}$ Institut des Molécules et Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
Correspondence e-mail: h_aitenneite@yahoo.com

Received 22 October 2012; accepted 24 October 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$; R factor $=0.021 ; w R$ factor $=0.051$; data-to-parameter ratio $=33.2$.

The asymmetric unit of the title compound, $\left[\mathrm{Zn}\left(\mathrm{HPO}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{3}\right)\right]_{n}$, contains one Zn^{2+} cation, one $\left(\mathrm{HPO}_{4}\right)^{2-}$ anion and a $1,2,4$ triazole ligand. The Zn^{2+} cation is coordinated in a quite regular tetrahedral geometry by O atoms from three phosphate groups and a tertiary N atom from the triazole ring. Each phosphate anion is connected to three $\mathrm{Zn}^{\mathrm{II}}$ cations, leading to a series of corrugated organic-inorganic layers parallel to the ac plane. The overall structure involves stacking of complex hybrid organic-inorganic layers along the b axis. Cohesion in the crystal is ensured by an infinite threedimensional network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the phosphate groups and the triazole ligands.

Related literature

For background to potential applications of similar compounds, see: Horcajada et al. (2012); Li et al. (2012); Wang et al. (2012); Yoon et al. (2012). For hybrid compounds with zinc phosphates, see: Umeyama et al. (2012); Horike et al. (2012). For phosphonate, carboxylate and azolate compounds, see: Stock \& Biswas (2012). For bond-valence analysis, see: Brown \& Altermatt (1985).

Experimental

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{HPO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{3}\right)\right]$	$V=646.43(16) \AA^{3}$
$M_{r}=230.42$	$Z=4$
Orthorhombic, $P c a 2_{1}$	Mo $K \alpha$ radiation
$a=8.5467(13) \AA$	$\mu=4.01 \mathrm{~mm}^{-1}$
$b=8.4344(12) \AA$	$T=296 \mathrm{~K}$
$c=8.9674(13) \AA$	$0.24 \times 0.18 \times 0.12 \mathrm{~mm}$

Data collection

Bruker X8 APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\min }=0.511, T_{\max }=0.638$
8746 measured reflections 3318 independent reflections 3207 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021 \quad \mathrm{H}$-atom parameters constrained
$w R\left(F^{2}\right)=0.051$
$\Delta \rho_{\text {max }}=0.46 \mathrm{e}_{\AA^{-3}}$
$S=1.04$
$\Delta \rho_{\min }=-1.40 \mathrm{e}^{-3}$
3318 reflections
Absolute structure: Flack (1983),
1184 Friedel pairs
Flack parameter: 0.020 (6)

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{2}{ }^{\mathrm{i}}$	0.86	1.99	$2.8427(15)$	175
$\mathrm{O} 4-\mathrm{H} 4 \cdots 1^{1 i}$	0.82	1.80	$2.5978(12)$	164

Symmetry codes: (i) $x, y+1, z$; (ii) $x+\frac{1}{2},-y, z$.
Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5276).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.

metal-organic compounds

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. \& Serre, C. (2012). Chem. Rev. 112, 1232-1268.

Horike, S., Umeyama, D., Inukai, M., Itakura, T. \& Kitagawa, S. (2012). J. Am. Chem. Soc. 134, 7612-7615.
Li, J.-R., Sculley, J. \& Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.

Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stock, N. \& Biswas, S. (2012). Chem. Rev. 112, 933-969.
Umeyama, D., Horike, S., Inukai, M., Itakura, T. \& Kitagawa, S. (2012). J. Am. Chem. Soc. 134, 12780-12785.
Wang, C., Zhang, T. \& Lin, W. (2012). Chem. Rev. 112, 1084-1104.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yoon, M., Srirambalaji, R. \& Kim, K. (2012). Chem. Rev. 112, 1196-1231.

supporting information

Acta Cryst. (2012). E68, m1426-m1427 [doi:10.1107/S1600536812044182]

Poly[(μ_{3}-hydrogenphosphato)(4H-1,2,4-triazole- κN^{1})zinc]

Hafid Aitenneite, Abdeslam El Bouari, Said Sebti, Mohamed Saadi, Lahcen El Ammari and Karim Adil

S1. Comment

Research into organic-inorganic hybrid materials has been an active area in recent years because of their potential applications in catalysis (Yoon et al., 2012), drug-delivery (Horcajada et al., 2012), enantio-selective separation (Li et al., 2012) and non-linear optical materials (Wang et al., 2012). A variety of new solids have been dicovered with fascinating structural architectures ranging from clusters, chains and layers to porous frameworks using phosphonates, carboxylates and/or azolates (Stock \& Biswas, 2012). In this paper, we report the hydrothermal synthesis and crystal structure of a new inorganic-organic hybrid compound based on a zinc cation coordinated by three hydrogenphosphate anions and a 1,2,4triazole ligand.
The three-dimensional structure of $\left[(\mathrm{TAZ}) \mathrm{Zn}\left(\mathrm{HPO}_{4}\right)\right] \mathrm{n}(\mathrm{HTAZ}=1,2,4$ triazole $)$ consists of infinite complex zinchydrogenphosphate layers. Each zinc cation is tetrahedrally coordinated by three O atoms belonging to three crystallographic equivalent phosphate groups and one azote from triazole ring (Fig.1). $\mathrm{Zn}-\mathrm{O}$ distances range from 1.9172 (9) to 1.9635 (9) \AA, and the $\mathrm{Zn} 1-\mathrm{N} 1$ distance is 1.988 (1) \AA (see Table 1). The PO_{4} tetrahedron is reasonably regular with the $\mathrm{P}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles varying between 1.5031 (9) and 1.5730 (9) \AA and 104.95 (6) ${ }^{\circ}$ and $113.91(6)^{\circ}$ respectively. These values are in a good agreement with those typically observed in other phosphate based compounds (Umeyama et al., 2012; Horike, et al., 2012).
A three dimensional view of the crystal structure of the title compound is displayed on Fig.2. The structure can be described as the stacking of corrugated inorganic-organic layers parallel to (010) resulting from the connexion of vertex of PO_{4} groups with $\mathrm{ZnO}_{3} \mathrm{~N}$ tetrahedra (Fig.2).
Bond valence sum calculations (Brown \& Altermatt, 1985) for Zn^{2+} and P^{5+} ions are as expected, viz. 2.05 and 5.02 valence units, respectively. The values of the bond valence sums calculated for the oxygen atoms show low values for O 4 when the contribution of H atom is not considered (i.e. 1.13 valence units). Hence this O atom is associated with a proton and is involved in $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 1$ hydrogen bonding. The crystal structure cohesion is ensured by an infinite threedimensional network of $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$ and $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 1$ hydrogen bonds between the phosphate groups and the triazole ligands (Table 1 and Fig.2).

S2. Experimental

All chemicals purchased were of reagent grade and were used without further purification. The title compound was synthesized in a hydrothermal system. A mixture of $\mathrm{H}_{3} \mathrm{PO}_{4} 85 \%(0.25 \mathrm{ml})$, zinc (II) nitrate hexahydrate $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ $(0.189 \mathrm{~g}), 1,2,4$-triazole $(0.138 \mathrm{~g})$ and water $(5 \mathrm{ml})$ was placed in a Parr acid digestion bomb and heated at 393 K for 48 h. The reaction vessel was allowed to cool to room temperature. Colourless crystals of $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{3}\right) \mathrm{ZnHPO}_{4}$ were filtered off, washed with distilled water, dried in a desiccator at room temperature and manually selected for the structural determination and other characterization. The results of elemental analysis of crystals are: $\mathrm{Zn}, 28.62 ; \mathrm{P}, 13.50 ; \mathrm{O}, 28.02$;

N, 18.40; C, 10.52 and $\mathrm{H}, 0.88 \%$.

S3. Refinement

The highest peak and the deepest hole in the final Fourier map are at $0.92 \AA$ and $0.72 \AA$, from N1 and Zn 1 respectively. H atoms were located in a difference map and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}$ (aromatic) and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}$ (hydroxide). The space group is not centrosymmetric and the polar axis restraint is generated automatically by the SHELXL program. The 1184 Friedel opposite reflections were not merged.

Figure 1
A view of the structure of the title compound showing the coordination environment of the Zn and P atoms. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) $-x+3 / 2, y, z+1 / 2$; (ii) $-x+2,-y, z+1 / 2$; (iii) $-x+$ $2,-y, z-1 / 2$; (iv) $-x+3 / 2, y, z-1 / 2$.

Figure 2
A three dimensional view of the $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{3}\right) \mathrm{ZnHPO}_{4}$ framework structure showing a stacking of the inorganic and organic layers. The PO_{4} tetrahedron is shown in pink and the $\mathrm{ZnO}_{3} \mathrm{~N}$ tetrahedron is blue green. Hydrogen bonds are drawn as dashed lines.

Poly[μ_{3}-hydrogenphosphato)(4H-1,2,4-triazole- $\kappa \mathrm{N}^{1}$)zinc]

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{HPO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{3}\right)\right]$
$M_{r}=230.42$
Orthorhombic, Pca_{1}
Hall symbol: P 2c -2ac
$a=8.5467$ (13) \AA
$b=8.4344$ (12) \AA
$c=8.9674(13) \AA$
$V=646.43(16) \AA^{3}$
$Z=4$

Data collection

Bruker X8 APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\min }=0.511, T_{\max }=0.638$
$F(000)=456$
$D_{\mathrm{x}}=2.368 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3318 reflections
$\theta=4.1-40.2^{\circ}$
$\mu=4.01 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.24 \times 0.18 \times 0.12 \mathrm{~mm}$

8746 measured reflections
3318 independent reflections
3207 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=40.2^{\circ}, \theta_{\text {min }}=4.1^{\circ}$
$h=-14 \rightarrow 15$
$k=-13 \rightarrow 15$
$l=-16 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.051$
$S=1.04$
3318 reflections
100 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: difference Fourier map
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0181 P)^{2}\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}=0.002$
> $\Delta \rho_{\text {max }}=0.46 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\text {min }}=-1.40$ e \AA^{-3}

Absolute structure: Flack (1983), 1184 Friedel pairs
Absolute structure parameter: 0.020 (6)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Zn1	$0.832301(12)$	$0.167666(13)$	$0.51177(2)$	$0.01245(3)$
P1	$0.94990(3)$	$0.03491(3)$	$0.21240(3)$	$0.01101(4)$
O1	$0.84382(9)$	$0.01275(12)$	$0.34886(10)$	$0.01568(14)$
O2	$1.00560(10)$	$-0.12805(10)$	$0.16133(10)$	$0.01765(14)$
O3	$0.87260(11)$	$0.13060(13)$	$0.09170(11)$	$0.02070(16)$
O4	$1.09420(9)$	$0.13727(12)$	$0.26275(11)$	$0.01867(15)$
H4	1.1612	0.0792	0.2988	0.028^{*}
N1	$0.85494(13)$	$0.39236(14)$	$0.44809(12)$	$0.01976(17)$
N2	$0.7928(2)$	$0.50750(18)$	$0.54065(17)$	$0.0380(3)$
N3	$0.90713(16)$	$0.62060(15)$	$0.35052(15)$	$0.0269(2)$
H3	0.9420	0.6926	0.2913	0.032^{*}
C1	$0.8267(2)$	$0.6419(2)$	$0.4777(2)$	$0.0356(4)$
H1	0.7988	0.7405	0.5158	0.043^{*}
C2	$0.9214(2)$	$0.46424(18)$	$0.33568(19)$	$0.0295(3)$
H2	0.9715	0.4136	0.2568	0.035^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.01506(5)$	$0.00996(5)$	$0.01234(5)$	$-0.00078(3)$	$-0.00004(4)$	$0.00108(4)$
P 1	$0.01043(8)$	$0.00993(9)$	$0.01266(9)$	$-0.00027(7)$	$-0.00016(8)$	$-0.00024(8)$
O1	$0.0150(3)$	$0.0176(4)$	$0.0145(3)$	$-0.0025(2)$	$0.0026(2)$	$-0.0032(3)$
O2	$0.0218(3)$	$0.0103(3)$	$0.0209(3)$	$-0.0001(3)$	$0.0082(3)$	$-0.0016(3)$

O3	$0.0171(3)$	$0.0248(4)$	$0.0202(4)$	$0.0019(3)$	$-0.0041(3)$	$0.0069(3)$
O4	$0.0130(3)$	$0.0132(3)$	$0.0298(4)$	$-0.0019(2)$	$-0.0056(3)$	$0.0002(3)$
N1	$0.0269(4)$	$0.0113(4)$	$0.0212(4)$	$0.0000(3)$	$0.0032(3)$	$0.0026(3)$
N2	$0.0693(10)$	$0.0169(5)$	$0.0279(7)$	$0.0023(6)$	$0.0179(6)$	$0.0004(4)$
N3	$0.0365(6)$	$0.0144(4)$	$0.0299(5)$	$-0.0042(4)$	$0.0016(5)$	$0.0081(4)$
C1	$0.0667(13)$	$0.0122(5)$	$0.0279(7)$	$-0.0014(6)$	$0.0031(6)$	$-0.0021(5)$
C2	$0.0412(7)$	$0.0161(5)$	$0.0312(7)$	$0.0034(5)$	$0.0128(5)$	$0.0091(5)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O3}^{\text {i }}$	1.9179 (9)	O4-H4	0.8200
$\mathrm{Zn} 1-\mathrm{O} 2^{\text {ii }}$	1.9570 (8)	N1-C2	1.3064 (18)
$\mathrm{Zn} 1-\mathrm{O} 1$	1.9624 (9)	N1-N2	1.3836 (19)
$\mathrm{Zn} 1-\mathrm{N} 1$	1.9888 (11)	N2-C1	1.299 (2)
P1-O3	1.5031 (10)	N3-C2	1.331 (2)
P1-O2	1.5250 (9)	N3-C1	1.343 (2)
P1-O1	1.5345 (9)	N3-H3	0.8600
P1-O4	1.5717 (9)	C1-H1	0.9300
$\mathrm{O} 2-\mathrm{Zn}{ }^{1 i i}$	1.9570 (8)	C2-H2	0.9300
O3-Zni ${ }^{\text {iv }}$	1.9179 (9)		
$\mathrm{O3}^{\text {i }}-\mathrm{Zn} 1-\mathrm{O}^{\text {ii }}$	111.25 (4)	P1-O4-H4	109.5
O3i-Znl-O1	102.44 (4)	C2-N1-N2	107.71 (12)
$\mathrm{O} 2^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 1$	111.16 (4)	C2-N1-Zn1	134.92 (11)
O3i-Zn1-N1	110.58 (5)	N2-N1-Zn1	117.34 (9)
$\mathrm{O} 2{ }^{\text {ii- }} \mathrm{Zn} 1-\mathrm{N} 1$	106.89 (4)	C1-N2-N1	105.42 (14)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	114.58 (5)	C2-N3-C1	105.33 (13)
O3-P1-O2	113.89 (6)	C2-N3-H3	127.3
O3-P1-O1	112.33 (5)	C1-N3-H3	127.3
O2-P1-O1	108.30 (5)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$	111.50 (16)
O3-P1-O4	104.89 (6)	N2-C1-H1	124.3
O2-P1-O4	109.66 (5)	N3-C1-H1	124.3
O1-P1-04	107.55 (5)	N1-C2-N3	110.04 (14)
P1-O1-Zn1	122.83 (5)	N1-C2-H2	125.0
$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Zn} 1 \mathrm{iii}$	125.50 (5)	N3-C2-H2	125.0
$\mathrm{P} 1-\mathrm{O} 3-\mathrm{Zn} 1^{\text {iv }}$	139.29 (6)		

Symmetry codes: (i) $-x+3 / 2, y, z+1 / 2$; (ii) $-x+2,-y, z+1 / 2$; (iii) $-x+2,-y, z-1 / 2$; (iv) $-x+3 / 2, y, z-1 / 2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots 2^{\text {v }}$	0.86	1.99	$2.8427(15)$	175
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {vi }}$	0.82	1.80	$2.5978(12)$	164

Symmetry codes: (v) $x, y+1, z$; (vi) $x+1 / 2,-y, z$.

