

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzoximate

Tae Ho Kim,^a Suk-Hee Moon,^b Jineun Kim^a* and Ki-Min Park^a*

^aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea, and ^bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea

Correspondence e-mail: jekim@gnu.ac.kr, kmpark@gnu.ac.kr

Received 22 October 2012; accepted 25 October 2012

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.005 Å; R factor = 0.073; wR factor = 0.138; data-to-parameter ratio = 15.7.

In the title compound [systematic name: (3-chloro-2,6-dimethoxyphenyl)(ethoxyimino)methyl benzoate], $C_{18}H_{18}CINO_5$, the phenyl and chlorodimethoxyphenyl rings are linked by the ethoxyiminomethyl benzoate system such that they are almost perpendicular to each other with the dihedral angle between them being 85.72 (9)°. In the crystal, $C-H\cdots O$ and C- $H\cdots Cl$ hydrogen bonds between the phenyl and chlorodimethoxyphenyl rings generate $R_2^2(8)$ rings which link the molecules into zigzag chains along the *b* axis. Additional C- $H\cdots O$ contacts, together with weak intermolecular $C-H\cdots\pi$ interactions, further link the molecules into a three-dimensional network.

Related literature

For information on the toxicity of the title compound, see: Kim *et al.* (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

 $M_r = 363.78$

Experimental

Crystal data C₁₈H₁₈CINO₅ a = 9.4262 (10) Å b = 12.9863 (14) Å c = 15.4227 (16) Å $\beta = 102.843 (2)^{\circ}$ $V = 1840.7 (3) \text{ Å}^{3}$

Monoclinic, $P2_1/c$

Data collection

Bruker APEXII CCD	9736 measured reflections
diffractometer	3606 independent reflections
Absorption correction: multi-scan	2298 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.049$
$T_{\min} = 0.933, \ T_{\max} = 0.977$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.073 & 229 \text{ parameters} \\ wR(F^2) &= 0.138 & H\text{-atom parameters constrained} \\ S &= 1.10 & \Delta\rho_{\text{max}} &= 0.22 \text{ e } \text{ Å}^{-3} \\ 3606 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.30 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and the C13–C18 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O5^{i}$	0.94	2.57	3.409 (4)	148
C17−H17···O1 ⁱⁱ	0.94	2.63	3.496 (4)	154
C18−H18· · · Cl1 ⁱⁱ	0.94	2.89	3.716 (3)	147
$C7 - H7A \cdots Cg1^{iii}$	0.97	2.90	3.570 (4)	127
$C10-H10A\cdots Cg2^{iv}$	0.98	3.01	3.740 (5)	132

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant Nos. 2012M2B2A4029305 and 2012-0007693).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5275).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kim, Y.-J., Lee, S.-W., Cho, J.-R., Park, H.-M. & Ahn, Y.-J. (2007). J. Asia Pac. Entomol. 10, 165–170.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.

organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 223 K

supporting information

Acta Cryst. (2012). E68, o3237 [doi:10.1107/S1600536812044248]

Benzoximate

Tae Ho Kim, Suk-Hee Moon, Jineun Kim and Ki-Min Park

S1. Comment

Benzoximate (IUPAC name: (3-chloro-2,6-dimethoxyphenyl)(ethoxyimino)methyl benzoate) is an acaricide widely used in agriculture targeting ticks and mites (Kim *et al.*, 2007). However, until now its crystal structure has not been reported.

In the title compound (Fig. 1), the two aromatic rings are almost perpendicular to each other with the dihedral angle between them being 85.72 (9)°. Of the two methoxy methyl groups, one (C7) is almost perpendicular to the benzene ring plane [torsion angle C1–C6–O1–C7 = 84.0 (4) °] whereas the other (C8) is nearly parallel to it [torsion angle C3–C4–O2–C8 = 3.8(5)°]. All the bond distances and bond angles within the molecule agree with values reported in the Cambridge Structural Database (Allen, 2002).

In the crystal, C17—H17···O1 and C18—H18···Cl1 hydrogen bonds generate $R_2^2(8)$ rings (Bernstein *et al.*, 1995). Additional C3—H3···O5 hydrogen bonds and C–H··· π contacts, Table 1, further link the molecules into a three dimensional network.

S2. Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. X-ray quality single crystals were obtained by slow evaporation of a solution of the title compound in dichloromethane at room temperature.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.94 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic. d(C-H) = 0.98 Å, $U_{iso} = 1.2U_{eq}(C)$ for methylene, and d(C-H) = 0.97 Å, $U_{iso} = 1.5U_{eq}(C)$ for methyl protons.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

Crystal packing of the title compound with intermolecular C–H···O and C–H···Cl hydrogen bonds and C–H··· π interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. *Cg*1 and *Cg*2 are the centroids of the C1–C6 and the C13–C18 rings, respectively. (Symmetry codes: (i) x, -y + 1/2, z - 1/2; (ii) -x + 1, y - 1/2, -z + 1/2; (iii) -x, -y + 1, -z; (iv) -x, y + 1/2, -z + 1/2.)

(3-Chloro-2,6-dimethoxyphenyl)(ethoxyimino)methyl benzoate

Crystal data	
$C_{18}H_{18}CINO_5$	F(000) = 760
$M_r = 363.78$	$D_{\rm x} = 1.313 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2737 reflections
a = 9.4262 (10) Å	$\theta = 2.2 - 25.6^{\circ}$
b = 12.9863 (14) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 15.4227 (16) Å	T = 223 K
$\beta = 102.843 \ (2)^{\circ}$	Block, colourless
$V = 1840.7 (3) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD	9736 measured reflections
diffractometer	3606 independent reflections
Radiation source: fine-focus sealed tube	2298 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -8 \rightarrow 16$
$T_{\min} = 0.933, T_{\max} = 0.977$	$l = -18 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.073$	Hydrogen site location: inferred from
$wR(F^2) = 0.138$	neighbouring sites
S = 1.10	H-atom parameters constrained
3606 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0351P)^2 + 1.3636P]$
229 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$
	,

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.31473 (12)	0.56710(7)	0.07179 (7)	0.0649 (3)	
01	0.1499 (2)	0.42350 (16)	0.16181 (13)	0.0405 (6)	
O2	0.1097 (3)	0.15458 (19)	-0.04964 (16)	0.0583 (7)	
O3	-0.1289 (3)	0.17796 (19)	0.17061 (16)	0.0578 (7)	
O4	0.0986 (2)	0.12350 (16)	0.12436 (14)	0.0404 (6)	
O5	0.2986 (3)	0.18389 (17)	0.21829 (15)	0.0484 (6)	
N1	-0.0722 (3)	0.2521 (2)	0.12132 (17)	0.0415 (7)	
C1	0.2563 (4)	0.4441 (3)	0.0356 (2)	0.0431 (9)	
C2	0.2902 (4)	0.4053 (3)	-0.0402 (2)	0.0488 (9)	
H2	0.3459	0.4449	-0.0714	0.059*	
C3	0.2430 (4)	0.3084 (3)	-0.0708 (2)	0.0477 (9)	
H3	0.2657	0.2823	-0.1229	0.057*	
C4	0.1622 (3)	0.2502 (3)	-0.0243 (2)	0.0396 (8)	
C5	0.1277 (3)	0.2883 (2)	0.0537 (2)	0.0328 (7)	
C6	0.1751 (3)	0.3869 (2)	0.0833 (2)	0.0355 (8)	
C7	0.0273 (4)	0.4934 (3)	0.1513 (2)	0.0539 (10)	

H7A	0.0326	0.5436	0.1055	0.081*
H7B	0.0300	0.5287	0.2070	0.081*
H7C	-0.0627	0.4548	0.1342	0.081*
C8	0.1477 (6)	0.1095 (4)	-0.1262 (3)	0.0996 (19)
H8A	0.1149	0.1539	-0.1773	0.149*
H8B	0.1014	0.0427	-0.1378	0.149*
H8C	0.2525	0.1014	-0.1153	0.149*
C9	0.0461 (3)	0.2231 (2)	0.10433 (19)	0.0331 (7)
C10	-0.2591 (5)	0.2193 (3)	0.1924 (3)	0.0682 (12)
H10A	-0.2394	0.2897	0.2147	0.082*
H10B	-0.2832	0.1780	0.2404	0.082*
C11	-0.3862 (5)	0.2206 (4)	0.1162 (3)	0.0910 (16)
H11A	-0.3699	0.2706	0.0727	0.137*
H11B	-0.4727	0.2393	0.1368	0.137*
H11C	-0.3991	0.1529	0.0891	0.137*
C12	0.2377 (3)	0.1144 (2)	0.17402 (19)	0.0328 (7)
C13	0.2986 (3)	0.0111 (2)	0.16451 (19)	0.0311 (7)
C14	0.2277 (3)	-0.0602 (2)	0.1025 (2)	0.0390 (8)
H14	0.1367	-0.0443	0.0658	0.047*
C15	0.2915 (4)	-0.1537 (3)	0.0952 (2)	0.0466 (9)
H15	0.2432	-0.2023	0.0539	0.056*
C16	0.4257 (4)	-0.1772 (3)	0.1479 (2)	0.0479 (9)
H16	0.4684	-0.2415	0.1422	0.058*
C17	0.4976 (4)	-0.1070 (3)	0.2091 (2)	0.0487 (9)
H17	0.5895	-0.1230	0.2447	0.058*
C18	0.4341 (4)	-0.0130 (3)	0.2177 (2)	0.0412 (8)
H18	0.4824	0.0350	0.2597	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0716 (7)	0.0457 (5)	0.0686 (7)	-0.0158 (5)	-0.0033 (5)	0.0124 (5)
01	0.0476 (14)	0.0375 (12)	0.0331 (12)	0.0087 (11)	0.0017 (10)	-0.0030 (10)
O2	0.0666 (19)	0.0633 (16)	0.0548 (16)	-0.0204 (14)	0.0342 (13)	-0.0286 (13)
O3	0.0556 (17)	0.0620 (16)	0.0683 (17)	0.0102 (13)	0.0405 (14)	0.0162 (14)
O4	0.0319 (13)	0.0349 (12)	0.0532 (14)	0.0003 (10)	0.0072 (11)	-0.0047 (11)
O5	0.0540 (16)	0.0413 (14)	0.0443 (14)	-0.0034 (12)	-0.0011 (12)	-0.0114 (12)
N1	0.0387 (17)	0.0502 (17)	0.0413 (16)	0.0052 (14)	0.0209 (13)	0.0051 (14)
C1	0.037 (2)	0.042 (2)	0.045 (2)	-0.0017 (16)	-0.0029 (17)	0.0071 (17)
C2	0.035 (2)	0.061 (2)	0.051 (2)	-0.0006 (18)	0.0107 (17)	0.017 (2)
C3	0.041 (2)	0.063 (2)	0.044 (2)	0.0027 (19)	0.0217 (17)	0.0002 (19)
C4	0.0301 (18)	0.049 (2)	0.0417 (19)	-0.0001 (16)	0.0116 (15)	-0.0066 (17)
C5	0.0265 (18)	0.0394 (18)	0.0324 (17)	0.0022 (14)	0.0061 (13)	-0.0020 (15)
C6	0.0343 (19)	0.0370 (18)	0.0309 (17)	0.0077 (15)	-0.0020 (14)	0.0005 (15)
C7	0.064 (3)	0.046 (2)	0.051 (2)	0.0208 (19)	0.0107 (19)	-0.0014 (18)
C8	0.130 (5)	0.099 (4)	0.093 (4)	-0.037 (3)	0.075 (3)	-0.063 (3)
C9	0.0339 (19)	0.0333 (17)	0.0318 (17)	0.0007 (15)	0.0065 (15)	-0.0051 (14)
C10	0.063 (3)	0.079 (3)	0.077 (3)	0.010 (2)	0.047 (2)	0.011 (2)

supporting information

C11 C12	0.054 (3) 0.0356 (19)	0.140 (5) 0.0361 (18)	0.088 (3) 0.0292 (17)	0.007 (3) -0.0038 (16)	0.036 (3) 0.0124 (15)	0.001 (3) 0.0001 (15)
C13	0.0314 (18)	0.0348 (17)	0.0282 (16)	-0.0014 (14)	0.0089 (14)	-0.0022 (14)
C14	0.0313 (19)	0.0422 (19)	0.0415 (18)	0.0051 (16)	0.0040 (15)	-0.0053 (16)
C15	0.041 (2)	0.044 (2)	0.053 (2)	0.0018 (17)	0.0070 (18)	-0.0115 (17)
C16	0.041 (2)	0.044 (2)	0.063 (2)	0.0039 (17)	0.0187 (19)	-0.0032 (18)
C17	0.0304 (19)	0.052 (2)	0.061 (2)	0.0066 (17)	0.0061 (17)	0.0089 (19)
C18	0.034 (2)	0.047 (2)	0.0396 (19)	-0.0028 (16)	0.0003 (15)	0.0001 (16)

Geometric parameters (Å, °)

Cl1—C1	1.740 (3)	C7—H7C	0.9700	
O1—C6	1.370 (4)	C8—H8A	0.9700	
O1—C7	1.450 (4)	C8—H8B	0.9700	
O2—C4	1.361 (4)	C8—H8C	0.9700	
O2—C8	1.433 (4)	C10—C11	1.481 (6)	
O3—N1	1.404 (3)	C10—H10A	0.9800	
O3—C10	1.446 (4)	C10—H10B	0.9800	
O4—C12	1.368 (4)	C11—H11A	0.9700	
O4—C9	1.395 (4)	C11—H11B	0.9700	
O5—C12	1.198 (3)	C11—H11C	0.9700	
N1-C9	1.259 (4)	C12—C13	1.479 (4)	
C1—C2	1.374 (5)	C13—C14	1.391 (4)	
C1—C6	1.389 (5)	C13—C18	1.392 (4)	
C2—C3	1.382 (5)	C14—C15	1.371 (4)	
С2—Н2	0.9400	C14—H14	0.9400	
C3—C4	1.382 (5)	C15—C16	1.377 (5)	
С3—Н3	0.9400	C15—H15	0.9400	
C4—C5	1.404 (4)	C16—C17	1.377 (5)	
C5—C6	1.398 (4)	C16—H16	0.9400	
С5—С9	1.478 (4)	C17—C18	1.379 (5)	
C7—H7A	0.9700	C17—H17	0.9400	
С7—Н7В	0.9700	C18—H18	0.9400	
C6—O1—C7	114.1 (2)	N1—C9—C5	121.8 (3)	
C4—O2—C8	117.9 (3)	O4—C9—C5	116.6 (3)	
N1-O3-C10	108.5 (3)	O3—C10—C11	113.4 (3)	
С12—О4—С9	116.9 (2)	O3—C10—H10A	108.9	
C9—N1—O3	111.7 (3)	C11—C10—H10A	108.9	
C2—C1—C6	120.9 (3)	O3—C10—H10B	108.9	
C2—C1—Cl1	119.5 (3)	C11—C10—H10B	108.9	
C6C1Cl1	119.6 (3)	H10A—C10—H10B	107.7	
C1—C2—C3	120.5 (3)	C10—C11—H11A	109.5	
C1—C2—H2	119.8	C10—C11—H11B	109.5	
С3—С2—Н2	119.8	H11A—C11—H11B	109.5	
C2—C3—C4	119.6 (3)	C10-C11-H11C	109.5	
С2—С3—Н3	120.2	H11A—C11—H11C	109.5	
C4—C3—H3	120.2	H11B—C11—H11C	109.5	

O2—C4—C3	123.9 (3)	O5—C12—O4	122.2 (3)
O2—C4—C5	115.4 (3)	O5—C12—C13	126.3 (3)
C3—C4—C5	120.7 (3)	O4—C12—C13	111.5 (3)
C6—C5—C4	119.0 (3)	C14—C13—C18	119.6 (3)
C6—C5—C9	121.2 (3)	C14—C13—C12	122.3 (3)
C4—C5—C9	119.8 (3)	C18—C13—C12	118.1 (3)
O1—C6—C1	120.4 (3)	C15—C14—C13	119.6 (3)
O1—C6—C5	120.0 (3)	C15—C14—H14	120.2
C1—C6—C5	119.4 (3)	C13—C14—H14	120.2
O1—C7—H7A	109.5	C14—C15—C16	120.6 (3)
O1—C7—H7B	109.5	C14—C15—H15	119.7
H7A—C7—H7B	109.5	С16—С15—Н15	119.7
01—C7—H7C	109.5	C15—C16—C17	120.4 (3)
H7A—C7—H7C	109.5	C15—C16—H16	119.8
H7B-C7-H7C	109.5	C17—C16—H16	119.8
$\Omega^2 - C^8 - H^8 A$	109.5	C_{16} C_{17} C_{18}	119.6 (3)
02 - C8 - H8B	109.5	C_{16} C_{17} H_{17}	120.2
H8A - C8 - H8B	109.5	C18 - C17 - H17	120.2
$\Omega^2 \subset \mathcal{C}$ HSC	109.5	$C_{17} = C_{17} = C_{17} = C_{17}$	120.2 120.2(3)
	109.5	$C_{17} = C_{18} = C_{13}$	120.2 (5)
	109.5	$C_{17} = C_{18} = H_{18}$	119.9
$\frac{116D}{C} = \frac{116C}{C}$	109.5 121.2(2)	015-018-1118	119.9
NI-C9-04	121.2 (5)		
C10-03-N1-C9	176 3 (3)	03 - N1 - C9 - C5	-1795(3)
$C_{1} - C_{2} - C_{3}$	170.5(5)	$C_{12} = 04 = C_{9} = N_{11}$	-1269(3)
$C_1 - C_1 - C_2 - C_3$	-1790(3)	$C_{12} = 04 - C_{9} - C_{5}$	59.6 (3)
$C_1 = C_2 = C_3$	-0.5(5)	$C_{12} = 0 + C_{2} = 0$	59.0 (5) 58.3 (4)
$C_1 - C_2 - C_3 - C_4$	38(5)	$C_4 = C_5 = C_9 = N_1$	-1235(3)
$C_{8} = 02 = C_{4} = C_{5}$	-176.0(4)	$C_{4} C_{5} C_{9} O_{4}$	-128.2(3)
$C_{0} = C_{1} = C_{1} = C_{1}$	170.2(4)	$C_{0} = C_{0} = C_{0} = C_{0}$	120.2(3)
$C_2 = C_3 = C_4 = C_2$	1/9.5(5)	C4 - C3 - C9 - C4	30.0(4)
$C_2 = C_3 = C_4 = C_3$	0.0(3)	N1 = 03 = 010 = 011	74.9 (4) 10 6 (4)
02-04-05-06	-1/8.7(5)	$C_{9} = 04 = C_{12} = 03$	19.0(4)
C_{3} C_{4} C_{5} C_{0}	0.0(5)	$C_{9} = 04 = C_{12} = C_{13}$	-160.0(2)
02-04-05-09	3.0 (4)	05-012-013-014	-1/1.1(3)
$C_3 - C_4 - C_5 - C_9$	-1/.6(3)	04-C12-C13-C14	8.4 (4)
	84.0 (4)	05-012-013-018	6.6 (5)
C/OIC6C5	-100.4 (3)	04—C12—C13—C18	-173.9(3)
C2-C1-C6-O1	175.7 (3)	C18—C13—C14—C15	0.7 (5)
Cl1—C1—C6—O1	-4.7 (4)	C12—C13—C14—C15	178.3 (3)
C2-C1-C6-C5	0.1 (5)	C13—C14—C15—C16	-0.8(5)
Cl1—C1—C6—C5	179.7 (2)	C14—C15—C16—C17	0.2 (5)
C4—C5—C6—O1	-176.3 (3)	C15—C16—C17—C18	0.4 (5)
C9—C5—C6—O1	1.9 (4)	C16—C17—C18—C13	-0.5 (5)
C4—C5—C6—C1	-0.7 (4)	C14—C13—C18—C17	0.0 (5)
C9—C5—C6—C1	177.5 (3)	C12—C13—C18—C17	-177.7 (3)
O3—N1—C9—O4	7.3 (4)		

Hydrogen-bond geometry (Å, °)

Colored Colored to contine	L - full Cl Cl - d 4	- C12 C10	
cg_1 and cg_2 are the centro	ids of the CI-Co and th	ae ULS-ULS rings.	respectively.

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
C3—H3…O5 ⁱ	0.94	2.57	3.409 (4)	148
C17—H17…O1 ⁱⁱ	0.94	2.63	3.496 (4)	154
C18—H18····Cl1 ⁱⁱ	0.94	2.89	3.716 (3)	147
C7—H7 A ··· $Cg1^{iii}$	0.97	2.90	3.570 (4)	127
C10—H10 A ···Cg2 ^{iv}	0.98	3.01	3.740 (5)	132

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) -x, -y+1, -z; (iv) -x, y+1/2, -z+1/2.