Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexakis (μ_{3}-1-methylthiourea- $\left.\kappa^{3} S: S: S\right)$ hexakis[iodidocopper(I)]

Saeed Ahmad, ${ }^{\text {a * Muhammad Mufakkar, }{ }^{\text {b }} \text { Islam Ullah }}$ Khan, ${ }^{\text {c }}$ Hoong-Kun Fun ${ }^{\text {d }}$ and Abdul Waheed ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, ${ }^{\mathbf{b}}$ Department of Chemistry, Government College of Science, Wahdat Road, Lahore, Pakistan, ${ }^{\text {c }}$ Department of Chemistry, Government College University, Lahore, Pakistan, and ${ }^{\text {d }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: saeed_a786@hotmail.com

Received 16 October 2012; accepted 18 October 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.005 \AA$; R factor $=0.027 ; w R$ factor $=0.061$; data-to-parameter ratio $=30.7$.

The title compound, $\left[\mathrm{Cu}_{6} \mathrm{I}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{6}\right]$, was obtained from the reaction of copper(I) iodide with N-methylthiourea (Metu) in equimolar amounts in acetonitile. The complex consists of two six-membered trinuclear $\mathrm{Cu}_{3} \mathrm{~S}_{3} \mathrm{I}_{3}$ cores that combine through triply bridging Metu, forming a hexanuclear core which has $\overline{3}$ symmetry. The $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by three S atoms of Metu and one iodide ion in a distorted tetrahedral geometry. The crystal structure is stabilized by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds and cuprophilic interactions $[\mathrm{Cu} \cdots \mathrm{Cu}$ $=3.0264(9) \AA$.

Related literature

For crystal structures of copper(I) complexes of thiourea-type ligands, see: Ahmad et al. (2010); Bowmaker et al. (2009); Li et al. (2005); Lobana et al. (2003, 2005); Khan et al. (2007); Mufakkar et al. (2007, 2009, 2011); Stocker et al. (1997); Zoufala et al. (2007). For van der Waals radii and cuprophilic interactions, see: Siemeling et al. (1997); Singh et al. (1997).

Experimental

Crystal data
$\left[\mathrm{Cu}_{6} \mathrm{I}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{6}\right]$
$Z=3$
$M_{r}=1683.65$
Mo $K \alpha$ radiation
Trigonal, $R \overline{3}$
$\mu=7.79 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$a=21.7517$ (1) \AA
$0.28 \times 0.15 \times 0.14 \mathrm{~mm}$
$c=7.6269$ (1) A
$V=3125.11(5) \AA^{3}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.179, T_{\text {max }}=0.338$
14898 measured reflections 1995 independent reflections 1649 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad 65$ parameters
$w R\left(F^{2}\right)=0.061$
$S=1.06$
1995 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.32 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.64 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{I} 1^{\mathrm{i}}$	0.83	2.95	$3.744(3)$	161
$\mathrm{~N} 1-\mathrm{H} 2 N 1 \cdots \mathrm{I} 1$	0.80	2.90	$3.698(4)$	173
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{I} 1^{\text {ii }}$	0.80	2.95	$3.756(3)$	177

Symmetry codes: (i) $-y+\frac{2}{3}, x-y+\frac{4}{3}, z+\frac{1}{3}$; (ii) $-x+y-1,-x+1, z$.
Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors gratefully acknowledge Universiti Sains Malaysia and Government College University, Lahore, for providing X-ray facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5016).

References

Ahmad, S., Altaf, M., Stoeckli-Evans, H., Ruffer, T., Lang, H., Mufakkar, M. \& Abdul Waheed, A. (2010). J. Chem. Crystallogr. 40, 639-645.
Bowmaker, G. A., Hanna, J. V., Pakawatchai, C., Skelton, B. W., Thanyasirikul, Y. \& White, A. H. (2009). Inorg. Chem. 48, 350-368.

Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.
Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. \& Chantrapromma, S. (2007). Acta Cryst. E63, m2550-m2551.

Li, D., Shi, W. J. \& Hou, L. (2005). Inorg. Chem. 44, 3907-3913.
Lobana, T. S., Sharma, R., Bermejo, E. \& Castineiras, A. (2003). Inorg. Chem. 42, 7728-7730.
Lobana, T. S., Sharma, R., Sharma, R., Mehra, S., Castineiras, A. \& Turner, R. (2005). Inorg. Chem. 44, 1914-1921.

Mufakkar, M., Ahmad, S., Khan, I. U., Fun, H.-K. \& Chantrapromma, S. (2007). Acta Cryst. E63, m2384

Mufakkar, M., Isab, A. A., Ruffer, T., Lang, H., Ahmad, S., Arshad, N. \& Waheed, A. (2011). Transition Met. Chem. 36, 505-512.

metal-organic compounds

Mufakkar, M., Tahir, M. N., Ahmad, S., Shaheen, M. A. \& Waheed, A. (2009). Acta Cryst. E65, m892-m893
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemeling, U., Vorfeld, U., Neumann, B. \& Stammler, H.-G. (1997). Chem. Соттии. pp. 1723-1724.
Singh, K., Long, J. R. \& Stavropoulos, P. (1997). J. Am. Chem. Soc. 119, 29422943.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stocker, F. B., Troester, M. A. \& Britton, D. (1997). Inorg. Chem. 35, 31453153.

Zoufala, P., Rüffer, T., Lang, H., Ahmad, S. \& Mufakkar, M. (2007). X-ray Struct. Anal. Online 23, x219-x220.

supporting information

Acta Cryst. (2012). E68, m1405-m1406 [doi:10.1107/S1600536812043437]

Hexakis (μ_{3}-1-methylthiourea- $\left.\kappa^{3} S: S: S\right)$ hexakis[iodidocopper(I)]

Saeed Ahmad, Muhammad Mufakkar, Islam Ullah Khan, Hoong-Kun Fun and Abdul Waheed

S1. Comment

Copper(I) complexes with thiones possess a variety of structures ranging from mononuclear three- or four- coordinate species with trigonal planar and tetrahedral $\mathrm{Cu}(\mathrm{I})$ respectively to hexameric species with pseudo-four-coordinated geometry (Ahmad et al. 2010; Bowmaker et al., 2009; Li et al., 2005; Lobana et al., 2003, 2005; Khan et al. 2007; Mufakkar et al., 2007, 2009, 2011; Stocker et al., 1997; Zoufala et al., 2007). In some cases mononuclear units further aggregate to form polymeric structures, for example, $\left[\mathrm{Cu}_{6}(\mathrm{PyT})_{6} \mathrm{I}_{6}\right]$ n (where $\mathrm{Pyt}=$ pyridine-2-thione) (Li et al., 2005; Lobana et al., 2003, 2005). The present report describes the structure of a hexameric copper(I) complex, iodido(N methylthiourea)copper(I), that is characterized by significant copper-copper interactions.
The structure of the title complex is shown in Figure 1. The complex is hexanuclear consisting of six [Metu- $\mathrm{Cu}-\mathrm{I}$] units, associated through sulfur atoms of N-methylthiourea. Three copper(I) iodides and three Metu ligands are combined through bridging sulfur atoms to form a six-membered trinuclear core, $\mathrm{Cu}_{3} \mathrm{~S}_{3} \mathrm{I}_{3}$. Two six-membered trinuclear cores combine via μ_{3}-sulfur atoms of Metu to form the centrosymmetric hexanuclear core, $\mathrm{Cu}_{6} \mathrm{~S}_{6} \mathrm{I}_{6}$. Each copper within the complex is coordinated to three sulfur atoms of N-methylthiourea and with one iodide as a terminal ligand adopting a distorted tetrahedral geometry. The angles around Cu vary over the range $98.22(5)-122.56$ (3) ${ }^{\circ}$. The $\mathrm{Cu}-\mathrm{S}$ bond distances are unequal; two are short $(2.3164(10)$ and $2.3210(10) \AA)$ and one is long (2.6057(13) \AA). However, they are within the range (2.30-2.60 \AA) of the $\mathrm{Cu}-\mathrm{S}$ bond distances found in other complexes. All of the $\mathrm{Cu}-\mathrm{I}$ distances are equal $(2.5379(5) \AA)$ and are in agreement with the values reported in the literature. The hexanuclear structure is supported by significant intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonding (Table 1) and $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions. $\mathrm{The} \mathrm{Cu} \cdots \mathrm{Cu}$ distance of 3.0264 (9) \AA is close to similar distances observed in other complexes. However, this value is slightly larger than the sum of the van der Waals radii of two copper atoms ($2.80 \AA$) (Siemeling et al. 1997; Singh et al., 1997). Similar hexanuclear core structures have been reported for $\left[\mathrm{Cu}_{6}(\operatorname{Imt})_{6} \mathrm{I}_{6}\right] \mathrm{n}$ and $\left[\mathrm{Cu}_{6}\left(\mathrm{Pyt}_{6} \mathrm{I}_{6}\right] \mathrm{n}(\mathrm{Imt}=\right.$ imidazolidine-2-thione and Pyt = pyridine-2-thione; Lobana et al., 2003, 2005).

S2. Experimental

The title compund was prepared by mixing solutions of copper(I) iodide (1.0 mmol) in 10 ml acetonitrile and N-methylthiourea $(1.0 \mathrm{mmol})$ in acetonitrile $(15 \mathrm{ml})$. The mixture was stirred for half an hour and then filtered. The resulting colourless solution when allowed to stand for 24 h yielded white crystals suitable for X-ray structure analysis.

S3. Refinement

All H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.96 \AA, \mathrm{~N}-\mathrm{H}=0.80-0.83 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{C})$

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Symmetry codes:
(a) $1-y, 2+x-y, z$; (b) $-1-x+y, 1-x, z$; (c) $-x, 2-y,-z$; (d) $-1+y,-x+y,-z$; (e) $1+x-y, 1+x,-z$.

Hexakis $\left(\mu_{3}\right.$-1-methylthiourea- $\left.\kappa^{3} S: S: S\right)$ hexakis[iodidocopper(I)]

Crystal data

$\left[\mathrm{Cu}_{6} \mathrm{I}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{6}\right]$
$M_{r}=1683.65$
Trigonal, $R \overline{3}$
Hall symbol: -R 3
$a=21.7517$ (1) \AA
$c=7.6269$ (1) \AA
$V=3125.11(5) \AA^{3}$
$Z=3$
$F(000)=2340$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
$D_{\mathrm{x}}=2.684 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4617 reflections
$\theta=2.2-26.6^{\circ}$
$\mu=7.79 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.28 \times 0.15 \times 0.14 \mathrm{~mm}$

Graphite monochromator
φ and ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.179, T_{\max }=0.338$
14898 measured reflections
1995 independent reflections
1649 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.061$
$S=1.06$
1995 reflections
65 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& R_{\text {int }}=0.035 \\
& \theta_{\max }=29.8^{\circ}, \theta_{\min }=1.9^{\circ} \\
& h=-30 \rightarrow 30 \\
& k=-30 \rightarrow 30 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.082885(13)$	$0.829523(13)$	$0.17796(4)$	$0.04164(9)$
Cu1	$0.04125(3)$	$0.91805(3)$	$0.12398(9)$	$0.05416(16)$
N1	$-0.10312(17)$	$0.76485(17)$	$0.3103(5)$	$0.0478(8)$
H1N1	-0.1264	0.7232	0.3455	0.057^{*}
H2N1	-0.0616	0.7805	0.2909	0.057^{*}
N2	$-0.19615(15)$	$0.78569(16)$	$0.2972(4)$	$0.0394(7)$
H1N2	-0.2067	0.8151	0.2721	0.047^{*}
C1	$-0.12810(18)$	$0.80754(17)$	$0.2777(5)$	$0.0330(7)$
C2	$-0.2500(2)$	$0.7132(2)$	$0.3356(6)$	$0.0489(10)$
H2A	-0.2945	0.7111	0.3573	0.073^{*}
H2B	-0.2363	0.6970	0.4375	0.073^{*}
H2C	-0.2549	0.6834	0.2375	0.073^{*}
S1	$-0.07031(4)$	$0.89448(4)$	$0.21477(14)$	$0.0388(2)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.04018(14)$	$0.03935(13)$	$0.05508(16)$	$0.02713(11)$	$0.00274(11)$	$0.00505(11)$
Cu1	$0.0380(3)$	$0.0348(2)$	$0.0945(4)$	$0.0218(2)$	$-0.0005(3)$	$0.0007(3)$

N1	$0.0340(16)$	$0.0398(17)$	$0.071(2)$	$0.0197(14)$	$0.0127(16)$	$0.0209(17)$
N2	$0.0316(14)$	$0.0353(15)$	$0.0534(19)$	$0.0182(13)$	$0.0053(13)$	$0.0115(14)$
C1	$0.0318(16)$	$0.0306(16)$	$0.0369(17)$	$0.0157(13)$	$0.0033(14)$	$0.0031(13)$
C2	$0.0305(17)$	$0.042(2)$	$0.063(3)$	$0.0101(16)$	$0.0039(18)$	$0.0181(19)$
S1	$0.0266(4)$	$0.0264(4)$	$0.0635(6)$	$0.0133(3)$	$0.0024(4)$	$0.0039(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{I} 1-\mathrm{Cul}$	2.5379 (5)	N2-C1	1.317 (4)
$\mathrm{Cu} 1-\mathrm{S} 1^{\text {i }}$	2.3164 (10)	N2-C2	1.449 (5)
$\mathrm{Cu} 1-\mathrm{S} 1$	2.3210 (10)	N2-H1N2	0.8028
$\mathrm{Cu} 1-\mathrm{S} 1^{\text {ii }}$	2.6057 (13)	C1-S1	1.735 (3)
$\mathrm{Cu}-\mathrm{Cu} 1^{\text {iii }}$	3.0264 (9)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
$\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	3.0264 (9)	C2-H2B	0.9600
N1-C1	1.313 (4)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
N1-H1N1	0.8316	$\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	2.3164 (10)
N1—H2N1	0.8039	$\mathrm{S} 1-\mathrm{Cu} 1^{\text {iii }}$	2.6057 (13)
S1-Cu1-S ${ }^{\text {i }}$	98.22 (5)	C1-N2-C2	124.5 (3)
S1- ${ }^{\text {i }}$ - $1-\mathrm{I} 1$	122.56 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	113.8
S1-Cu1-I1	120.95 (3)	C2-N2-H1N2	121.2
$\mathrm{S} 1{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{S} 1^{\text {ii }}$	102.80 (4)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	120.7 (3)
S1-Cu1-S1i	102.67 (4)	N1-C1-S1	119.5 (3)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{S} 1{ }^{\text {ii }}$	106.80 (3)	N2-C1-S1	119.7 (3)
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {iii }}$	118.09 (3)	N2-C2-H2A	109.5
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {iii }}$	56.49 (3)	N2-C2-H2B	109.5
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {iii }}$	118.39 (2)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
S1ii ${ }^{\text {ii }} \mathrm{Cu} 1-\mathrm{Cu} 1{ }^{\text {iii }}$	47.86 (3)	N2- $22-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	56.52 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	118.03 (3)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	119.84 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	115.65 (12)
$\mathrm{Sl}^{\text {iii }}$ - $\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	47.96 (3)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1$	115.53 (12)
$\mathrm{Cu} 1{ }^{\text {iii- }} \mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	85.08 (3)	$\mathrm{Cu1}{ }^{\text {iv }} \mathrm{S} 1-\mathrm{Cu} 1$	123.88 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	126.2	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu1}{ }^{\text {iii }}$	98.60 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1$	116.1	$\mathrm{Cu1}{ }^{\text {iv }}-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iii }}$	75.63 (3)
H1N1-N1-H2N1	117.6	$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iii }}$	75.55 (3)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	-7.1 (6)	$\mathrm{Cu1}$ iii- $\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1$	92.76 (14)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	174.9 (3)	$\mathrm{Cul}{ }^{\text {iii }} \mathrm{Cu}-\mathrm{C} 1-\mathrm{C} 1$	154.78 (14)
N1-C1-S1-Cu1 ${ }^{\text {iv }}$	171.7 (3)	$\mathrm{S} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	57.15 (8)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	-10.3 (4)	$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	-166.73 (4)
N1-C1-S1-Cu1	15.6 (4)	$\mathrm{S} 1{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	-48.03 (7)
N2- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1$	-166.4 (3)	$\mathrm{Cu1}{ }^{\text {iii- }} \mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	-61.20 (5)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iii }}$	93.6 (3)	$\mathrm{Cu1}$ ii $-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iv }}$	0.83 (8)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iii }}$	-88.4 (3)	$\mathrm{S} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu1}{ }^{\text {iii }}$	118.35 (4)
$\mathrm{S} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1$	-148.90 (13)	$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu}{ }^{1 i \mathrm{iij}}$	-105.53 (3)

$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1$	$-12.78(15)$	$\mathrm{S} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\mathrm{iii}}$	$13.17(4)$
$\mathrm{S} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1$	$105.92(14)$	$\mathrm{Cu} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cu} 1^{\mathrm{iii}}$	$62.03(4)$

Symmetry codes: (i) $-y+1, x-y+2, z$; (ii) $x-y+1, x+1,-z$; (iii) $y-1,-x+y,-z$; (iv) $-x+y-1,-x+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{I} 1^{\mathrm{v}}$	0.83	2.95	$3.744(3)$	161
$\mathrm{~N} 1 — \mathrm{H} 2 N 1 \cdots \mathrm{I} 1$	0.80	2.90	$3.698(4)$	173
$\mathrm{~N} 2 — \mathrm{H} 1 N 2 \cdots \mathrm{I}^{\mathrm{iv}}$	0.80	2.95	$3.756(3)$	177

Symmetry codes: (iv) $-x+y-1,-x+1, z$; (v) $-y+2 / 3, x-y+4 / 3, z+1 / 3$.

