organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-[(3-Chloro-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepin-11-yl)amino]heptanoic acid S,S-dioxide hydrochloride

Anatoly Mishnev,^a Alvis Zvirgzdins,^{b*} Andris Actins^b and Mara Delina^b

^aLatvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga, LV-1006, Latvia, and ^bUniversity of Latvia, Department of Chemistry, Kr. Valdemara Street 48, Riga, IV-1013, Latvia

Correspondence e-mail: alvis.zvirgzdins@lais.lv

Received 31 August 2012; accepted 10 October 2012

Key indicators: single-crystal X-ray study; T = 190 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.100; data-to-parameter ratio = 18.3.

In the title compound, C21H26ClN2O4SCl, also known as tianeptine hydrochloride, the seven-membered ring adopts a boat conformation. The dihedral angle between the mean planes of the benzene rings is 44.44 (7)°. There is an intramolecular hydrogen bond formed via $S = O \cdots H - N$. In the crystal, molecules are connected via pairs of N-H.·O, N- $H \cdots Cl$ and $O - H \cdots Cl$ hydrogen bonds, forming inversion dimers, which are consolidated by $C-H \cdots O$ interactions. The dimers are linked by $C-H \cdots O$ and $C-H \cdots Cl$ interactions, forming a two-dimensional network lying parallel to (011).

Related literature

For general information about tianeptine and its preparation, see: Guzman et al. (2010). For related structures, see: Orola et al. (2012).

Experimental

Crystal data

$C_{21}H_{26}ClN_2O_4S^+ \cdot Cl^-$	a = 9.5439 (2) Å
$M_r = 473.40$	b = 10.0910 (2) Å
Triclinic, P1	c = 13.1802 (3) Å

$\alpha = 104.000 \ (1)^{\circ}$	Mo $K\alpha$ radiation
$\beta = 101.538 \ (1)^{\circ}$	$\mu = 0.41 \text{ mm}^{-1}$
$\gamma = 105.018 \ (1)^{\circ}$	T = 190 K
V = 1139.04 (4) Å ³	$0.24 \times 0.20 \times 0.14 \text{ mm}$
Z = 2	

Data collection

Nonius KappaCCD diffractometer 4015 reflections with $I > 2\sigma(I)$ 7552 measured reflections $R_{\rm int} = 0.021$ 4985 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 273 parameters $wR(F^2) = 0.100$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ 4985 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H3A\cdots Cl2^{i}$	0.90	2.31	3.154 (2)	157
$N2 - H3B \cdots O3^{ii}$ C16 - H11 $B \cdots O3^{ii}$	0.90 0.97	2.32 2.56	2.821(2) 3.201(2)	115 124
O4−H6···Cl2 ⁱⁱⁱ	0.82	2.22	3.043 (2)	176
$C4 - H3 \cdot \cdot \cdot Cl2^{iv}$	0.93	2.82	3.651 (2)	150 157
C7-H7···Cl2	0.97	2.50	3.534 (2)	162
$N2-H3B\cdots O2$	0.90	2.02	2.802 (2)	144

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 2, -y + 1, -z + 1; (iii) x, y, z + 1; (iv) -x + 1, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1.

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

This work was supported by the European Regional Development Fund (No. 2011/0014/2DP/2.1.1.1.0/10/APIA/ VIAA/092).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2586).

References

- Guzman, H., Popov, A., Rammeloo, T. J. L., Remenar, J., Saoud, J. B. & Tawa, M. (2010). US Patent No. 20,100,112,051 A1 20100506.
- Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Orola, L., Veidis, M. V., Sarcevica, I., Actins, A., Belyakov, S. & Platonenko, A. (2012). Int. J. Pharm. 432, 50-56.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o3136 [doi:10.1107/S1600536812042432]

7-[(3-Chloro-6-methyl-6,11-dihydrodibenzo[*c*,*f*][1,2]thiazepin-11-yl)amino]heptanoic acid *S*,*S*-dioxide hydrochloride

Anatoly Mishnev, Alvis Zvirgzdins, Andris Actins and Mara Delina

S1. Comment

Tianeptine salts are of wide interest since they are crystalline. Although the synthesis of the title compound, tianeptine hydrochloride, has been described (Guzman *et al.*, 2010) we describe in this article an improved method of its synthesis and its crystal structure.

In the title compound (Fig. 1), the seven-membered ring adopts a boat conformation with the values of torsion angles: C1-S1-N1-C13 = -78.4 (2) and C1-C6-C7-C8 = -56.3 (3)°. The dihedral angle between the mean planes of the two benzene rings (C1-C6 and C8-C13) is 44.44 (7)°. There is an intramolecular hydrogen bond in the title molecule which is formed *via* S1=O2···H3B-N2 that stabilizes the molecular structure. In the crystal, the molecules are connected *via* hydrogen bonds between carboxyl and amine groups and chloride anion, O4-H6···Cl2, N2-H3A···Cl2 and N2-H3B···O3. The crystal structure is further consolidated by intermolecular interactions, C18-H6A···O4, C4-H3···Cl2, C16-H11B···O3 and C7-H7···Cl2 (Table 1 and Fig. 2). The supramolecular structure of tianeptine hydrochloride consists of parallel oriented tricyclic fragment and parallel oriented carbon atom chains (heptanoic acid). Carbon atom chains are linked with hydrogen bonds *via* chloride anion, amine and carboxylgroup. The torsion angle C8-C7-N2-C15 is -168.4 (2)° so that the carbon atom chain C15-C20 is almost parallel to the benzene ring C8-C13.

The crystal structures of tianeptine polymorphs have been reported recently (Orola *et al.*, 2012). The title structure is more similar with polymorph A structure in which tianeptine molecules are linked *via* hydrogen bonds between amine and carboxyl groups. The tianeptine molecules in the structure of tianeptine polymorph B are in a zwiterrion form.

S2. Experimental

Tianeptine sodium salt (0.5 g;1.09 mmol) was dissolved in 20 ml deionized water in a Erlenmeyer flask and added \sim 3 mmol of hydrochloric acid. Mixture were stirred for 6 h. After 6 h suspension was filtered and washed with cold water. The product was dried and recrystallized from water by slow evaporation at room temperature.

S3. Refinement

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.97 Å and refined as riding on their parent atoms with $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl groups and $U_{iso}(H) = 1.2 U_{eq}(C)$ for others.

Figure 1

The molecular structure of the title compound showing 50% probability ellipsoids and hydrogen atoms are shown as small spheres of arbitrary radii.

Figure 2

Packing diagram of the title compound viewed along the *c* axis. Blue lines indicate hydrogen bonds.

7-[(3-Chloro-6-methyl-6,11-dihydrodibenzo[*c*,*f*][1,2]thiazepin- 11-yl)amino]heptanoic acid *S*,*S*-dioxide hydrochloride

<i>a</i> = 9.5439 (2) Å
b = 10.0910 (2) Å
c = 13.1802 (3) Å
$\alpha = 104.4000 \ (12)^{\circ}$

Cell parameters from 6759 reflections

 $\theta = 1.0-27.1^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$

Plate, colourless

 $0.24 \times 0.20 \times 0.14 \text{ mm}$

T = 190 K

 $\beta = 101.538 (1)^{\circ}$ $\gamma = 105.0180 (11)^{\circ}$ $V = 1139.04 (4) \text{ Å}^3$ Z = 2 F(000) = 496 $D_x = 1.380 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Dura concerion	
Nonius KappaCCD	4015 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.021$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.1^\circ, \theta_{\rm min} = 3.1^\circ$
Graphite monochromator	$h = -11 \rightarrow 12$
CCD scans	$k = -12 \rightarrow 12$
7552 measured reflections	$l = -16 \rightarrow 16$
4985 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
4985 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0363P)^2 + 0.641P]$
273 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.018$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.48761 (6)	0.92769 (6)	0.32682 (5)	0.03721 (15)	
S1	1.08561 (5)	1.04778 (5)	0.36222 (4)	0.02568 (12)	
Cl2	0.77093 (5)	0.48993 (5)	-0.09234 (4)	0.03147 (13)	
O2	1.17517 (14)	0.95570 (14)	0.37600 (11)	0.0274 (3)	
N2	1.04759 (17)	0.69630 (16)	0.20172 (13)	0.0218 (3)	
H3A	1.1139	0.6682	0.1689	0.026*	
H3B	1.0994	0.7516	0.2708	0.026*	
04	0.57739 (17)	0.42297 (18)	0.67606 (12)	0.0375 (4)	
H6	0.6331	0.4443	0.7378	0.056*	
01	1.08744 (17)	1.15746 (16)	0.45495 (12)	0.0371 (4)	
O3	0.76590 (16)	0.35639 (18)	0.62834 (12)	0.0382 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N1	1.13800 (18)	1.12491 (17)	0.27471 (14)	0.0281 (4)
C5	0.7141 (2)	0.7622 (2)	0.13441 (16)	0.0264 (4)
H2	0.6903	0.6926	0.0667	0.032*
C4	0.5978 (2)	0.7900 (2)	0.17507 (17)	0.0288 (4)
Н3	0.4974	0.7398	0.1352	0.035*
C6	0.8655 (2)	0.83537 (19)	0.19193 (15)	0.0212 (4)
C2	0.7818 (2)	0.9710 (2)	0.33545 (16)	0.0265 (4)
Н5	0.8047	1.0416	0.4025	0.032*
C18	0.7174 (2)	0.4501 (2)	0.40383 (16)	0.0266 (4)
H6A	0.6521	0.5092	0.4011	0.032*
H6B	0.7988	0.4970	0.4713	0.032*
C7	0.9826 (2)	0.7887 (2)	0.14329 (15)	0.0216 (4)
H7	0.9253	0.7226	0.0698	0.026*
C3	0.6328 (2)	0.8933 (2)	0.27553 (17)	0.0272 (4)
C21	0.6408 (2)	0.3647 (2)	0.60345 (16)	0.0261 (4)
C20	0.5396 (2)	0.3075 (2)	0.48869 (16)	0.0282 (4)
H10A	0.4775	0.3685	0.4796	0.034*
H10B	0.4726	0.2109	0.4761	0.034*
C16	0.8769 (2)	0.5855 (2)	0.30509 (16)	0.0268 (4)
H11A	0.8158	0.6486	0.3035	0.032*
H11B	0.9622	0.6312	0.3702	0.032*
C1	0.8963 (2)	0.9404 (2)	0.29264 (15)	0.0228 (4)
C15	0.9334 (2)	0.5636 (2)	0.20475 (16)	0.0249 (4)
H13A	0.9785	0.4873	0.2007	0.030*
H13B	0.8475	0.5310	0.1405	0.030*
C13	1.1778 (2)	1.0475 (2)	0.18368 (16)	0.0273 (4)
C19	0.6274 (2)	0.3021 (2)	0.40408 (16)	0.0291 (4)
H15A	0.6963	0.2486	0.4177	0.035*
H15B	0.5570	0.2497	0.3322	0.035*
C8	1.1112 (2)	0.8998 (2)	0.12618 (15)	0.0244 (4)
C17	0.7835 (3)	0.4409 (2)	0.30818 (18)	0.0338 (5)
H17A	0.7014	0.3949	0.2411	0.041*
H17B	0.8465	0.3796	0.3104	0.041*
С9	1.1641 (2)	0.8421 (3)	0.03912 (17)	0.0338 (5)
H18	1.1217	0.7438	0.0004	0.041*
C14	1.0767 (3)	1.2418 (2)	0.2609 (2)	0.0444 (6)
H19A	1.1297	1.2932	0.2203	0.067*
H19B	1.0895	1.3074	0.3313	0.067*
H19C	0.9710	1.2007	0.2221	0.067*
C12	1.2910 (2)	1.1316 (3)	0.1514 (2)	0.0381 (5)
H20	1.3341	1.2301	0.1891	0.046*
C10	1.2774 (3)	0.9263 (3)	0.0089 (2)	0.0437 (6)
H21	1.3110	0.8851	-0.0489	0.052*
C11	1.3399 (3)	1.0725 (3)	0.0656 (2)	0.0437 (6)
H22	1.4151	1.1306	0.0455	0.052*

Atomic	displacement parameter.	s (Ų)
--------	-------------------------	-------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0319 (3)	0.0313 (3)	0.0597 (4)	0.0146 (2)	0.0278 (3)	0.0173 (3)
S 1	0.0248 (2)	0.0244 (2)	0.0245 (2)	0.00797 (19)	0.00501 (19)	0.0035 (2)
Cl2	0.0313 (3)	0.0342 (3)	0.0234 (2)	0.0100 (2)	0.0077 (2)	0.0005 (2)
O2	0.0264 (7)	0.0312 (7)	0.0254 (7)	0.0130 (6)	0.0048 (6)	0.0086 (6)
N2	0.0221 (8)	0.0241 (8)	0.0221 (8)	0.0099 (6)	0.0091 (6)	0.0075 (7)
O4	0.0396 (9)	0.0494 (9)	0.0282 (8)	0.0243 (8)	0.0087 (7)	0.0107 (7)
01	0.0359 (8)	0.0334 (8)	0.0324 (8)	0.0106 (7)	0.0060 (6)	-0.0025 (7)
O3	0.0293 (8)	0.0611 (10)	0.0343 (8)	0.0210 (7)	0.0112 (6)	0.0242 (8)
N1	0.0265 (8)	0.0238 (8)	0.0337 (9)	0.0080 (7)	0.0070 (7)	0.0102 (7)
C5	0.0272 (10)	0.0288 (10)	0.0235 (10)	0.0096 (8)	0.0062 (8)	0.0091 (8)
C4	0.0223 (10)	0.0304 (11)	0.0353 (11)	0.0078 (8)	0.0088 (8)	0.0132 (9)
C6	0.0222 (9)	0.0227 (9)	0.0225 (9)	0.0088 (7)	0.0083 (7)	0.0108 (8)
C2	0.0321 (10)	0.0236 (10)	0.0290 (10)	0.0129 (8)	0.0132 (8)	0.0096 (8)
C18	0.0287 (10)	0.0273 (10)	0.0288 (10)	0.0114 (8)	0.0123 (8)	0.0119 (9)
C7	0.0234 (9)	0.0242 (9)	0.0180 (9)	0.0085 (7)	0.0065 (7)	0.0068 (8)
C3	0.0277 (10)	0.0262 (10)	0.0398 (11)	0.0140 (8)	0.0192 (9)	0.0179 (9)
C21	0.0273 (10)	0.0261 (10)	0.0300 (10)	0.0086 (8)	0.0106 (8)	0.0160 (9)
C20	0.0254 (10)	0.0293 (10)	0.0291 (10)	0.0047 (8)	0.0082 (8)	0.0119 (9)
C16	0.0299 (10)	0.0284 (10)	0.0264 (10)	0.0109 (8)	0.0135 (8)	0.0103 (9)
C1	0.0230 (9)	0.0219 (9)	0.0249 (9)	0.0086 (7)	0.0072 (7)	0.0086 (8)
C15	0.0274 (10)	0.0221 (9)	0.0271 (10)	0.0081 (8)	0.0112 (8)	0.0083 (8)
C13	0.0233 (10)	0.0323 (11)	0.0311 (10)	0.0111 (8)	0.0076 (8)	0.0163 (9)
C19	0.0324 (11)	0.0262 (10)	0.0272 (10)	0.0064 (8)	0.0107 (8)	0.0074 (9)
C8	0.0227 (9)	0.0314 (10)	0.0235 (9)	0.0114 (8)	0.0072 (8)	0.0133 (8)
C17	0.0452 (12)	0.0280 (11)	0.0340 (11)	0.0132 (9)	0.0209 (10)	0.0105 (9)
C9	0.0341 (11)	0.0434 (12)	0.0309 (11)	0.0161 (10)	0.0141 (9)	0.0162 (10)
C14	0.0553 (15)	0.0302 (12)	0.0531 (15)	0.0198 (11)	0.0141 (12)	0.0171 (11)
C12	0.0286 (11)	0.0400 (13)	0.0507 (14)	0.0077 (9)	0.0107 (10)	0.0270 (12)
C10	0.0401 (13)	0.0665 (17)	0.0386 (13)	0.0212 (12)	0.0233 (11)	0.0272 (13)
C11	0.0323 (12)	0.0622 (17)	0.0528 (15)	0.0146 (11)	0.0216 (11)	0.0391 (14)

Geometric parameters (Å, °)

Cl1—C3	1.7332 (19)	С7—Н7	0.9800
S1—01	1.4240 (15)	C21—C20	1.499 (3)
S1—O2	1.4354 (14)	C20—C19	1.522 (3)
S1—N1	1.6315 (17)	C20—H10A	0.9700
S1—C1	1.7629 (19)	C20—H10B	0.9700
N2	1.507 (2)	C16—C15	1.513 (3)
N2—C7	1.521 (2)	C16—C17	1.515 (3)
N2—H3A	0.9000	C16—H11A	0.9700
N2—H3B	0.9000	C16—H11B	0.9700
O4—C21	1.328 (2)	C15—H13A	0.9700
O4—H6	0.8200	C15—H13B	0.9700
O3—C21	1.204 (2)	C13—C8	1.397 (3)

N1—C13	1 436 (3)	C13—C12	1400(3)
N1_C14	1.480(3)	C19H154	0.9700
$C_5 C_4$	1.400(3) 1.387(3)	C10 H15B	0.9700
C_{5} C_{4}	1.307(3)	$C_8 C_9$	1.401(3)
C5_H2	1.392(3)	C_{3}	0.0700
C_{3}	1.391(2)	C17 $H17P$	0.9700
C4 - C3	1.361 (3)	C1/-H1/B	0.9700
C4—H3	0.9300	C9 - C10	1.364 (3)
C6C1	1.398 (3)	C9—H18	0.9300
	1.513 (2)	C14—H19A	0.9600
$C_2 = C_3$	1.388 (3)	C14—H19B	0.9600
C2—C1	1.393 (3)	C14—H19C	0.9600
С2—Н5	0.9300	C12—C11	1.369 (3)
C18—C17	1.512 (3)	C12—H20	0.9300
C18—C19	1.518 (3)	C10—C11	1.381 (4)
C18—H6A	0.9700	C10—H21	0.9300
C18—H6B	0.9700	C11—H22	0.9300
С7—С8	1.529 (2)		
O1—S1—O2	119.59 (9)	C15—C16—C17	109.79 (16)
01—S1—N1	108.15 (9)	C15—C16—H11A	109.7
O2—S1—N1	106.88 (8)	C17—C16—H11A	109.7
O1—S1—C1	108.63 (9)	C15—C16—H11B	109.7
O2—S1—C1	109.38 (8)	C17—C16—H11B	109.7
N1—S1—C1	102.91 (8)	H11A—C16—H11B	108.2
C15—N2—C7	115.42 (14)	C2—C1—C6	122.19 (17)
C15—N2—H3A	108.4	C2	118.86 (15)
C7—N2—H3A	108.4	C6C1S1	118.74 (14)
C15—N2—H3B	108.4	N2-C15-C16	114.61 (16)
C7—N2—H3B	108.4	N2—C15—H13A	108.6
H3A—N2—H3B	107.5	C16—C15—H13A	108.6
C21—O4—H6	109.5	N2—C15—H13B	108.6
C13—N1—C14	117.16 (17)	C16—C15—H13B	108.6
C13—N1—S1	120.96 (13)	H13A—C15—H13B	107.6
C14—N1—S1	115.98 (15)	C8-C13-C12	119.4 (2)
C4-C5-C6	121.92 (19)	C8-C13-N1	125.42(17)
C4—C5—H2	119.0	C12— $C13$ — $N1$	115 16 (19)
C6-C5-H2	119.0	C18 - C19 - C20	113 90 (17)
$C_{3} - C_{4} - C_{5}$	119.18 (18)	C18 - C19 - H15A	108.8
$C_3 - C_4 - H_3$	120.4	C_{20} C_{19} H_{15A}	108.8
$C_5 - C_4 - H_3$	120.4	C_{18} C_{19} H_{15R}	108.8
C_{5} C_{6} C_{1}	120.1 117.17(17)	C_{20} C_{19} H_{15B}	108.8
$C_5 C_6 C_7$	117.17(17) 117.27(17)	H15A C10 H15B	107.7
$C_{1} = C_{0} = C_{7}$	117.27 (17)	$C_{13} C_{8} C_{9}$	107.7
$C_1 = C_0 = C_1$	125.40(10) 118.21(18)	$C_{13} = C_{8} = C_{7}$	117.75(10) 128.70(17)
$C_3 = C_2 = C_1$	120.9	$C_{13} = C_{0} = C_{1}$	120.70(17) 112.54(19)
$C_{3} - C_{2} - H_{5}$	120.0	$C_7 - C_0 - C_7$	113.34(10) 114.47(17)
$C_1 - C_2 - \Pi_3$	120.0 112.27(17)	$C_{10} - C_{17} - C_{10}$	114.47 (17) 100 6
C17 C10 U/A	112.2/(17)	C_{10} C_{17} H_{17}	108.0
U1/U10H0A	109.2	U_{10} $-U_{1}$ $-H_{1}$ $/A$	108.0

C19—C18—H6A	109.2	C18—C17—H17B	108.6
С17—С18—Н6В	109.2	C16—C17—H17B	108.6
С19—С18—Н6В	109.2	H17A—C17—H17B	107.6
H6A—C18—H6B	107.9	С10—С9—С8	122.2 (2)
C6—C7—N2	111.23 (14)	С10—С9—Н18	118.9
C6-C7-C8	120.45 (16)	C8—C9—H18	118.9
N2-C7-C8	109.32 (14)	N1—C14—H19A	109.5
С6—С7—Н7	104.8	N1—C14—H19B	109.5
N2-C7-H7	104.8	H19A—C14—H19B	109.5
C8—C7—H7	104.8	N1—C14—H19C	109.5
C4-C3-C2	121.21 (18)	H19A—C14—H19C	109.5
C4-C3-C11	119 27 (15)	H19B— $C14$ — $H19C$	109.5
$C_2 - C_3 - C_{11}$	119.51 (16)	$C_{11} - C_{12} - C_{13}$	121.6(2)
03-C21-04	122 96 (19)	$C_{11} - C_{12} - H_{20}$	119.2
03 - C21 - C20	122.90(19) 123.80(19)	C_{13} C_{12} H_{20}	119.2
03 - 021 - 020	123.00(17) 113.22(17)	C_{11} C_{10} C_{9}	119.2
C_{21} C_{20} C_{10}	112.61 (16)	$C_{11} = C_{10} = C_{21}$	119.1 (2)
$C_{21} = C_{20} = C_{19}$	100.1	$C_{11} = C_{10} = H_{21}$	120.4
$C_{21} = C_{20} = H_{10A}$	109.1	$C_{2} = C_{10} = H_{21}$	120.4
C_{19} C_{20} H_{10} H_{10} C_{20} H_{10} H	109.1	$C_{12} = C_{11} = C_{10}$	119.9 (2)
$C_{21} = C_{20} = H_{10B}$	109.1	C12 - C11 - H22	120.0
1104 C20 H10B	107.9	C10-C11-H22	120.0
П10А—С20—П10В	107.8		
Q1 81 N1 C13	166 92 (14)	N1 S1 C1 C2	-116 22 (15)
01 - 51 - 11 - 013	100.02(14) 26.82(17)	$N_1 = S_1 = C_1 = C_2$	-110.33(13) 172.00(14)
02 - 51 - N1 - C13	50.85 (17) 78.24 (10)	$O_1 = S_1 = C_1 = C_0$	54.96 (14)
CI = SI = NI = CIA	-/8.34 (16)	02 - S1 - C1 - C6	-54.80 (10)
01 = S1 = N1 = C14	-41.01 (17)	NI = SI = CI = C0	58.50 (16)
02 = S1 = N1 = C14	-1/0.99(15)	C/-N2-C15-C16	-92.52 (19)
CI = SI = NI = CI4	/3.83 (1/)	C1/-C16-C15-N2	-1/0.85 (16)
$C_{6} - C_{5} - C_{4} - C_{3}$	0.0 (3)	C14 - N1 - C13 - C8	-11/.4 (2)
C4—C5—C6—C1	-0.8(3)	SI = NI = CI3 = C8	34.5 (3)
C4—C5—C6—C7	1/5.82 (17)	C14—N1—C13—C12	61.3 (2)
C_{5} — C_{6} — C_{7} — N_{2}	-102.80(18)	SI—NI—CI3—CI2	-146.80 (15)
C1—C6—C7—N2	73.5 (2)	C17—C18—C19—C20	-171.27 (17)
C5—C6—C7—C8	127.40 (18)	C21—C20—C19—C18	-68.0 (2)
C1—C6—C7—C8	-56.3 (2)	C12—C13—C8—C9	1.3 (3)
C15—N2—C7—C6	56.1 (2)	N1—C13—C8—C9	179.94 (17)
C15—N2—C7—C8	-168.43 (15)	C12—C13—C8—C7	-177.35 (18)
C5—C4—C3—C2	1.0 (3)	N1—C13—C8—C7	1.3 (3)
C5—C4—C3—Cl1	-179.69 (14)	C6—C7—C8—C13	27.4 (3)
C1—C2—C3—C4	-1.2 (3)	N2—C7—C8—C13	-103.2 (2)
C1—C2—C3—C11	179.56 (13)	C6—C7—C8—C9	-151.28 (17)
O3—C21—C20—C19	-26.4 (3)	N2	78.08 (19)
O4—C21—C20—C19	155.14 (17)	C19—C18—C17—C16	-178.95 (17)
C3—C2—C1—C6	0.3 (3)	C15—C16—C17—C18	-178.47 (17)
C3—C2—C1—S1	174.95 (13)	C13—C8—C9—C10	-0.6 (3)
C5—C6—C1—C2	0.7 (3)	C7—C8—C9—C10	178.25 (19)
C7—C6—C1—C2	-175.65 (17)	C8-C13-C12-C11	-0.9(3)

C5—C6—C1—S1	-174.00 (13)	N1-C13-C12-C11	-179.73 (19)
C7—C6—C1—S1	9.7 (2)	C8—C9—C10—C11	-0.5 (3)
O1—S1—C1—C2	-1.84 (17)	C13—C12—C11—C10	-0.2 (3)
O2—S1—C1—C2	130.31 (15)	C9—C10—C11—C12	0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H…A	<i>D</i> —Н	H····A	D…A	D—H…A
	0.00	2.21	2 154 (2)	157
$N2 - H3A - Cl2^4$	0.90	2.31	3.154 (2)	15/
$N2-H3B\cdotsO3^{ii}$	0.90	2.32	2.821 (2)	115
C16—H11 <i>B</i> ···O3 ⁱⁱ	0.97	2.56	3.201 (2)	124
O4—H6···Cl2 ⁱⁱⁱ	0.82	2.22	3.043 (2)	176
C4—H3···Cl2 ^{iv}	0.93	2.82	3.651 (2)	150
C18—H6A····O4 ^v	0.97	2.56	3.467 (2)	157
C7—H7···Cl2	0.98	2.59	3.534 (2)	162
N2—H3 <i>B</i> ···S1	0.90	2.98	3.533 (2)	121
N2—H3 <i>B</i> ···O2	0.90	2.02	2.802 (2)	144
C2—H5…O1	0.93	2.52	2.894 (2)	104
C14—H19 <i>B</i> …O1	0.96	2.48	2.881 (3)	105

Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+1, -z+1; (iii) x, y, z+1; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1.