Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sodium pentafluorophenylborate

Hannes Vitze, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-LaueStr. 7, 60438 Frankfurt/Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 10 October 2012; accepted 11 October 2012
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.058 ; w R$ factor $=0.138$; data-to-parameter ratio $=6.5$.

The crystal structure of the title compound, $\mathrm{Na}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BH}_{3}\right]$, is composed of discrete anions and cations. The sodium cations are surrounded by four anions with three short $\mathrm{Na} \cdots \mathrm{B}$ [2.848 (8), 2.842 (7) and 2.868 (8) A] and two short Na•F contacts [2.348 (5) and 2.392 (5) \AA], forming a three-dimensional network. The anion is the first structural example of a pentafluorophenyl ring carrying a BH_{3} group.

Related literature

For synthetic background, see: Schnurr et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data
$\mathrm{Na}^{+} . \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BF}_{5}{ }^{-}$
$M_{r}=203.88$
Monoclinic, $P 2_{1}$
$V=376.51(15) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$a=4.6813$ (10) \AA
$b=6.1986$ (16) \AA
$c=12.993$ (3) \AA
$\beta=92.995$ (17) ${ }^{\circ}$
Data collection
STOE IPDS II two-circle-
diffractometer
Absorption correction: multi-scan (MULABS; Spek, 2009 and Blessing, 1995)
$T_{\text {min }}=0.951, T_{\text {max }}=0.993$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058 \quad 1$ restraint
$w R\left(F^{2}\right)=0.138$
$S=1.01$
775 reflections
119 parameters

1 restraint
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.45 \mathrm{e}^{-3}$

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5300).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Schnurr, A., Samigullin, K., Breunig, J. M., Bolte, M., Lerner, H.-W. \& Wagner, M. (2011). Organometallics, 30, 2838-2843.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2012). E68, m1371 [doi:10.1107/S1600536812042584]

Sodium pentafluorophenylborate

Hannes Vitze, Hans-Wolfram Lerner and Michael Bolte

S1. Comment

The hydridoborates $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BH}_{3}\right]^{-}$and $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{BH}_{2}\right]^{-}$are convenient starting materials for the in situ generation of the boranes $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BH}_{2}$ and $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{BH}$ (Schnurr et al., 2011). In this paper we report the crystal structure of $\mathrm{Na}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BH}_{3}\right]$ which was obtained from the reaction mixture of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{B}(\mathrm{OMe})_{2}$ and $\mathrm{Li}\left[\mathrm{AlH}_{4}\right]$ by a cation exchange with NaOH (Fig. 1).
The title compound (Fig. 2) is composed of discrete anions and cations. The sodium cations are surrounded by four anions with three short $\mathrm{Na} \cdots \mathrm{B}\left[\mathrm{Na} 1 \cdots \mathrm{~B} 12.848\right.$ (8) $\AA, \mathrm{Na} 1 \cdots \mathrm{~B} 1^{\mathrm{i}} 2.842$ (7) $\AA, \mathrm{Na} 1 \cdots \mathrm{~B} 1^{\mathrm{ii}} 2.868$ (8) \AA; symmetry operators: (i) $-x+2, y-1 / 2,-z+1$, (ii) $-x+1, y-1 / 2,-z+1]$ and two short $\mathrm{Na} \cdots \mathrm{F}\left[\mathrm{Na} 1 \cdots \mathrm{~F} 6^{\text {ii }} 2.348\right.$ (5) $\AA, \mathrm{Na} 1 \cdots \mathrm{~F} 2^{\text {ii }} 2.392$ (5) \AA] contacts (Fig. 3).
It is remarkable that this is the first structure with an pentafluorophenyl ring carrying a BH_{3} group. A search in the Cambridge Crystallographic Database (CSD, Version 5.33 of November 2011, plus three updates (Allen, (2002). Acta Cryst. B58, 380-388) yielded no hit at all for this fragment.

S2. Experimental

In a round bottom flask $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{B}(\mathrm{OMe})_{2}(0.16 \mathrm{~g}, 0.65 \mathrm{mmol})$ was dissolved in 10 ml diethyl ether. Under stirring a 1 m solution of $\mathrm{Li}\left[\mathrm{AlH}_{4}\right]$ in diethyl ether $(1.2 \mathrm{mmol}, 1.1 \mathrm{ml})$ was added via canula. A brown slurry was obtained which was treated with 3 ml aqueous $\mathrm{NaOH}(3 \mathrm{mmol})$ and 15 ml benzene. Insoluble material was removed by filtration from the organic layer. Single crystals of the title compound were obtained of the concentrated benzene solution (5 ml). Yield 20%.

S3. Refinement

Due to the absence of anomalous scatterers, the absolute structure could not be determined and 414 Friedel pairs were merged. H atoms were located in a difference map, but geometrically positioned and refined using a riding model with fixed individual displacement parameters $\left[\mathrm{U}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{B})\right]$ and with $\mathrm{B}-\mathrm{H}=0.98 \AA$. The BH_{3} group was allowed to rotate but not to tip.

Figure 1

Reaction scheme for obtaining the title compound.

Figure 2
Perspective view of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3
Environment of a sodium cation.

Sodium pentafluorophenylborate

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BF}_{5}{ }^{-}$
$M_{r}=203.88$
Monoclinic, $P 2_{1}$
Hall symbol: P 2yb
$a=4.6813$ (10) \AA
$b=6.1986$ (16) \AA
$c=12.993$ (3) \AA
$\beta=92.995(17)^{\circ}$
$V=376.51(15) \AA^{3}$
$Z=2$

Data collection

STOE IPDS II two-circle-
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 2009 and Blessing, 1995)
$T_{\text {min }}=0.951, T_{\text {max }}=0.993$
$F(000)=200$
$D_{\mathrm{x}}=1.798 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1888 reflections
$\theta=3.7-25.5^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Plate, colourless
$0.21 \times 0.18 \times 0.03 \mathrm{~mm}$

2267 measured reflections
775 independent reflections
601 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.116$
$\theta_{\text {max }}=25.6^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-5 \rightarrow 5$
$k=-6 \rightarrow 7$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.138$
$S=1.01$
775 reflections
119 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: inferred from
\quad neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0711 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.37$ e \AA^{-3}
$\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}$

Special details

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Na1	$0.8015(5)$	$0.5576(5)$	$0.5911(2)$	$0.0289(6)$
B1	$0.7013(14)$	$0.7940(13)$	$0.4048(5)$	$0.0245(15)$
H1A	0.6928	0.9477	0.3873	0.037^{*}
H1B	0.8948	0.7573	0.4316	0.037^{*}
H1C	0.5643	0.7628	0.4573	0.037^{*}
C1	$0.6218(11)$	$0.6519(12)$	$0.3025(5)$	$0.0228(13)$
C2	$0.7487(11)$	$0.4581(11)$	$0.2778(5)$	$0.0258(14)$
C3	$0.6739(13)$	$0.3361(12)$	$0.1908(5)$	$0.0297(15)$
C4	$0.4582(12)$	$0.4078(14)$	$0.1233(5)$	$0.0325(16)$
C5	$0.3237(12)$	$0.6030(13)$	$0.1438(5)$	$0.0316(18)$
C6	$0.4083(12)$	$0.7149(12)$	$0.2310(5)$	$0.0275(15)$
F2	$0.9668(7)$	$0.3764(7)$	$0.3429(3)$	$0.0351(10)$
F3	$0.8099(8)$	$0.1482(7)$	$0.1730(3)$	$0.0420(11)$
F4	$0.3794(9)$	$0.2917(10)$	$0.0395(3)$	$0.0495(13)$
F5	$0.1147(7)$	$0.6743(8)$	$0.0784(3)$	$0.0426(12)$
F6	$0.2667(7)$	$0.9043(7)$	$0.2468(3)$	$0.0351(10)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na 1	$0.0223(10)$	$0.0281(14)$	$0.0361(14)$	$-0.0006(11)$	$-0.0003(9)$	$0.0047(13)$
B 1	$0.020(3)$	$0.028(4)$	$0.026(3)$	$-0.002(3)$	$0.000(3)$	$0.002(4)$
C 1	$0.015(2)$	$0.025(3)$	$0.028(3)$	$-0.005(2)$	$0.001(2)$	$0.004(3)$
C 2	$0.017(2)$	$0.028(3)$	$0.032(4)$	$0.003(3)$	$-0.005(2)$	$0.007(3)$

C3	$0.028(3)$	$0.025(4)$	$0.037(4)$	$0.001(3)$	$0.008(3)$	$-0.006(3)$
C4	$0.023(3)$	$0.044(4)$	$0.029(3)$	$-0.002(3)$	$-0.002(3)$	$-0.006(3)$
C5	$0.018(2)$	$0.047(5)$	$0.028(4)$	$0.001(3)$	$-0.002(2)$	$0.003(3)$
C6	$0.018(3)$	$0.039(4)$	$0.027(3)$	$0.007(3)$	$0.007(2)$	$0.007(3)$
F2	$0.0276(18)$	$0.031(2)$	$0.045(2)$	$0.0079(18)$	$-0.0124(16)$	$0.003(2)$
F3	$0.040(2)$	$0.033(2)$	$0.052(3)$	$0.012(2)$	$0.0000(18)$	$-0.009(2)$
F4	$0.039(2)$	$0.066(3)$	$0.043(3)$	$0.006(2)$	$-0.0056(18)$	$-0.022(3)$
F5	$0.0262(17)$	$0.068(3)$	$0.033(2)$	$0.015(2)$	$-0.0083(15)$	$0.005(2)$
F6	$0.0262(17)$	$0.044(3)$	$0.035(2)$	$0.0156(18)$	$-0.0050(15)$	$-0.002(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Na} 1-\mathrm{F}^{\text {i }}$	2.348 (5)	C2-C3	1.389 (10)
Na1-F2ii	2.392 (5)	C3-F3	1.353 (9)
$\mathrm{Na} 1-\mathrm{B} 1^{\text {iii }}$	2.842 (7)	C3-C4	1.376 (10)
Na1-B1 ${ }^{\text {i }}$	2.868 (8)	C4-F4	1.342 (9)
B1-C1	1.621 (10)	C4-C5	1.396 (11)
B1-H1A	0.9800	C5-F5	1.337 (7)
B1-H1B	0.9800	C5-C6	1.370 (10)
B1-H1C	0.9800	C6-F6	1.369 (8)
C1-C6	1.385 (9)	F2-Na1 ${ }^{\text {iii }}$	2.392 (5)
C1-C2	1.385 (10)	F6-Na1 ${ }^{\text {iv }}$	2.348 (5)
C2-F2	1.387 (7)		
F6- ${ }^{\text {i }}$ - ${ }^{\text {a }}$ - $\mathrm{F}^{\text {ii }}{ }^{\text {i }}$	95.35 (17)	F2-C2-C1	119.1 (6)
F6 ${ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{B} 1^{\text {iii }}$	84.3 (2)	C3-C2-C1	124.6 (6)
F2iin ${ }^{\text {ii }}$ - $1-\mathrm{B} 1{ }^{\text {iii }}$	96.5 (2)	F3-C3-C4	120.3 (7)
$\mathrm{F} 6^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{B} 1^{\text {i }}$	66.57 (18)	F3-C3-C2	120.5 (6)
$\mathrm{F} 2{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{B} 1^{\text {i }}$	145.2 (2)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.2 (6)
B1 ${ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{B} 1^{\text {i }}$	110.1 (3)	F4-C4-C3	120.4 (7)
$\mathrm{C} 1-\mathrm{B} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	F4-C4-C5	120.8 (6)
C1-B1-H1B	109.5	C3-C4-C5	118.8 (6)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{B} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	F5-C5-C6	121.9 (7)
C1-B1- H 1 C	109.5	F5-C5-C4	119.2 (6)
H1A-B1-H1C	109.5	C6-C5-C4	118.9 (6)
H1B-B1-H1C	109.5	F6-C6-C5	115.9 (6)
C6- $\mathrm{C} 1-\mathrm{C} 2$	113.1 (6)	F6-C6-C1	118.6 (6)
C6-C1-B1	121.6 (6)	C5-C6-C1	125.4 (6)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{B} 1$	125.3 (6)	C2-F2-Na1 ${ }^{\text {iii }}$	145.7 (4)
F2-C2-C3	116.3 (6)	C6-F6-Na1 ${ }^{\text {iv }}$	124.9 (4)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{F} 2$	179.8 (5)	F4-C4-C5-C6	179.2 (6)
$\mathrm{B} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{F} 2$	-1.5 (8)	C3-C4-C5-C6	-0.9 (9)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.1 (8)	F5-C5-C6-F6	-0.3 (9)
$\mathrm{B} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.6 (6)	C4-C5-C6-F6	-179.6 (6)
F2-C2-C3-F3	0.2 (9)	F5-C5-C6-C1	179.8 (6)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{F} 3$	-179.9 (6)	C4-C5-C6-C1	0.5 (9)
F2-C2-C3-C4	179.7 (6)	C2-C1-C6-F6	-179.9 (5)

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.4(9)$	$\mathrm{B} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{F} 6$	$1.4(8)$
$\mathrm{F} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{F} 4$	$0.4(10)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.0(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{F} 4$	$-179.2(6)$	$\mathrm{B} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.7(6)$
$\mathrm{F} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.6(6)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{F} 2-\mathrm{Na} 1^{\mathrm{iii}}$	$-30.8(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.9(9)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{F} 2-\mathrm{Na} 1^{\mathrm{iii}}$	$149.3(5)$
$\mathrm{F} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 5$	$-0.2(9)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{F} 6-\mathrm{Na} 1^{\mathrm{iv}}$	$151.8(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 5$	$179.7(6)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{F} 6-\mathrm{Na} 1^{\mathrm{iv}}$	$-28.2(7)$

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1$; (ii) $-x+2, y+1 / 2,-z+1$; (iii) $-x+2, y-1 / 2,-z+1$; (iv) $-x+1, y+1 / 2,-z+1$.

