Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and H. S. Spandana ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 2 October 2012; accepted 10 October 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.037 ; w R$ factor $=0.093$; data-to-parameter ratio $=16.9$.

The asymmetric unit of the title salt, $\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrCl}_{2} \mathrm{NO}_{2} \mathrm{~S}^{-}$.$1.5 \mathrm{H}_{2} \mathrm{O}$, contains one K^{+}cation, one N -bromo-2,4-dichlorobenzenesulfonamidate anion, one water molecule in general position and one water molecule located on a twofold rotation axis. The K^{+}cation is hepta-coordinated by three water O atoms and four sulfonyl O atoms from three symmetry-related N-bromo-2,4-dichlorobenzenesulfonamide anions. The $\mathrm{S}=\mathrm{N}$ distance of 1.575 (3) \AA is consistent with that of a double bond. In the crystal, the anions are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into layers parallel to the $a c$ plane.

Related literature

For preparation of N-haloarylsulfonamides, see: Gowda \& Mahadevappa (1983). For studies of the effect of substituents on the structures of N-haloarylsulfonamides, see: George et al. (2000); Gowda et al. (2007, 2011a,b); Olmstead \& Power (1986).

Experimental

Crystal data

$\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrCl}_{2} \mathrm{NO}_{2} \mathrm{~S}^{-} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
$b=6.7638$ (4) \AA
$M_{r}=740.18$
$c=29.703$ (2) A
Monoclinic, $C 2 / c$
$a=12.5263$ (7) A
$\beta=98.352(5)^{\circ}$
$V=2489.9(3) \AA^{3}$

$$
7=4
$$

$Z=4$
$T=293 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=4.22 \mathrm{~mm}^{-1}$

Data collection
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.093$
$S=1.09$
2535 reflections
150 parameters
3 restraints
$0.32 \times 0.32 \times 0.28 \mathrm{~mm}$ independent and constrained refinement
$\Delta \rho_{\text {max }}=0.76 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.65 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{Br} 1^{\text {i }}$	0.80 (2)	2.78 (2)	3.550 (3)	160 (4)
$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{~N} 1$	0.81 (2)	2.15 (3)	2.917 (4)	158 (5)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{~N} 1^{\text {ii }}$	0.82 (2)	2.16 (2)	2.957 (3)	165 (5)

Symmetry codes: (i) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the University Grants Commission, Government of India, New Delhi, for a one-time grant to Faculty/ Professors under UGC-BSR.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2295).

References

George, E., Vivekanandan, S. \& Sivakumar, K. (2000). Acta Cryst. C56, 12081209.

Gowda, B. T., Foro, S. \& Shakuntala, K. (2011a). Acta Cryst. E67, m926.
Gowda, B. T., Foro, S. \& Shakuntala, K. (2011b). Acta Cryst. E67, $m 962$.
Gowda, B. T. \& Mahadevappa, D. S. (1983). Talanta, 30, 359-362.
Gowda, B. T., Tokarčík, M., Kožíšek, J. \& Fuess, H. (2007). Acta Cryst. E63, m2115-m2116.
Olmstead, M. M. \& Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Potassium N -bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate

B. Thimme Gowda, Sabine Foro and H. S. Spandana

S1. Comment

The present work was undertaken in order to explore the effect of replacing sodium ion by potassium ion on the solid state structures of metal salts of N-haloarylsulfonamidates (Gowda et al., 2007, 2011a,b). As part of this work, the structure of potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2-chlorobenzenesulfonamidate sesquihydrate (II) (Gowda et al., 2011a), potassium N-bromo-4-chlorobenzenesulfonamidate sesquihydrate (III) (Gowda et al., 2011b), sodium N -bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (IV) (Gowda et al., 2007) and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Olmstead \& Power, 1986).
In the title compound, K^{+}ion is hepta coordinated by three O atoms from water molecules and four sulfonyl O atoms of three different N-bromo-2,4-dichlorobenzenesulfonamide anions. The replacement of Na^{+}by K^{+}changes co-ordination from hexa to hepta in the structure (Gowda et al., 2007) and other parameters.

The S—N distance of 1.575 (3) \AA is consistent with a $\mathrm{S}-\mathrm{N}$ double bond and is in agreement with the observed values of 1.582 (4) \AA in (II), 1.584 (6) \AA in (III) and 1.590 (6) \AA in (IV).

The asymmetric unit of (I) consists of one potassium cation, one N-bromo-2,4-dichlorobenzenesulfonamidate anion and one water molecule in general position and and one water molecule located on a twofold rotation axis.

In the crystal structure the anions are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding into layers, that are parallel to the $a c$ plane (Fig. 2 and Table 1).

S2. Experimental

The title compound was prepared by a method similar to the one described by Gowda \& Mahadevappa (Gowda \& Mahadevappa, 1983). 2 g of 2,4-dichlorobenzenesulfonamide was dissolved with stirring in 40 ml of 5 M KOH at room temperature. The resultant solution was cooled in ice and 4 ml of liquid bromine was added drop wise with constant stirring. The resultant potassium salt of N -bromo-2,4-dichlorobenzenesulfonamide was filtered under suction, washed quickly with a minimum quantity of ice cold water. The purity of the compound was checked by determining its melting point $\left(203-205^{\circ} \mathrm{C}\right)$ and estimating, iodometrically, the amount of active bromine present in it. It was further characterized from its infrared spectrum.
Prism like yellow single crystals of the title compound used in the X-ray diffraction studies were obtained from its aqueous solution at room temperature.

S3. Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$. The H atoms bound to O atoms were located in difference map and later restrained to $\mathrm{O}-\mathrm{H}=0.82$ (2) \AA. All H atoms were refined with isotropic displacement parameters set at $1.2 U_{\text {eq }}$ of the parent atom.

Figure 1
Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K^{+}. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate

Crystal data

$\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrCl}_{2} \mathrm{NO}_{2} \mathrm{~S}^{-} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=740.18$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=12.5263(7) \AA$
$b=6.7638(4) \AA$
$c=29.703(2) \AA$
$\beta=98.352(5)^{\circ}$
$V=2489.9(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=1448 \\
& D_{\mathrm{x}}=1.975 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2489 \text { reflections } \\
& \theta=3.0-27.7^{\circ} \\
& \mu=4.22 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Prism, yellow } \\
& 0.32 \times 0.32 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω scans.
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.345, T_{\text {max }}=0.384$

> 4960 measured reflections
> 2535 independent reflections
> 2204 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.014$
> $\theta_{\max }=26.4^{\circ}, \theta_{\min }=3.3^{\circ}$
> $h=-15 \rightarrow 13$
> $k=-8 \rightarrow 5$
> $l=-37 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.093$
$S=1.09$
2535 reflections
150 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.0780(3)$	$0.4566(5)$	$0.11591(11)$	$0.0271(7)$
C2	$0.1438(3)$	$0.3775(5)$	$0.08637(12)$	$0.0317(7)$

C3	$0.1538(3)$	$0.4716(6)$	$0.04598(12)$	$0.0392(9)$
H3	0.1980	0.4192	0.0264	0.047^{*}
C4	$0.0974(3)$	$0.6446(6)$	$0.03496(13)$	$0.0426(9)$
C5	$0.0320(3)$	$0.7248(6)$	$0.06337(14)$	$0.0447(9)$
H5	$-0.0056(3)$	0.8413	0.0556	0.054^{*}
C6	$0.0228(3)$	$0.6302(5)$	$0.10361(13)$	$0.0367(8)$
H6	-0.0214	0.6841	0.1230	0.044^{*}
Br1	$-0.11245(3)$	$0.10625(6)$	$0.130655(14)$	$0.04440(14)$
C11	$0.21550(9)$	$0.15999(15)$	$0.09788(4)$	$0.0485(3)$
C12	$0.10726(10)$	$0.7571(2)$	$-0.01671(4)$	$0.0650(4)$
K1	$0.34306(6)$	$0.13766(12)$	$0.23492(3)$	$0.0366(2)$
N1	$0.0277(2)$	$0.1274(4)$	$0.16389(10)$	$0.0319(6)$
O1	$0.1712(2)$	$0.3416(4)$	$0.19584(8)$	$0.0386(6)$
O2	$-0.0093(2)$	$0.4804(4)$	$0.18845(8)$	$0.0383(6)$
O3	$0.2037(2)$	$-0.1486(4)$	$0.19206(10)$	$0.0426(6)$
H31	$0.234(3)$	$-0.195(7)$	$0.1725(12)$	0.051^{*}
H32	$0.155(3)$	$-0.088(6)$	$0.1774(14)$	0.051^{*}
O4	0.5000	$0.4277(6)$	0.2500	$0.0471(10)$
H41	$0.490(4)$	$0.502(6)$	$0.2710(11)$	0.056^{*}
S1	$0.06429(7)$	$0.34987(12)$	$0.16983(3)$	$0.02745(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0271(16)$	$0.0256(16)$	$0.0280(16)$	$-0.0039(13)$	$0.0014(12)$	$-0.0003(13)$
C2	$0.0261(16)$	$0.0319(18)$	$0.0371(18)$	$-0.0031(14)$	$0.0042(14)$	$0.0000(15)$
C3	$0.0350(19)$	$0.048(2)$	$0.0364(19)$	$-0.0108(17)$	$0.0109(15)$	$-0.0008(17)$
C4	$0.040(2)$	$0.048(2)$	$0.038(2)$	$-0.0161(18)$	$-0.0006(16)$	$0.0113(17)$
C5	$0.047(2)$	$0.036(2)$	$0.050(2)$	$0.0043(18)$	$0.0016(18)$	$0.0116(18)$
C6	$0.0359(19)$	$0.0322(18)$	$0.041(2)$	$0.0040(15)$	$0.0036(15)$	$0.0029(15)$
Br1	$0.0342(2)$	$0.0494(3)$	$0.0498(2)$	$-0.00725(17)$	$0.00672(16)$	$-0.01193(18)$
C11	$0.0484(6)$	$0.0376(5)$	$0.0645(7)$	$0.0110(4)$	$0.0250(5)$	$0.0029(5)$
C12	$0.0592(7)$	$0.0857(9)$	$0.0483(6)$	$-0.0170(6)$	$0.0024(5)$	$0.0322(6)$
K1	$0.0312(4)$	$0.0354(4)$	$0.0423(4)$	$0.0051(3)$	$0.0021(3)$	$-0.0034(3)$
N1	$0.0307(15)$	$0.0279(15)$	$0.0373(16)$	$0.0006(12)$	$0.0060(12)$	$0.0047(12)$
O1	$0.0373(14)$	$0.0399(14)$	$0.0353(14)$	$0.0026(11)$	$-0.0064(11)$	$0.0010(11)$
O2	$0.0444(15)$	$0.0387(14)$	$0.0339(13)$	$0.0094(12)$	$0.0130(11)$	$-0.0046(11)$
O3	$0.0475(17)$	$0.0380(15)$	$0.0434(16)$	$0.0052(12)$	$0.0099(13)$	$0.0004(12)$
O4	$0.073(3)$	$0.031(2)$	$0.041(2)$	0.000	$0.022(2)$	0.000
S1	$0.0302(4)$	$0.0260(4)$	$0.0260(4)$	$0.0028(3)$	$0.0033(3)$	$0.0000(3)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 6$	$1.384(5)$	$\mathrm{K} 1-\mathrm{O} 3$	$2.788(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.395(5)$	$\mathrm{K} 1-\mathrm{O} 1^{\mathrm{iii}}$	$2.895(3)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.787(3)$	$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$	$3.045(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.380(5)$	$\mathrm{K} 1-\mathrm{S}^{\mathrm{iii}}$	$3.4910(12)$
$\mathrm{C} 2-\mathrm{Cl} 1$	$1.732(4)$	$\mathrm{N} 1-\mathrm{S} 1$	$1.575(3)$

C3-C4	1.381 (6)	O1-S1	1.447 (3)
C3-H3	0.9300	$\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	2.895 (3)
C4-C5	1.370 (6)	$\mathrm{O} 2-\mathrm{S} 1$	1.443 (3)
C4-Cl2	1.734 (4)	$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{iv}}$	2.683 (2)
C5-C6	1.375 (5)	$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{ii}}$	3.045 (3)
C5-H5	0.9300	O3-K1 ${ }^{\text {iii }}$	2.740 (3)
C6-H6	0.9300	O3-H31	0.802 (19)
Br1-N1	1.890 (3)	$\mathrm{O} 3-\mathrm{H} 32$	0.808 (19)
$\mathrm{K} 1-\mathrm{O} 1$	2.675 (3)	$\mathrm{O} 4-\mathrm{K} 1^{\text {v }}$	2.767 (3)
$\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	2.683 (2)	O4-H41	0.820 (19)
$\mathrm{K} 1-\mathrm{O}^{\text {ii }}$	2.740 (3)	S1-K1ii	3.4910 (12)
$\mathrm{K} 1-\mathrm{O} 4$	2.767 (3)		
C6- $\mathrm{C} 1-\mathrm{C} 2$	118.5 (3)	O3-K1-K1 ${ }^{\text {v }}$	130.38 (6)
C6- $\mathrm{C} 1-\mathrm{S} 1$	118.0 (3)	$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{v}$	90.06 (6)
C2-C1-S1	123.4 (3)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{v}$	43.27 (5)
C3-C2-C1	120.4 (3)	$\mathrm{S} 1^{\text {iii }}$-K1-K1 ${ }^{\text {v }}$	66.97 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl} 1$	117.0 (3)	O1-K1-K1 $1^{\text {iii }}$	94.01 (7)
C1-C2-Cl1	122.6 (3)	$\mathrm{O} 2{ }^{\text {i }}$-K1-K1 $1^{\text {iii }}$	103.41 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.3 (4)	O3iil ${ }^{\text {iid }} 1-\mathrm{K} 1^{\text {iii }}$	93.78 (7)
C2-C3-H3	120.4	O4-K1-K1 $1^{\text {iii }}$	157.36 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4	$\mathrm{O} 3-\mathrm{K} 1-\mathrm{K} 1^{\text {iii }}$	38.92 (6)
C5-C4-C3	121.4 (4)	$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{K} 1-\mathrm{K} 1^{\text {iii }}$	38.01 (5)
C5-C4- Cl 2	119.8 (3)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {iii }}$	84.35 (5)
C3-C4-Cl2	118.8 (3)	S1 ${ }^{\text {iii- }}$ K1-K1 $1^{\text {iii }}$	61.08 (2)
C4-C5-C6	118.9 (4)	$\mathrm{K} 1{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{K} 1^{\text {iii }}$	120.90 (2)
C4-C5-H5	120.5	O1-K1-K1 ${ }^{\text {ii }}$	41.78 (6)
C6-C5-H5	120.5	$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	149.20 (6)
C5-C6-C1	121.5 (4)	$\mathrm{O} 3{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{K} 1^{1 i}$	39.74 (6)
C5-C6-H6	119.2	O4-K1-K1 ${ }^{\text {ii }}$	78.55 (6)
C1-C6-H6	119.2	O3-K1-K1 ${ }^{\text {ii }}$	108.70 (7)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{i}}$	123.54 (8)	$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	107.85 (6)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O}^{\text {ii }}$	79.66 (9)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	117.01 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 3^{\text {ii }}$	149.20 (9)	S1iii-K1-K1 ${ }^{\text {ii }}$	113.48 (3)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 4$	102.28 (8)	$\mathrm{K} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	120.90 (2)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{O} 4$	80.66 (7)	$\mathrm{K} 1{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{1 i}$	104.55 (3)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 4$	74.11 (7)	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{Br} 1$	111.33 (16)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3$	75.45 (8)	S1-O1-K1	151.14 (16)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{O} 3$	85.56 (9)	$\mathrm{S} 1-\mathrm{O} 1-\mathrm{K} 1^{\mathrm{ii}}$	101.80 (13)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 3$	122.44 (5)	$\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	100.21 (8)
O4-K1-O3	161.68 (7)	$\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\text {iv }}$	165.01 (16)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	122.42 (5)	$\mathrm{S} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{ii}}$	95.45 (12)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	102.09 (8)	$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{K} 1^{\text {ii }}$	85.68 (7)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	76.13 (8)	$\mathrm{K} 1 \mathrm{iii}-\mathrm{O} 3-\mathrm{K} 1$	101.34 (10)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	119.42 (6)	$\mathrm{K} 1{ }^{\text {iii }}-\mathrm{O} 3-\mathrm{H} 31$	123 (4)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	75.21 (8)	$\mathrm{K} 1-\mathrm{O} 3-\mathrm{H} 31$	106 (4)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	157.55 (8)	$\mathrm{K} 1{ }^{\text {iii }}-\mathrm{O} 3-\mathrm{H} 32$	117 (4)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	78.37 (9)	$\mathrm{K} 1-\mathrm{O} 3-\mathrm{H} 32$	106 (3)

$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	78.12 (8)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	74.58 (7)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	114.43 (8)
$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	48.19 (7)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{S}{ }^{\text {iii }}$	142.27 (7)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{K} 1-\mathrm{S} 1^{\text {iii }}$	91.31 (6)
O3ii-K1-S1 ${ }^{\text {iii }}$	74.74 (7)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{S} 1^{\text {iii }}$	96.86 (5)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{S} 1^{\text {iii }}$	95.47 (7)
$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{S} 1{ }^{\text {iii }}$	23.94 (5)
$\mathrm{O} 2{ }^{\text {iii }}$-K1-S $1^{\text {iii }}$	24.30 (5)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {v }}$	145.05 (6)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {v }}$	51.05 (6)
O3iil ${ }^{\text {iid }} 1-\mathrm{K} 1^{\text {v }}$	98.18 (7)
O4-K1-K1 ${ }^{\text {v }}$	45.15 (6)
C6-C1-C2-C3	0.3 (5)
S1-C1-C2-C3	-177.6 (3)
C6-C1-C2-Cl1	-179.3 (3)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	2.9 (4)
C1-C2-C3-C4	-0.3 (5)
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	179.3 (3)
C2-C3-C4-C5	0.1 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 2$	-178.0 (3)
C3-C4-C5-C6	0.0 (6)
C12-C4-C5-C6	178.1 (3)
C4-C5-C6-C1	-0.1 (6)
C2-C1-C6-C5	-0.1 (5)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	177.9 (3)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	77.2 (4)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-124.9 (3)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	164.0 (3)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	2.7 (3)
$\mathrm{O} 1 \mathrm{iii}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-58.8 (3)
$\mathrm{O} 2{ }^{\text {iiii }}$ - $\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-116.7 (3)
$\mathrm{S} 1{ }^{\text {iii }}$-K1-O1-S1	-77.2 (4)
$\mathrm{K} 1{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	145.6 (3)
$\mathrm{K} 1 \mathrm{iii}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-31.8 (3)
$\mathrm{K} 1{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1$	-139.2 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-143.58 (9)
$\mathrm{O} 3{ }^{\text {ii- }} \mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	14.32 (8)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-56.74 (8)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	141.96 (10)
$\mathrm{O}{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	80.46 (13)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	22.6 (2)
S1 ${ }^{\text {iii- }} \mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	62.01 (13)
$\mathrm{K} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-75.18 (13)
$\mathrm{K} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	107.44 (7)

H31-O3-H32
$\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1-\mathrm{O} 4-\mathrm{H} 41$
$\mathrm{K} 1{ }^{v}-\mathrm{O} 4-\mathrm{H} 41$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$
O1—S1—N1
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$
O1-S1-C1
N1-S1-C1
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{K} 1^{\mathrm{ii}}$
O1—S1-K1 $1^{\text {ii }}$
N1—S1—K1ii
C1—S1—K1 ${ }^{\text {ii }}$

S1 ${ }^{\text {iii- }}$ - $\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$
$\mathrm{K} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$
$\mathrm{K} 1^{1 i}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\mathrm{iii}}$
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\text {v }}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{O} 3{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 4-\mathrm{K}^{\mathrm{v}}$
$\mathrm{O}^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\vee}$
$\mathrm{O} 2^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\mathrm{v}}$
S1 ${ }^{\text {iii- }} \mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{v}$
$\mathrm{K} 1^{\text {iii- }} \mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$
$\mathrm{K} 1 i-\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$
$\mathrm{K} 1{ }^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{K} 1{ }^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$
$\mathrm{K} 1 \mathrm{ii}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{S} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$
$\mathrm{K} 1{ }^{\mathrm{ii}}-\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{K} 1 \mathrm{ii}-\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$
$\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 1$
$\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$
$\mathrm{Br} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$

102 (5)
89.71 (12)

112 (3)
119 (3)
114.34 (16)
115.83 (16)
104.73 (16)
104.25 (15)
107.00 (16)
110.46 (16)
60.25 (11)
54.26 (11)
132.87 (12)
115.93 (11)
26.89 (8)
91.14 (10)
-90.17 (8)
-165.19 (7)
-42.70 (6)
119.46 (7)
-84.4 (3)
55.99 (7)
37.71 (5)
47.51 (2)
59.77 (14)
160.16 (4)
-89.2 (6)
4.50 (17)
32.8 (7)
126.44 (14)
154.3 (6)
-111.99 (12)
-93.7 (6)
134.2 (3)
-4.81 (18)
6.3 (4)
-132.65 (13)
-111.0 (3)
110.07 (14)
139.0 (4)
52.7 (2)
179.61 (16)
-65.5 (2)
125.06 (12)
1.3 (3)
179.2 (3)

$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	-115.86 (10)	C6- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	-120.2 (3)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	117.79 (9)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	57.7 (3)
$\mathrm{O} 3{ }^{\text {ii- }} \mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	-48.49 (13)	C6-C1-S1-N1	126.4 (3)
$\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	159.0 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	-55.8 (3)
$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	14.03 (8)	C6-C1-S1-K1 ${ }^{\text {ii }}$	-62.2 (3)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {iii }}$	42.71 (11)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{K} 1{ }^{\text {ii }}$	115.6 (3)

Symmetry codes: (i) $x+1 / 2, y-1 / 2, z$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $x-1 / 2, y+1 / 2, z$; (v) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 31 \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.80(2)$	$2.78(2)$	$3.550(3)$	$160(4)$
O3—H32 $\cdots \mathrm{N} 1$	$0.81(2)$	$2.15(3)$	$2.917(4)$	$158(5)$
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.82(2)$	$2.16(2)$	$2.957(3)$	$165(5)$

Symmetry codes: (i) $x+1 / 2, y-1 / 2, z$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

