Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-chlorobenzovl)-N-(2-chlorophenvl)-O-[2-(2-nitrophenyl)acetyl]hydroxylamine

ling Ma.^a* Yi Ma^b and Dian He^a

^aInstitute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China, and ^bGansu College of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, People's Republic of China

Correspondence e-mail: majing.1988.ok@163.com

Received 20 September 2012; accepted 28 September 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.054; wR factor = 0.069; data-to-parameter ratio = 13.5.

In the title hydroxamic acid derivate, $C_{21}H_{14}N_2O_5Cl_2$, the nitro-substituted benzene ring forms dihedral angles of 66.0 (2) and 59.6 (2)°, with the p-chloro and o-chlorosubstituted benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings is 64.2 (2) Å. In the crystal, weak $C-H\cdots O$ hydrogen bonds link the molecules along [010]. The crystal studied was an inversion twin with refined components in the ratio 0.60(7):0.40(7).

Related literature

For applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the synthesis, see: Ayyangark et al. (1986). For a related structure, see: Zhang et al. (2012).

CI Ο C 0 NO₂

5091 measured reflections

 $R_{\rm int} = 0.030$

3669 independent reflections

1821 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{21}H_{14}Cl_2N_2O_5$	V = 1019 (2) Å ³
$M_r = 445.24$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 12.366 (14) Å	$\mu = 0.36 \text{ mm}^{-1}$
b = 6.789 (8) Å	T = 296 K
c = 12.579 (14) Å	$0.21 \times 0.20 \times 0.16 \text{ mm}$
$\beta = 105.150 \ (14)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.929, \ T_{\max} = 0.945$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$ wR(F ²) = 0.069	H-atom parameters constrained $\Delta \rho = 0.17 \text{ e} \text{\AA}^{-3}$
S = 0.99	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
271 parameters	Absolute structure: Flack (1983), 1624 Friedel pairs
1 restraint	Flack parameter: 0.40 (7)

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots O1^{i}$	0.93	2.38	3.264 (7)	158
$C15 - H15B \cdots O1^{ii}$	0.97	2.45	3.421 (6)	175
Symmetry codes: (i) $-x$	$, y + \frac{1}{2}, -z + 1;$	(ii) $-x, y - \frac{1}{2}, y - \frac{1}{2}$	-z + 1.	

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Fund Projects of Gansu Province (0710RJZA124).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5536).

References

Ayyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938-941.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Noh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326-331.

Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213-1218. Zhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.

supporting information

Acta Cryst. (2012). E68, o3067 [doi:10.1107/S1600536812040883]

N-(4-chlorobenzoyl)-*N*-(2-chlorophenyl)-*O*-[2-(2-nitrophenyl)acetyl]hydroxyl-amine

Jing Ma, Yi Ma and Dian He

S1. Comment

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals (Noh *et al.*, 2009; Zeng *et al.*, 2003). The molecular structure of the title compound is sjown in Fig. 1. The nitro-substituted benzene ring (C16-C24) forms dihedral angles of 66.0 (2) and 59.6 (2)°, with the 4-chloro (C1-C6) and 2-chloro-substituted (C8-C13) benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings (C1-6/C8-C13) is 64.2 (2)Å. In the crystal, weak C—H…O hydrogen bonds linke molecules along [010] (Fig .2). The bond legths and angles can be compared to those in N-(2-Chlorophenyl)-1-phenylformamido 3-(2-nitrophenyl)propanoate (Zhang *et al.*, 2012).

S2. Experimental

The title compound (I) was prepared according to the method described by Ayyangark *et al.* (1986). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution of (I) in dichloromethane-methanol (1:3 v/v).

S3. Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93 and 0.97Å and included in a riding-model approximation with $U_{iso} = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.

Figure 2

Part of the crystal structure with weak hydrogen bonds shown as dashed lines.

N-(4-chlorobenzoyl)-N-(2-chlorophenyl)-O-[2-(2- nitrophenyl)acetyl]hydroxylamine

F(000) = 456

 $\theta = 2.7 - 19.2^{\circ}$

 $\mu = 0.36 \text{ mm}^{-1}$ T = 296 K

Block, colorless

 $0.21 \times 0.20 \times 0.16 \text{ mm}$

 $D_{\rm x} = 1.450 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 985 reflections

Crystal data

 $\begin{array}{l} C_{21}H_{14}Cl_2N_2O_5\\ M_r = 445.24\\ \text{Monoclinic, }P2_1\\ \text{Hall symbol: P 2yb}\\ a = 12.366 \ (14) \ \text{\AA}\\ b = 6.789 \ (8) \ \text{\AA}\\ c = 12.579 \ (14) \ \text{\AA}\\ \beta = 105.150 \ (14)^\circ\\ V = 1019 \ (2) \ \text{\AA}^3\\ Z = 2 \end{array}$

Data collection

Bruker APEXII CCD	5091 measured reflections
diffractometer	3669 independent reflections
Radiation source: fine-focus sealed tube	1821 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -8 \longrightarrow 8$
$T_{\min} = 0.929, \ T_{\max} = 0.945$	$l = -15 \rightarrow 14$
Refinement	
Definement on E^2	$m = 1/[-2(E^2) + (0.0117D)^2]$

Refinement on F $w = 1/[\sigma^2(F_0^2) + (0.0117P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $(\Delta/\sigma)_{\rm max} < 0.001$ $wR(F^2) = 0.069$ $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$ S = 0.99 $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ 3669 reflections Absolute structure: Flack (1983), 1624 Friedel 271 parameters pairs 1 restraint Absolute structure parameter: 0.40(7)H-atom parameters constrained

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.0147 (3)	0.5015 (8)	0.8371 (3)	0.0556 (12)	
H1	0.0422	0.4007	0.8869	0.067*	
C2	-0.0321 (4)	0.6675 (7)	0.8709 (3)	0.0590 (13)	
H2	-0.0363	0.6786	0.9434	0.071*	
C3	-0.0720 (4)	0.8152 (6)	0.7973 (4)	0.0581 (14)	

C4	-0.0663 (4)	0.8041 (7)	0.6904 (4)	0.0642 (15)
H4	-0.0935	0.9061	0.6414	0.077*
C5	-0.0194 (4)	0.6382 (7)	0.6562 (4)	0.0554 (13)
Н5	-0.0148	0.6292	0.5838	0.067*
C6	0.0207 (3)	0.4855 (7)	0.7292 (3)	0.0439 (11)
C7	0.0602 (4)	0.3045 (7)	0.6835 (4)	0.0493 (13)
C8	0.2401 (3)	0.3019 (7)	0.8323 (4)	0.0487 (12)
C9	0.2722 (4)	0.2095 (7)	0.9344 (4)	0.0577 (13)
C10	0.3508 (4)	0.2985 (10)	1.0199 (5)	0.0814 (17)
H10	0.3720	0.2376	1.0884	0.098*
C11	0.3970 (4)	0.4729 (11)	1.0044 (5)	0.0906 (19)
H11	0.4484	0.5328	1.0628	0.109*
C12	0.3684 (4)	0.5626 (8)	0.9024 (5)	0.0831 (18)
H12	0.4026	0.6801	0.8915	0.100*
C13	0.2899 (4)	0.4789 (8)	0.8174 (4)	0.0640 (14)
H13	0.2697	0.5411	0.7492	0.077*
C14	0.2324 (3)	0.0798 (8)	0.6138 (4)	0.0493 (13)
C15	0.2469 (3)	-0.1148 (6)	0.5610 (3)	0.0523 (12)
H15A	0.2688	-0.2138	0.6182	0.063*
H15B	0.1754	-0.1543	0.5128	0.063*
C16	0.3330 (4)	-0.1087 (6)	0.4954 (4)	0.0494 (12)
C17	0.2956 (4)	-0.1148 (7)	0.3812 (4)	0.0669 (14)
H17	0.2190	-0.1217	0.3485	0.080*
C18	0.3679 (5)	-0.1107 (8)	0.3152 (4)	0.0791 (16)
H18	0.3406	-0.1116	0.2390	0.095*
C19	0.4823 (5)	-0.1054 (7)	0.3634 (5)	0.0778 (16)
H19	0.5320	-0.1053	0.3191	0.093*
C20	0.5227 (4)	-0.1003 (7)	0.4756 (5)	0.0690 (14)
H20	0.5994	-0.0966	0.5082	0.083*
C21	0.4474 (4)	-0.1006 (6)	0.5391 (4)	0.0511 (12)
Cl1	-0.13093 (10)	1.0228 (2)	0.84135 (10)	0.0924 (4)
Cl2	0.21125 (11)	-0.0100 (2)	0.95615 (10)	0.0868 (4)
N1	0.1548 (3)	0.2169 (6)	0.7465 (3)	0.0501 (9)
N2	0.4985 (4)	-0.0959 (6)	0.6589 (4)	0.0711 (13)
01	0.0103 (2)	0.2380 (4)	0.5951 (2)	0.0622 (9)
O2	0.1866 (2)	0.0409 (4)	0.7008 (2)	0.0563 (8)
03	0.4389 (3)	-0.0664 (6)	0.7204 (3)	0.0983 (14)
O4	0.5971 (3)	-0.1181 (7)	0.6925 (3)	0.1191 (16)
05	0.2537 (2)	0.2392 (5)	0.5864 (2)	0.0613 (10)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.062 (3)	0.066 (3)	0.040 (3)	0.008 (3)	0.015 (2)	0.012 (3)
0.068 (3)	0.077 (4)	0.035 (3)	0.006 (3)	0.017 (3)	0.005 (3)
0.053 (3)	0.053 (3)	0.062 (4)	-0.007 (3)	0.005 (3)	-0.006 (3)
0.068 (4)	0.065 (4)	0.048 (4)	-0.012 (3)	-0.006 (3)	0.005 (3)
0.063 (4)	0.070 (4)	0.035 (3)	-0.020 (3)	0.016 (3)	-0.002 (3)
	U ¹¹ 0.062 (3) 0.068 (3) 0.053 (3) 0.068 (4) 0.063 (4)	U^{11} U^{22} 0.062 (3) 0.066 (3) 0.068 (3) 0.077 (4) 0.053 (3) 0.053 (3) 0.068 (4) 0.065 (4) 0.063 (4) 0.070 (4)	U^{11} U^{22} U^{33} 0.062 (3) 0.066 (3) 0.040 (3) 0.068 (3) 0.077 (4) 0.035 (3) 0.053 (3) 0.053 (3) 0.062 (4) 0.068 (4) 0.065 (4) 0.048 (4) 0.063 (4) 0.070 (4) 0.035 (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

C6	0.038 (3)	0.058 (3)	0.035 (3)	-0.005 (3)	0.007 (2)	0.007 (3)
C7	0.050 (3)	0.068 (4)	0.036 (3)	-0.006 (3)	0.022 (3)	0.003 (3)
C8	0.029 (3)	0.071 (4)	0.043 (3)	0.003 (3)	0.005 (3)	-0.008 (3)
C9	0.046 (3)	0.065 (3)	0.061 (3)	0.011 (3)	0.010 (3)	0.001 (3)
C10	0.067 (4)	0.103 (5)	0.061 (4)	0.024 (4)	-0.007 (3)	-0.005 (4)
C11	0.076 (4)	0.108 (6)	0.074 (4)	0.011 (5)	-0.006 (3)	-0.012 (5)
C12	0.055 (4)	0.083 (5)	0.104 (5)	-0.008 (4)	0.008 (3)	-0.004 (4)
C13	0.049 (3)	0.082 (4)	0.057 (3)	-0.009 (3)	0.007 (3)	0.012 (3)
C14	0.031 (3)	0.076 (4)	0.042 (3)	-0.004 (3)	0.011 (2)	0.000 (3)
C15	0.042 (3)	0.059 (3)	0.055 (3)	-0.001 (3)	0.010 (2)	-0.006 (3)
C16	0.040 (3)	0.042 (3)	0.068 (4)	0.007 (3)	0.017 (3)	-0.004 (3)
C17	0.067 (4)	0.082 (3)	0.051 (3)	0.009 (3)	0.013 (3)	-0.011 (3)
C18	0.101 (5)	0.082 (4)	0.063 (4)	0.014 (4)	0.036 (4)	-0.003 (3)
C19	0.083 (5)	0.055 (3)	0.114 (5)	0.009 (4)	0.059 (4)	-0.005 (4)
C20	0.050 (3)	0.050 (3)	0.110 (5)	-0.003 (3)	0.025 (3)	-0.012 (4)
C21	0.049 (3)	0.038 (3)	0.069 (4)	-0.001 (3)	0.019 (3)	0.000 (3)
Cl1	0.0909 (10)	0.0798 (10)	0.0966 (10)	0.0165 (10)	0.0068 (8)	-0.0179 (9)
Cl2	0.1014 (10)	0.0849 (11)	0.0788 (9)	0.0064 (10)	0.0320 (7)	0.0200 (9)
N1	0.040 (2)	0.065 (3)	0.044 (2)	0.003 (2)	0.009 (2)	-0.006 (2)
N2	0.060 (4)	0.059 (3)	0.083 (4)	-0.002 (3)	-0.002 (3)	-0.004 (3)
01	0.057 (2)	0.088 (2)	0.0363 (19)	0.001 (2)	0.0039 (16)	-0.0121 (18)
O2	0.0591 (19)	0.060 (2)	0.0549 (19)	-0.0036 (19)	0.0230 (16)	-0.0048 (18)
O3	0.073 (3)	0.146 (4)	0.067 (3)	0.002 (3)	0.003 (2)	0.003 (3)
O4	0.056 (2)	0.155 (4)	0.124 (3)	0.012 (3)	-0.016 (2)	-0.003 (3)
05	0.063 (2)	0.062 (2)	0.067 (2)	-0.006 (2)	0.0312 (18)	0.0019 (18)

Geometric parameters (Å, °)

C1—C6	1.382 (5)	C12—C13	1.366 (5)
C1—C2	1.384 (6)	C12—H12	0.9300
C1—H1	0.9300	С13—Н13	0.9300
C2—C3	1.366 (6)	C14—O5	1.186 (5)
С2—Н2	0.9300	C14—O2	1.384 (5)
C3—C4	1.367 (5)	C14—C15	1.510 (6)
C3—C11	1.742 (5)	C15—C16	1.509 (5)
C4—C5	1.386 (5)	C15—H15A	0.9700
C4—H4	0.9300	C15—H15B	0.9700
C5—C6	1.388 (5)	C16—C21	1.379 (5)
С5—Н5	0.9300	C16—C17	1.390 (5)
C6—C7	1.492 (6)	C17—C18	1.370 (6)
C7—O1	1.209 (5)	C17—H17	0.9300
C7—N1	1.367 (5)	C18—C19	1.386 (6)
C8—C13	1.385 (5)	C18—H18	0.9300
C8—C9	1.391 (5)	C19—C20	1.369 (6)
C8—N1	1.419 (5)	C19—H19	0.9300
C9—C10	1.386 (6)	C20—C21	1.378 (5)
C9—Cl2	1.724 (5)	C20—H20	0.9300
C10—C11	1.351 (6)	C21—N2	1.474 (6)

C10—H10	0.9300	N1—O2	1.426 (4)
C11—C12	1.381 (6)	N2—O4	1.191 (5)
C11—H11	0.9300	N2—O3	1.216 (4)
C6—C1—C2	120.0 (4)	C12—C13—H13	119.8
С6—С1—Н1	120.0	С8—С13—Н13	119.8
C2—C1—H1	120.0	O5—C14—O2	124.9 (5)
C3—C2—C1	119.8 (4)	O5—C14—C15	127.6 (4)
C3—C2—H2	120.1	O2—C14—C15	107.5 (4)
C1—C2—H2	120.1	C16—C15—C14	113.5 (4)
C2—C3—C4	121.5 (4)	C16—C15—H15A	108.9
C2—C3—Cl1	119.1 (4)	C14—C15—H15A	108.9
C4—C3—C11	119.4 (4)	C16—C15—H15B	108.9
C3—C4—C5	118.9 (4)	C14—C15—H15B	108.9
C3—C4—H4	120.5	H15A—C15—H15B	107.7
C5-C4-H4	120.5	C_{21} — C_{16} — C_{17}	116.3 (4)
C4-C5-C6	120.5 (4)	$C_{21} - C_{16} - C_{15}$	125.5(4)
C4—C5—H5	119 7	C17 - C16 - C15	1183(4)
С6—С5—Н5	119.7	C18 - C17 - C16	122.2(5)
C1 - C6 - C5	119.7	C18 - C17 - H17	118.9
C1 - C6 - C7	1234(5)	$C_{16} - C_{17} - H_{17}$	118.9
C_{5}	1172(4)	C17 - C18 - C19	119.3 (5)
01 - C7 - N1	1217(4)	C17 - C18 - H18	120.4
01 C7 C6	121.7(4) 121.5(4)	$C_{10} = C_{10} = H_{10}$	120.4
N1 C7 C6	121.3(4) 116.8(4)	$C_{19} = C_{18} = 118$	120.4 120.5(5)
11 - 0 - 00	110.0(4)	$C_{20} = C_{19} = C_{18}$	120.3 (3)
$C_{13} = C_{8} = C_{9}$	119.1(4) 121.2(4)	$C_{20} = C_{19} = H_{19}$	119.0
C_{13} C_{0} C_{0} N_{1}	121.2(4)	С10 С20 С21	119.6
C_{2}	119.0 (3)	C19 - C20 - C21	118.0 (5)
C10 - C9 - C8	119.5 (5)	C19 - C20 - H20	120.7
C10-C9-C12	120.1 (5)	C21—C20—H20	120.7
C8 - C9 - C12	120.4 (4)	$C_{20} = C_{21} = C_{16}$	123.2(5)
C11 - C10 - C9	120.5 (6)	C_{20} C_{21} N_{2}	114.8 (5)
C11—C10—H10	119.7	C16—C21—N2	122.0 (4)
C9—C10—H10	119.7	C/—NI—C8	128.2 (4)
C10-C11-C12	120.3 (6)	C/N1O2	114.5 (3)
С10—С11—Н11	119.8	C8—N1—O2	114.8 (3)
С12—С11—Н11	119.8	04—N2—O3	122.0 (5)
C13—C12—C11	120.1 (6)	O4—N2—C21	119.0 (5)
С13—С12—Н12	120.0	O3—N2—C21	118.9 (4)
C11—C12—H12	120.0	C14—O2—N1	111.9 (3)
C12—C13—C8	120.4 (4)		
$C \in C I = C 2 = C 2$	-0.1.(7)	C14 C15 C16 C17	-107.7(5)
$C_0 - C_1 - C_2 - C_3$	-0.1(7)	C14 - C13 - C10 - C17	-107.7(3)
$C_1 = C_2 = C_3 = C_1^{11}$	-0.3(7)	$C_{1} = C_{10} = C_{17} = C_{18}$	-0.7(7)
$C_1 = C_2 = C_3 = C_1 = C_5$	1/9.9 (3)	C10 - C10 - C17 - C18	-1/9./(4)
12 - 13 - 14 - 15	0.4 (7)	C10 - C17 - C18 - C19	1.0 (8)
CII - C3 - C4 - C5	-180.0(3)	C1/-C18-C19-C20	-1.3(8)
C3—C4—C5—C6	0.3 (7)	C18—C19—C20—C21	0.0 (8)

C2-C1-C6-C5	0.7 (6)	C19—C20—C21—C16	1.0 (7)
C2-C1-C6-C7	-174.2 (4)	C19—C20—C21—N2	179.7 (4)
C4-C5-C6-C1	-0.8 (6)	C17—C16—C21—C20	-0.6 (7)
C4-C5-C6-C7	174.4 (4)	C15—C16—C21—C20	178.3 (4)
C1-C6-C7-O1	134.5 (4)	C17—C16—C21—N2	-179.3 (4)
C5—C6—C7—O1 C1—C6—C7—N1	-40.6 (6) -45.1 (5)	C15—C16—C21—N2 O1—C7—N1—C8	-0.3 (7) 159.2 (4) 21.2 (6)
C13—C8—C9—C10 N1—C8—C9—C10	1.7 (6) -176.3 (4)	C6-C7-N1-C8 O1-C7-N1-O2 C6-C7-N1-O2	-21.3 (6) -1.6 (5) 177.9 (3)
C13—C8—C9—Cl2	179.5 (3)	C13—C8—N1—C7	-49.9 (6)
N1—C8—C9—Cl2	1.5 (6)	C9—C8—N1—C7	128.1 (4)
C8—C9—Cl0—Cl1	-0.5 (7)	C13—C8—N1—C2	110.9 (4)
C12—C9—C10—C11 C12—C9—C10—C11 C9—C10—C11—C12	-0.5(7) -178.4(4) -1.5(8)	C13-C8-N1-02 C9-C8-N1-02 C20-C21-N2-04	-71.2 (5) -9.7 (7)
C10—C11—C12—C13	2.5 (8)	C16—C21—N2—O4	169.1 (5)
C11—C12—C13—C8	-1.3 (7)	C20—C21—N2—O3	169.2 (4)
C9—C8—C13—C12	-0.8 (6)	C16—C21—N2—O3	-12.1 (7)
N1—C8—C13—C12	177.2 (4)	O5—C14—O2—N1	7.0 (6)
O5—C14—C15—C16	23.1 (6)	C15—C14—O2—N1	-171.7 (3)
O2—C14—C15—C16	-158.2 (3)	C7—N1—O2—C14	74.1 (4)
C14—C15—C16—C21	73.3 (6)	C8—N1—O2—C14	-89.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…O1 ⁱ	0.93	2.38	3.264 (7)	158
C15—H15 <i>B</i> ···O1 ⁱⁱ	0.97	2.45	3.421 (6)	175

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1; (ii) -*x*, *y*-1/2, -*z*+1.