

V = 2288.5 (7) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.05 \text{ mm}$

19211 measured reflections

4972 independent reflections

4317 reflections with $I > 2\sigma(I)$

 $\mu = 0.19 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.021$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Benzyl-2-methyl-1,3-bis(pentafluorophenyl)-1,3,6,2-triazaalumocane

Marina M. Kireenko,^a Kirill V. Zaitsev,^a Andrei V. Churakov,^b* Galina S. Zaitseva^a and Sergey S. Karlov^a

^aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3. Moscow 119991. Russian Federation, and ^bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation

Correspondence e-mail: churakov@igic.ras.ru

Received 7 October 2012; accepted 11 October 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.094; data-to-parameter ratio = 12.0.

In the title compound, $[Al(CH_3)(C_{23}H_{15}F_{10}N_3)]$, the Al^{III} atom is coordinated in a distorted tetrahedral geometry by three N atoms from the tridentate amine and by one C atom of the methyl substituent. Further, there is a short intramolecular Al···F contact [2.5717 (11) Å], leading to an overall distorted trigonal-bipyramidal coordination environment around Al^{III}.

Related literature

For general background to the chemistry affording the ligand N-benzyl-N'-(pentafluorophenyl)-N- $\{2$ tridentate [(pentafluorophenyl)amino]ethyl}ethane-1,2-diamine, see: Lermontova et al. (2009). Complexes of germanium and tin based on that and the related ligands and their X-ray structures have been described by Huang et al. (2011, 2012). For related structures having short $Al \cdot \cdot F - C$ contacts, see: Smith et al. (2010); Jansen & Mokros (1992). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data [Al(CH₃)(C₂₃H₁₅F₁₀N₃)] $M_r = 565.39$ Monoclinic, $P2_1/c$ a = 7.9530 (14) Åb = 33.577 (6) Å c = 8.7247 (15) Å $\beta = 100.809 \ (2)^{\circ}$

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.963, \ T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	415 parameters
$wR(F^2) = 0.094$	All H-atom parameters refined
S = 1.02	$\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$
4972 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008): data reduction: SAINT: program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was partially supported by RFBR (projects 12-03-90020-Bel a, 12-03-00206 - a) and a grant from the President of the Russian Federation to support the research of young Russian scientists and doctors (MD-3634.2012.3).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5205).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Huang, M., Kireenko, M. M., Lermontova, E. Kh., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Karlov, S. S. & Zaitseva, G. S. (2011). *Butlerov Commun.* 24, 26–38.
- Huang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). *Eur. J. Inorg. Chem.* pp. 3712–3724.
- Jansen, M. & Mokros, I. (1992). Z. Anorg. Allg. Chem. 612, 101-106.
- Lermontova, E. Kh., Huang, M., Churakov, A. V., Howard, J. A. K., Zabalov, M. V., Karlov, S. S. & Zaitseva, G. S. (2009). *Dalton Trans.* pp. 4695–4702. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Smith, J. C., Ma, K., Piers, W. E., Parvez, M. & McDonald, R. (2010). Dalton Trans. 39, 10256–10263.

supporting information

Acta Cryst. (2012). E68, m1385-m1386 [doi:10.1107/S1600536812042560]

6-Benzyl-2-methyl-1,3-bis(pentafluorophenyl)-1,3,6,2-triazaalumocane

Marina M. Kireenko, Kirill V. Zaitsev, Andrei V. Churakov, Galina S. Zaitseva and Sergey S. Karlov

S1. Comment

As a part of our investigation on chemistry of germanium, tin and aluminium complexes based on tridentate ligands (Lermontova *et al.*, 2009; Huang *et al.*, 2011, 2012) we obtained and studied the structure of title compound, $[Al[C_6H_5CH_2N(CH_2CH_2NHC_6F_5)_2](CH_3)].$

The aluminium centre and aromatic F18 atom form a short intramolecular contact [2.5717 (11) Å]. Of interest, F18— C18 bond length [1.359 (2) Å] is the longest among ten F—C distances in the structure. Analysis of Cambridge Structural Database (ver. 5.33, August 2012; Allen, 2002) shows that similar but somewhat longer Al…F—C contacts are observed in the structures EKIBIK (2.690 Å, Smith *et al.*, 2010) and YADTEC (2.719 Å, Jansen & Mokros, 1992).

The Al1 atom has trigonal bipyramid coordination environment. Three equatorial positions are occupied by methyl group C10 and trigonal nitrogen atoms N1 and N2. The angles between C10, N1 and N2 atoms range within 112.86 (7)–124.64 (7)°. The aluminium atom is only slightly displaced [0.1937 (9) Å] from the plane of these ligands towards the coordinated tetrahedral donor atom N3. The N3 and F18 atoms lie in the apical positions with an N3—Al1—F18 angle equal to 152.24 (5)°. As expected, the dative N3→Al1 bond length [2.0104 (13) Å] is significantly longer than equatorial nitrogen-aluminium distances [1.8575 (14) and 1.8697 (14) Å].

S2. Experimental

A solution of 0.26 g (0.50 mmol) of BnN(CH₂CH₂NHC₆F₅)₂ (Lermontova *et al.*, 2009) in toluene (10 ml) was added dropwise to a solution of 0.25 ml (0.50 mmol) of Me₃Al in toluene (10 ml) under stirring at 243 K. The reaction mixture was allowed to warm to room temperature and stirred overnight. The volatiles were removed under vacuum. The residue was washed by ether (3×5 ml) and dried to give 0.24 g (86%) of BnN(CH₂CH₂NHC₆F₅)₂AlMe as a white solid.

¹H NMR (CDCl₃): δ -0.56 (br s, 3H, AlMe); 2.88–2.97, 3.00–3.09, 3.57–3.66, 3.67–3.76 (4 m, 8H, NCH₂); 4.03 (s, 2H, NCH₂Ph); 7.29–7.34, 7.42–7.47 (2 m, 5H, Ph). ¹³C NMR (CDCl₃): δ 44.29, 49.94 (4NCH₂); 56.01 (NCH₂Ph); 128.77, 129.00, 131.39, 131.55 (Ph). ¹H NMR (C₆D₆): δ -0.31 (p, J_{F-H} = 2.4 Hz, 3H, AlMe); 1.95–2.04, 2.10–2.17, 3.08–3.20 (3 m, 8H, NCH₂); 3.34 (s, 2H, NCH₂Ph); 6.53–6.57, 7.00–7.06, 7.07–7.10 (3 m, 5H, Ph). ¹³C NMR (C₆D₆): δ 49.48, 53.34 (4NCH₂); 55.61 (NCH₂Ph); 128.54, 129.24, 129.31, 131.72 (Ph). EI m/z 564 (*M*, 5%); 432 (M—Bn, 3%); 91 (Bn, 100%); 42 (AlMe, 78%). Anal. Calcd. for C₂₄H₁₈AlN₃F₁₀: C 50.98, H 3.21, N 7.43. Found: C 50.68, H 3.36, N 7.39.

The crystals were obtained from the concentrated toluene solution under storing at 255 K for several days.

S3. Refinement

All H atoms were located in a difference Fourier map and refined isotropically. [Refined C—H distances: 0.90 (2)– 0.97 (3) Å for aromatic CH, 0.931 (19)–1.004 (19) Å for CH_2 and 0.92 (3)–0.98 (2) Å for CH_3 .]

Figure 1

The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level. The short intramolecular contact Al…F—C is drawn by dashed line. Hydrogen atoms are omitted for clarity.

[N-Benzyl-N,N-bis(pentafluorophenylanide)ethyl]amine -methylaluminium(III)

Crystal data	
$[Al(CH_3)(C_{23}H_{15}F_{10}N_3)]$ $M_r = 565.39$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.9530 (14) Å b = 33.577 (6) Å c = 8.7247 (15) Å	F(000) = 1144 $D_x = 1.641 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 8521 reflections $\theta = 2.5 - 28.1^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 173 K
$\beta = 100.809 (2)^{\circ}$ $V = 2288.5 (7) Å^{3}$ Z = 4	Plate, colourless $0.20 \times 0.20 \times 0.05 \text{ mm}$
Data collection Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.963, T_{\max} = 0.991$

$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 2.4^\circ$
$h = -10 \rightarrow 10$
$k = -42 \longrightarrow 42$
$l = -11 \rightarrow 11$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.094$	All H-atom parameters refined
S = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0439P)^2 + 1.3304P]$
4972 reflections	where $P = (F_o^2 + 2F_c^2)/3$
415 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.36 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
All	0.55982 (6)	0.117782 (13)	0.49859 (5)	0.02089 (11)
N1	0.60780 (16)	0.16461 (4)	0.39907 (14)	0.0223 (3)
N2	0.68539 (17)	0.07207 (4)	0.47836 (15)	0.0254 (3)
N3	0.74288 (16)	0.13396 (4)	0.67940 (14)	0.0214 (3)
C1	0.6675 (2)	0.15076 (5)	0.81197 (18)	0.0247 (3)
C2	0.7938 (2)	0.16032 (5)	0.95983 (18)	0.0267 (3)
C3	0.8602 (2)	0.19843 (5)	0.9886 (2)	0.0308 (4)
C4	0.9723 (2)	0.20708 (6)	1.1272 (2)	0.0375 (4)
C5	1.0209 (2)	0.17743 (7)	1.2368 (2)	0.0408 (5)
C6	0.9549 (3)	0.13976 (7)	1.2102 (2)	0.0407 (5)
C7	0.8404 (2)	0.13109 (6)	1.0735 (2)	0.0340 (4)
C10	0.3337 (2)	0.11830 (6)	0.5555 (2)	0.0304 (4)
C11	0.84769 (19)	0.16404 (5)	0.61234 (18)	0.0236 (3)
C12	0.7313 (2)	0.19083 (5)	0.49746 (18)	0.0232 (3)
C13	0.51390 (18)	0.17824 (5)	0.26115 (17)	0.0212 (3)
C14	0.4895 (2)	0.21746 (5)	0.20674 (18)	0.0235 (3)
C15	0.3887 (2)	0.22716 (5)	0.06498 (19)	0.0261 (3)
C16	0.3087 (2)	0.19796 (5)	-0.03367 (18)	0.0279 (3)
C17	0.3261 (2)	0.15883 (5)	0.01513 (18)	0.0257 (3)
C18	0.4249 (2)	0.15007 (5)	0.15781 (18)	0.0235 (3)
C21	0.8424 (2)	0.09669 (5)	0.72549 (19)	0.0258 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C22	0.8566 (2)	0.07283 (5)	0.58014 (19)	0.0270 (3)
C23	0.6498 (2)	0.04053 (5)	0.37471 (18)	0.0274 (3)
C24	0.7699 (2)	0.01889 (5)	0.3099 (2)	0.0338 (4)
C25	0.7253 (3)	-0.01322 (6)	0.2104 (2)	0.0405 (5)
C26	0.5577 (3)	-0.02420 (5)	0.1651 (2)	0.0408 (5)
C27	0.4342 (3)	-0.00290 (5)	0.2209 (2)	0.0371 (4)
C28	0.4803 (2)	0.02780 (5)	0.3244 (2)	0.0304 (4)
F14	0.56225 (13)	0.24841 (3)	0.29513 (11)	0.0310 (2)
F15	0.36334 (13)	0.26570 (3)	0.02492 (12)	0.0354 (2)
F16	0.21053 (13)	0.20771 (3)	-0.17192 (11)	0.0392 (3)
F17	0.24581 (13)	0.12973 (3)	-0.07535 (12)	0.0371 (2)
F18	0.43879 (13)	0.11143 (3)	0.20488 (11)	0.0309 (2)
F24	0.93701 (14)	0.02933 (4)	0.34006 (13)	0.0452 (3)
F25	0.84828 (18)	-0.03270 (4)	0.15369 (15)	0.0569 (4)
F26	0.51315 (19)	-0.05520 (3)	0.06690 (14)	0.0553 (4)
F27	0.26773 (16)	-0.01208 (3)	0.17435 (14)	0.0492 (3)
F28	0.35477 (13)	0.04643 (3)	0.37978 (13)	0.0382 (3)
H112	0.917 (2)	0.1790 (5)	0.6947 (19)	0.018 (4)*
H122	0.803 (2)	0.2058 (5)	0.436 (2)	0.020 (4)*
H121	0.675 (2)	0.2111 (5)	0.554 (2)	0.020 (4)*
H222	0.894 (2)	0.0457 (6)	0.615 (2)	0.027 (5)*
Н3	0.833 (2)	0.2184 (5)	0.912 (2)	0.025 (4)*
H12	0.605 (2)	0.1750 (6)	0.774 (2)	0.030 (5)*
H111	0.921 (2)	0.1507 (5)	0.558 (2)	0.024 (4)*
H212	0.778 (2)	0.0818 (5)	0.790 (2)	0.028 (5)*
H221	0.950 (2)	0.0841 (6)	0.530(2)	0.028 (5)*
H11	0.585 (2)	0.1307 (6)	0.834 (2)	0.031 (5)*
H211	0.955 (2)	0.1031 (6)	0.787 (2)	0.029 (5)*
H7	0.792 (2)	0.1051 (6)	1.055 (2)	0.031 (5)*
H103	0.310 (3)	0.1447 (7)	0.596 (3)	0.050 (6)*
H4	1.012 (3)	0.2322 (7)	1.140 (2)	0.036 (5)*
Н5	1.097 (3)	0.1834 (6)	1.326 (3)	0.045 (6)*
H102	0.322 (3)	0.0973 (7)	0.630 (3)	0.048 (6)*
H6	0.982 (3)	0.1182 (7)	1.285 (3)	0.060 (7)*
H101	0.255 (3)	0.1136 (8)	0.465 (3)	0.064 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
All	0.0208 (2)	0.0198 (2)	0.0209 (2)	0.00011 (17)	0.00084 (17)	0.00025 (17)
N1	0.0248 (6)	0.0209 (6)	0.0193 (6)	-0.0020 (5)	-0.0004 (5)	0.0001 (5)
N2	0.0265 (7)	0.0217 (6)	0.0254 (7)	0.0034 (5)	-0.0016 (5)	-0.0024 (5)
N3	0.0222 (6)	0.0213 (6)	0.0201 (6)	0.0019 (5)	0.0022 (5)	-0.0006 (5)
C1	0.0233 (7)	0.0286 (8)	0.0216 (7)	0.0019 (6)	0.0028 (6)	-0.0012 (6)
C2	0.0231 (7)	0.0362 (9)	0.0208 (7)	0.0034 (6)	0.0042 (6)	-0.0041 (6)
C3	0.0287 (8)	0.0338 (9)	0.0293 (8)	0.0055 (7)	0.0038 (7)	-0.0060 (7)
C4	0.0307 (9)	0.0450 (11)	0.0368 (10)	-0.0016 (8)	0.0066 (7)	-0.0164 (8)
C5	0.0278 (9)	0.0717 (14)	0.0219 (8)	0.0035 (9)	0.0016 (7)	-0.0107 (9)

C6	0.0403 (10)	0.0600 (13)	0.0212 (8)	0.0057 (9)	0.0042 (7)	0.0045 (8)
C7	0.0361 (9)	0.0418 (10)	0.0242 (8)	0.0004 (8)	0.0059 (7)	0.0013 (7)
C10	0.0238 (8)	0.0363 (10)	0.0303 (9)	0.0002 (7)	0.0031 (7)	0.0010 (8)
C11	0.0217 (7)	0.0258 (8)	0.0223 (7)	-0.0029 (6)	0.0020 (6)	-0.0018 (6)
C12	0.0238 (7)	0.0222 (7)	0.0230 (7)	-0.0033 (6)	0.0024 (6)	-0.0022 (6)
C13	0.0200 (7)	0.0241 (7)	0.0201 (7)	0.0002 (6)	0.0051 (5)	0.0007 (6)
C14	0.0241 (7)	0.0227 (7)	0.0237 (7)	-0.0022 (6)	0.0049 (6)	-0.0006 (6)
C15	0.0261 (8)	0.0254 (8)	0.0273 (8)	0.0012 (6)	0.0065 (6)	0.0075 (6)
C16	0.0229 (7)	0.0391 (9)	0.0205 (7)	0.0007 (7)	0.0007 (6)	0.0063 (7)
C17	0.0232 (7)	0.0313 (8)	0.0223 (7)	-0.0039 (6)	0.0034 (6)	-0.0045 (6)
C18	0.0250 (7)	0.0221 (7)	0.0236 (7)	0.0008 (6)	0.0054 (6)	-0.0003 (6)
C21	0.0262 (8)	0.0249 (8)	0.0237 (8)	0.0044 (6)	-0.0018 (6)	0.0008 (6)
C22	0.0256 (8)	0.0256 (8)	0.0274 (8)	0.0059 (6)	-0.0017 (6)	-0.0017 (6)
C23	0.0370 (9)	0.0188 (7)	0.0238 (8)	0.0026 (6)	-0.0005 (6)	0.0020 (6)
C24	0.0374 (9)	0.0299 (9)	0.0310 (9)	0.0079 (7)	-0.0020 (7)	-0.0021 (7)
C25	0.0567 (12)	0.0293 (9)	0.0326 (9)	0.0163 (8)	0.0013 (8)	-0.0025 (7)
C26	0.0650 (13)	0.0200 (8)	0.0313 (9)	0.0015 (8)	-0.0064 (9)	-0.0029 (7)
C27	0.0492 (11)	0.0227 (8)	0.0343 (9)	-0.0062 (8)	-0.0050 (8)	0.0036 (7)
C28	0.0389 (9)	0.0200 (8)	0.0302 (8)	-0.0011 (7)	0.0008 (7)	0.0029 (6)
F14	0.0387 (5)	0.0212 (5)	0.0299 (5)	-0.0042 (4)	-0.0014 (4)	0.0004 (4)
F15	0.0387 (6)	0.0295 (5)	0.0362 (5)	0.0026 (4)	0.0024 (4)	0.0130 (4)
F16	0.0365 (6)	0.0502 (7)	0.0257 (5)	-0.0025 (5)	-0.0074 (4)	0.0107 (5)
F17	0.0392 (6)	0.0393 (6)	0.0286 (5)	-0.0072 (4)	-0.0045 (4)	-0.0082 (4)
F18	0.0384 (5)	0.0214 (5)	0.0300 (5)	-0.0022 (4)	-0.0009 (4)	-0.0010 (4)
F24	0.0363 (6)	0.0525 (7)	0.0453 (6)	0.0106 (5)	0.0041 (5)	-0.0165 (5)
F25	0.0693 (8)	0.0504 (7)	0.0465 (7)	0.0275 (6)	-0.0010 (6)	-0.0186 (6)
F26	0.0880 (10)	0.0271 (6)	0.0431 (7)	0.0011 (6)	-0.0074 (6)	-0.0131 (5)
F27	0.0533 (7)	0.0347 (6)	0.0531 (7)	-0.0174 (5)	-0.0067 (6)	-0.0040 (5)
F28	0.0328 (5)	0.0360 (6)	0.0452 (6)	-0.0056 (4)	0.0054 (5)	-0.0057 (5)

Geometric parameters (Å, °)

All—N2	1.8575 (14)	C11—H111	0.931 (19)	
Al1—N1	1.8697 (14)	C12—H122	0.990 (17)	
Al1-C10	1.9536 (18)	C12—H121	0.995 (17)	
Al1—N3	2.0104 (13)	C13—C14	1.401 (2)	
Al1—F18	2.5717 (11)	C13—C18	1.403 (2)	
N1-C13	1.3704 (19)	C14—F14	1.3573 (17)	
N1-C12	1.4700 (19)	C14—C15	1.381 (2)	
N2—C23	1.387 (2)	C15—F15	1.3457 (18)	
N2-C22	1.480 (2)	C15—C16	1.379 (2)	
N3—C21	1.4947 (19)	C16—F16	1.3486 (18)	
N3—C11	1.497 (2)	C16—C17	1.380 (2)	
N3—C1	1.5086 (19)	C17—F17	1.3404 (18)	
C1—C2	1.514 (2)	C17—C18	1.373 (2)	
C1—H12	0.976 (19)	C18—F18	1.3591 (18)	
C1—H11	0.99 (2)	C21—C22	1.522 (2)	
C2—C3	1.389 (2)	C21—H212	0.972 (19)	

C2—C7	1.395 (2)	C21—H211	0.980 (19)
C3—C4	1.392 (2)	С22—Н222	0.987 (19)
С3—Н3	0.946 (19)	C22—H221	1.004 (19)
C4—C5	1.384 (3)	C23—C24	1.401 (2)
C4—H4	0.90 (2)	C23—C28	1.404 (2)
C5—C6	1.372 (3)	C24—F24	1.352 (2)
C5—H5	0.91 (2)	C24—C25	1.388 (3)
C6—C7	1.390 (3)	C25—F25	1.345 (2)
С6—Н6	0.97 (3)	C_{25} C_{26} C_{26}	1.368(3)
C7—H7	0.96(2)	C26—F26	1.353 (2)
C10—H103	0.98(2)	C26—C27	1.375(3)
C10—H102	0.98(2)	C27—F27	1 346 (2)
C10—H101	0.92(3)	C_{27} C_{28}	1.374(2)
C_{11} C_{12}	1.524(2)	C28—F28	1.377(2) 1 342(2)
C11—H112	0.963(17)	020 120	1.5 12 (2)
011-11112	0.905 (17)		
N2—A11—N1	119.38 (6)	H112—C11—H111	107.5 (14)
N2—Al1—C10	124.64 (7)	N1—C12—C11	106.70 (12)
N1—A11—C10	112.86 (7)	N1—C12—H122	112.0 (10)
N2—A11—N3	88.55 (6)	C11—C12—H122	108.6 (10)
N1—A11—N3	87.50 (6)	N1—C12—H121	112.8 (10)
C10—Al1—N3	111.33 (7)	C11—C12—H121	110.5 (10)
N2—A11—F18	86.80 (5)	H122—C12—H121	106.2 (14)
N1—A11—F18	71.20 (4)	N1—C13—C14	129.02 (14)
C10—Al1—F18	93.65 (6)	N1—C13—C18	117.72 (14)
N3—A11—F18	152.24 (5)	C14—C13—C18	113.25 (13)
C13 - N1 - C12	120.47(12)	F14-C14-C15	116.26 (14)
C13 - N1 - A11	124.31(10)	F14-C14-C13	120.67 (13)
C12— $N1$ — $A11$	113.87 (9)	C_{15} C_{14} C_{13}	123.05 (14)
C^{23} N2- C^{22}	117 19 (13)	F15-C15-C16	119 51 (14)
$C_{23} = N_2 = A_{11}$	130 18 (11)	F_{15} C_{15} C_{14}	119.53 (14)
$C_{22} = N_2 = A_{11}$	112 29 (10)	C16-C15-C14	120.92 (15)
$C_{21} = N_{3} = C_{11}$	111 39 (12)	F16—C16—C15	120.52(15) 120.50(15)
$C_{21} = N_{3} = C_{1}$	111.92 (12)	F_{16} C_{16} C_{17}	120.99 (15)
C_{11} N3 C_{11}	11220(12)	$C_{15} - C_{16} - C_{17}$	118 46 (14)
C_{1} N3 A_{1}	104 70 (9)	F17—C17—C18	120 41 (15)
C11-N3-A11	104 48 (9)	F17-C17-C16	120.11(12) 120.21(14)
C1 - N3 - A11	111.67 (9)	C_{18} C_{17} C_{16}	119.37 (14)
N3-C1-C2	115.91 (12)	F18 - C18 - C17	118 59 (13)
N3-C1-H12	107.5 (11)	F18—C18—C13	116.52 (13)
C2-C1-H12	109.0 (11)	C17—C18—C13	124.89 (15)
N3-C1-H11	105.8 (11)	N3-C21-C22	109.57(12)
C2-C1-H11	109.8 (11)	N3—C21—H212	106.1 (11)
H12—C1—H11	108.7 (15)	C22—C21—H212	110.1 (11)
C3—C2—C7	118.60 (15)	N3—C21—H211	110.3 (11)
C3—C2—C1	121.23 (15)	C22—C21—H211	111.8 (11)
C7—C2—C1	120.12 (16)	H212—C21—H211	108.7 (15)
C2—C3—C4	120.60 (18)	N2—C22—C21	107.78 (13)

С2—С3—Н3	119.8 (11)	N2—C22—H222	111.0 (10)
С4—С3—Н3	119.5 (11)	C21—C22—H222	107.3 (11)
C5—C4—C3	120.01 (19)	N2—C22—H221	114.4 (10)
С5—С4—Н4	122.9 (13)	C21—C22—H221	110.1 (11)
C3—C4—H4	117.1 (13)	H222—C22—H221	106.0 (15)
C6—C5—C4	119.88 (17)	N2—C23—C24	126.01 (16)
С6—С5—Н5	121.3 (14)	N2—C23—C28	120.22 (15)
С4—С5—Н5	118.9 (14)	C24—C23—C28	113.77 (15)
C5—C6—C7	120.41 (19)	F24—C24—C25	116.72 (16)
С5—С6—Н6	123.0 (15)	F24—C24—C23	120.44 (15)
С7—С6—Н6	116.6 (15)	C25—C24—C23	122.82 (17)
C6—C7—C2	120.45 (19)	F25—C25—C26	119.94 (17)
С6—С7—Н7	121.0 (12)	F25—C25—C24	119.32 (19)
С2—С7—Н7	118.6 (12)	C26—C25—C24	120.70 (18)
Al1—C10—H103	109.9 (13)	F26—C26—C25	121.03 (19)
Al1—C10—H102	111.6 (13)	F26—C26—C27	120.31 (18)
H103—C10—H102	111.6 (19)	C25—C26—C27	118.66 (16)
Al1-C10-H101	106.8 (16)	F27—C27—C28	119.72 (18)
H103-C10-H101	108 (2)	F27—C27—C26	120.11 (16)
H102-C10-H101	108 (2)	C28—C27—C26	120.17 (18)
N3—C11—C12	109.96 (12)	F28—C28—C27	117.51 (16)
N3—C11—H112	110.2 (10)	F28—C28—C23	118.72 (14)
C12—C11—H112	112.0 (10)	C27—C28—C23	123.77 (17)
N3—C11—H111	108.8 (11)	C18—F18—Al1	102.48 (8)
C12—C11—H111	108.3 (11)		