

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

L-Tyrosine isopropyl ester

Nelson Nuñez-Dallos,^a Klaus Wurst^b and Rodolfo Quevedo^a*

^aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, 4-72 Colombia, and ^bInstitute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria

Correspondence e-mail: arquevedop@unal.edu.co

Received 4 October 2012; accepted 10 October 2012

Key indicators: single-crystal X-ray study; T = 233 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 8.3.

The title compound, $C_{12}H_{17}NO_3$, adopts a folded conformation with a $C-C(NH_2)-C(=O)-O$ torsion angle of $-95.9 (2)^\circ$. In the crystal, molecules are linked by an $O-H\cdots N$ hydrogen bond, forming helical chains along the *b*-axis direction. Weak $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds are observed between the chains.

Related literature

For information about tyrosine alkyl esters as prodrugs and the structure and intermolecular interactions of L-tyrosine methyl ester compared to L-tyrosine and its ethyl and *n*-butyl esters, see: Nicolaï *et al.* (2011). For the *n*-butyl analogue, see: Qian *et al.* (2006). For macrocyclization of tyrosine alkyl esters with formaldehyde, see: Quevedo & Moreno-Murillo (2009); Nuñez-Dallos *et al.* (2012). For a related structure of tyramine, see: Quevedo *et al.* (2012).

Experimental

Crystal data

 $C_{12}H_{17}NO_3$ $M_r = 223.27$ Orthorhombic, $P2_12_12_1$ a = 5.4539 (1) Å

b = 14.0521 c = 16.5163	(3) (4)

c = 16.5163 (4) A $V = 1265.79 (5) \text{ Å}^3$ Z = 4 Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer 8375 measured reflections 1318 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$vR(F^2) = 0.099$	independent and constrained
S = 1.07	refinement
318 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
58 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O3-H30\cdots N1^{i}\\ N1-H1N\cdots O3^{ii}\\ N1-H2N\cdots O3^{iii}\\ C2-H2\cdots O1^{iv} \end{array}$	0.97 (4) 0.88 (2) 0.89 (3) 0.99	1.78 (4) 2.27 (2) 2.46 (3) 2.37	2.736 (3) 3.106 (2) 3.336 (3) 3.314 (3)	167 (3) 157 (2) 171 (2) 159
Commentary and an	(i)	1 . 1. (;;)		1 - 1. (:::)

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) x + 1, y, z.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

We thank the Universidad Nacional de Colombia for the financial support (DIB research project No. 14178).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5203).

References

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nicolaï, B., Mahé, N., Céolin, R., Rietveld, I., Barrio, M. & Tamarit, J.-L. (2011). Struct. Chem. 22, 649–659.
- Nonius (1998). COLLECT. Nonius BV Delft, The Netherlands.
- Nuñez-Dallos, N., Reyes, A. & Quevedo, R. (2012). *Tetrahedron Lett.* 53, 530–533.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.
- Qian, S.-S., Zhu, H.-L. & Tiekink, E. R. T. (2006). Acta Cryst. E62, 0882–0884.
- Quevedo, R. & Moreno-Murillo, B. (2009). Tetrahedron Lett. 50, 936–938. Quevedo, R., Nuñez-Dallos, N., Wurst, K. & Duarte-Ruiz, A. (2012). J. Mol.
- Guevedo, R., Nunez-Danos, N., Wurst, K. & Duarte-Ruiz, A. (2012). J. Mol. Struct. 1029, 175–179.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.4 \times 0.3 \times 0.2 \text{ mm}$

1271 reflections with $I > 2\sigma(I)$

T = 233 K

 $R_{\rm int} = 0.020$

supporting information

Acta Cryst. (2012). E68, o3173 [doi:10.1107/S1600536812042377]

L-Tyrosine isopropyl ester

Nelson Nuñez-Dallos, Klaus Wurst and Rodolfo Quevedo

S1. Comment

L-Tyrosine alkyl esters are used as prodrugs for *L*-tyrosine due to these esters are more lipophilic and absorbed faster than *L*-tyrosine. In addition, they are hydrolyzed under physiological conditions (Nicolaï *et al.*, 2011). The crystal structures for a number of tyrosine esters have been determined: methyl, ethyl (Nicolaï *et al.*, 2011) and *n*-butyl esters (Qian *et al.*, 2006). Previous computational and spectroscopic studies of *L*-tyrosine isopropyl ester have suggested that the macrocyclization process with formaldehyde can be explained by the formation of a template in solution through intermolecular hydrogen bonds between the amino and the phenolic hydroxyl groups on adjacent molecules of *L*-tyrosine derivatives (Quevedo & Moreno-Murillo, 2009; Nuñez-Dallos *et al.*, 2012). We report here for the first time the crystal structure of *L*-tyrosine isopropyl ester.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts a folded conformation called U-shaped or scorpion conformation, as evidenced in the C1—C2—C3—C4 torsion angle of 58.2 (3)°. Despite the adoption of this conformation, there is no evidence for significant intramolecular C—H··· π interactions. In terms of overall conformation, the structure of the title compound resembles that of the *n*-butyl (Qian *et al.*, 2006) and ethyl analogues (Nicolaï *et al.*, 2011). The crystal packing is stabilized by strong hydrogen bonds between the hydroxyl of the phenol group and the N-atom of the amine group (Fig. 2). Furthermore, molecules are connected into a three-dimensional array *via* N1—H1N···O3, N1—H2N···O3 and C2—H2···O1 intermolecular hydrogen-bonding interactions; see Table 1 for geometric parameters and symmetry operations.

S2. Experimental

Concentrated sulfuric acid (8 ml) was added to a suspension of *L*-tyrosine (10.00 g, 55.19 mmol) in isopropyl alcohol (40 ml). The mixture was heated at reflux and allowed to stir for 24 h. Then the reaction mixture was cooled to room temperature and placed into ice-cold water. The pH was brought to \sim 7 with concentrated ammonia, and isopropyl alcohol (40 ml) was added later to the reaction mixture. Precipitated ammonium sulfate was filtered off and washed with isopropyl alcohol (3×10 ml). The filtrate was concentrated under reduced pressure to a volume of 30 ml and single crystals were obtained by slow evaporation at room temperature. The title compound formed colorless prisms (5.50 g, 45%). m.p. 121–122 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 5.03 (hept, J = 6.3 Hz, 1H), 3.65 (dd, J = 7.7, 5.4 Hz, 1H), 3.01 (dd, J = 13.7, 5.3 Hz, 1H), 2.79 (dd, J = 13.8, 7.7 Hz, 1H), 1.25 (d, J = 6.2 Hz, 3H), 1.22 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 21.9, 22.0, 41.1, 57.0, 69.7, 116.3, 128.9, 131.4, 157.4, 175.6. HRMS (ESI), m/z calcd for [C₁₂H₁₇NO₃+H]⁺ 224.1281; found: 224.1279 [M+H]⁺, 246.1094 [M+Na]⁺, 222.1088 [M—H]⁻.

S3. Refinement

The H atoms on N1 and O3 were located in a difference map and refined isotropically [refined distances: N—H = 0.88 (2) and 0.89 (3) Å, and O—H = 0.97 (4) Å]. All H atoms bound to C atoms were refined using a riding model, with C—H = 0.94–0.98 Å and $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$. In the absence of significant anomalous scattering effects, Friedel pairs have been merged in the final refinement.

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

A view along the *a* axis of the crystal packing of the title compound. The O—H…N hydrogen bonds are shown as dashed cyan lines.

Isopropyl (2S)-2-amino-3-(4-hydroxyphenyl)propanoate

Crystal data

C₁₂H₁₇NO₃ $M_r = 223.27$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.4539 (1) Å b = 14.0521 (3) Å c = 16.5163 (4) Å V = 1265.79 (5) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9.1 pixels mm⁻¹ φ and ω scans 8375 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.099$ S = 1.071318 reflections 158 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

F(000) = 480 $D_{\rm x} = 1.172 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 13069 reflections $\theta = 1.0-25.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 233 KPrism, colorless $0.4 \times 0.3 \times 0.2 \text{ mm}$ 1318 independent reflections 1271 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ $h = -6 \rightarrow 6$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 0.2704P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³ Extinction correction: *SHELXL*, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.059 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ Ζ x v N1 0.07769 (10) 0.0395 (4) 0.2421 (4) 0.74601 (12) 0.049 (6)* H1N 0.241(4)0.7383(17)0.0246(14)H2N 0.096 (6) 0.7704 (18) 0.0881 (16) 0.056 (8)* **O**1 -0.1561(3)0.61052 (12) 0.07928 (14) 0.0699 (6) H3O 0.089 (10)* 0.483(7)0.311(2)0.404(2)O2 0.1284(3)0.49667 (10) 0.08581 (10) 0.0539 (5) O3 0.3192 (3) 0.33815 (11) 0.40495 (10) 0.0528 (5) C1 0.0508(4)0.58592 (14) 0.09087(12)0.0392(5)C2 0.2565(4)0.65246 (13) 0.11620 (11) 0.0364(5)H2 0.044* 0.4156 0.6228 0.1023 C3 0.2457(5)0.66834(15)0.20858 (12) 0.0495 (6) 0.059* H3A 0.3792 0.7114 0.2239 H3B 0.059* 0.0910 0.7004 0.2216 C4 0.2644(4)0.57967 (14) 0.25969 (11) 0.0418(5)C5 0.4658(5)0.52015 (17) 0.25389 (15) 0.0501 (6) H5 0.5912 0.5351 0.2170 0.060* C6 0.30120 (14) 0.0469 (6) 0.4873(4)0.43895 (16) H6 0.6246 0.3990 0.2955 0.056* C7 0.3068 (4) 0.41695 (14) 0.35669 (12) 0.0401 (5) C8 0.1058 (4) 0.47529 (16) 0.36372 (14) 0.0479 (6) H8 -0.01830.4607 0.4012 0.057* 0.55580 (16) C9 0.0861(4)0.31541 (14) 0.0475 (6) Н9 -0.05240.5951 0.057* 0.3208 C10 -0.0553(6)0.42135 (18) 0.07362 (19) 0.0698(8)0.084* H10 -0.22080.4471 0.0849 C11 0.0012(13)0.3444(2)0.1322(2)0.144(2)H11A 0.0004 0.3701 0.1867 0.216* H11B 0.1617 0.3181 0.1203 0.216* H11C 0.2947 0.1278 0.216* -0.1215C12 -0.0438(11)0.3886(3)-0.0106(2)0.135(2)-0.08760.4405 -0.04650.203* H12A H12B -0.15740.3362 -0.01820.203* H12C 0.1214 0.3673 -0.02280.203*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0479 (11)	0.0363 (9)	0.0344 (9)	-0.0041 (8)	-0.0001 (8)	0.0030 (7)
0.0357 (9)	0.0493 (9)	0.1246 (16)	-0.0022 (8)	0.0005 (11)	0.0016 (10)
0.0557 (9)	0.0332 (7)	0.0729 (11)	0.0001 (7)	-0.0022 (9)	-0.0069 (7)
0.0521 (10)	0.0499 (9)	0.0564 (9)	0.0071 (8)	0.0075 (8)	0.0213 (7)
0.0385 (11)	0.0358 (10)	0.0433 (10)	0.0010 (9)	0.0073 (9)	0.0020 (9)
0.0382 (10)	0.0325 (9)	0.0385 (9)	0.0019 (9)	0.0011 (9)	-0.0007 (7)
0.0715 (15)	0.0377 (10)	0.0394 (10)	0.0042 (12)	-0.0017 (11)	0.0012 (8)
0.0503 (12)	0.0400 (10)	0.0351 (9)	-0.0007 (10)	-0.0045 (9)	0.0012 (8)
0.0470 (12)	0.0575 (13)	0.0457 (11)	0.0040 (11)	0.0071 (10)	0.0144 (11)
0.0420 (12)	0.0513 (12)	0.0474 (11)	0.0083 (11)	0.0019 (10)	0.0103 (10)
0.0418 (11)	0.0403 (10)	0.0382 (10)	-0.0027 (10)	-0.0033 (9)	0.0051 (9)
0.0439 (12)	0.0503 (12)	0.0495 (12)	0.0010 (11)	0.0075 (10)	0.0089 (10)
0.0445 (12)	0.0483 (12)	0.0498 (12)	0.0079 (10)	0.0025 (10)	0.0029 (10)
0.0762 (19)	0.0401 (12)	0.093 (2)	-0.0166 (13)	0.0027 (17)	-0.0061 (13)
0.268 (7)	0.081 (2)	0.082 (2)	-0.073 (4)	-0.018 (4)	0.0200 (19)
0.230 (6)	0.109 (3)	0.0674 (19)	-0.105 (4)	-0.022 (3)	0.0063 (19)
	$\begin{array}{c} U^{11} \\ \hline 0.0479 \ (11) \\ 0.0357 \ (9) \\ 0.0557 \ (9) \\ 0.0521 \ (10) \\ 0.0385 \ (11) \\ 0.0382 \ (10) \\ 0.0715 \ (15) \\ 0.0503 \ (12) \\ 0.0470 \ (12) \\ 0.0470 \ (12) \\ 0.0420 \ (12) \\ 0.0418 \ (11) \\ 0.0439 \ (12) \\ 0.0445 \ (12) \\ 0.0762 \ (19) \\ 0.268 \ (7) \\ 0.230 \ (6) \end{array}$	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0479 \ (11) & 0.0363 \ (9) \\ 0.0357 \ (9) & 0.0493 \ (9) \\ 0.0557 \ (9) & 0.0332 \ (7) \\ 0.0521 \ (10) & 0.0499 \ (9) \\ 0.0385 \ (11) & 0.0358 \ (10) \\ 0.0382 \ (10) & 0.0325 \ (9) \\ 0.0715 \ (15) & 0.0377 \ (10) \\ 0.0503 \ (12) & 0.0400 \ (10) \\ 0.0470 \ (12) & 0.0575 \ (13) \\ 0.0418 \ (11) & 0.0403 \ (10) \\ 0.0439 \ (12) & 0.0503 \ (12) \\ 0.0445 \ (12) & 0.0483 \ (12) \\ 0.0762 \ (19) & 0.0401 \ (12) \\ 0.268 \ (7) & 0.081 \ (2) \\ 0.230 \ (6) & 0.109 \ (3) \\ \end{array}$	U^{11} U^{22} U^{33} $0.0479 (11)$ $0.0363 (9)$ $0.0344 (9)$ $0.0357 (9)$ $0.0493 (9)$ $0.1246 (16)$ $0.0557 (9)$ $0.0332 (7)$ $0.0729 (11)$ $0.0521 (10)$ $0.0499 (9)$ $0.0564 (9)$ $0.0385 (11)$ $0.0358 (10)$ $0.0433 (10)$ $0.0382 (10)$ $0.0325 (9)$ $0.0385 (9)$ $0.0715 (15)$ $0.0377 (10)$ $0.0394 (10)$ $0.0503 (12)$ $0.0400 (10)$ $0.0351 (9)$ $0.0470 (12)$ $0.0575 (13)$ $0.0457 (11)$ $0.0420 (12)$ $0.0513 (12)$ $0.0474 (11)$ $0.0418 (11)$ $0.0403 (10)$ $0.0382 (10)$ $0.0445 (12)$ $0.0503 (12)$ $0.0495 (12)$ $0.0445 (12)$ $0.0401 (12)$ $0.093 (2)$ $0.268 (7)$ $0.081 (2)$ $0.0674 (19)$	U^{11} U^{22} U^{33} U^{12} 0.0479 (11)0.0363 (9)0.0344 (9)-0.0041 (8)0.0357 (9)0.0493 (9)0.1246 (16)-0.0022 (8)0.0557 (9)0.0332 (7)0.0729 (11)0.0001 (7)0.0521 (10)0.0499 (9)0.0564 (9)0.0071 (8)0.0385 (11)0.0358 (10)0.0433 (10)0.0010 (9)0.0382 (10)0.0325 (9)0.0385 (9)0.0019 (9)0.0715 (15)0.0377 (10)0.0394 (10)0.0042 (12)0.0503 (12)0.0400 (10)0.0351 (9)-0.0007 (10)0.0470 (12)0.0575 (13)0.0457 (11)0.0040 (11)0.0420 (12)0.0513 (12)0.0474 (11)0.0083 (11)0.0418 (11)0.0403 (10)0.0382 (10)-0.0027 (10)0.0445 (12)0.0503 (12)0.0495 (12)0.0010 (11)0.0762 (19)0.0401 (12)0.093 (2)-0.0166 (13)0.268 (7)0.081 (2)0.082 (2)-0.073 (4)0.230 (6)0.109 (3)0.0674 (19)-0.105 (4)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0479 (11)0.0363 (9)0.0344 (9)-0.0041 (8)-0.0001 (8)0.0357 (9)0.0493 (9)0.1246 (16)-0.0022 (8)0.0005 (11)0.0557 (9)0.0332 (7)0.0729 (11)0.0001 (7)-0.0022 (9)0.0521 (10)0.0499 (9)0.0564 (9)0.0071 (8)0.0075 (8)0.0385 (11)0.0358 (10)0.0433 (10)0.0010 (9)0.0073 (9)0.0382 (10)0.0325 (9)0.0385 (9)0.0019 (9)0.0011 (9)0.0715 (15)0.0377 (10)0.0394 (10)0.0042 (12)-0.0017 (11)0.0503 (12)0.0400 (10)0.0351 (9)-0.0007 (10)-0.0045 (9)0.0470 (12)0.0575 (13)0.0457 (11)0.0083 (11)0.0019 (10)0.0420 (12)0.0513 (12)0.0474 (11)0.0083 (11)0.0019 (10)0.0439 (12)0.0503 (12)0.0495 (12)0.0010 (11)0.0075 (10)0.0439 (12)0.0503 (12)0.0495 (12)0.0010 (11)0.0025 (10)0.0445 (12)0.0401 (12)0.093 (2)-0.0166 (13)0.0027 (17)0.268 (7)0.081 (2)0.082 (2)-0.073 (4)-0.018 (4)0.230 (6)0.109 (3)0.0674 (19)-0.105 (4)-0.022 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C2	1.462 (2)	С5—Н5	0.9400
N1—H1N	0.88 (2)	C6—C7	1.380 (3)
N1—H2N	0.89 (3)	С6—Н6	0.9400
01—C1	1.196 (3)	С7—С8	1.374 (3)
O2—C1	1.326 (2)	C8—C9	1.388 (3)
O2—C10	1.471 (3)	C8—H8	0.9400
O3—C7	1.366 (2)	С9—Н9	0.9400
O3—H3O	0.97 (4)	C10—C12	1.467 (5)
C1—C2	1.519 (3)	C10—C11	1.483 (5)
C2—C3	1.543 (3)	C10—H10	0.9900
С2—Н2	0.9900	C11—H11A	0.9700
C3—C4	1.508 (3)	C11—H11B	0.9700
С3—НЗА	0.9800	C11—H11C	0.9700
С3—Н3В	0.9800	C12—H12A	0.9700
C4—C9	1.380 (3)	C12—H12B	0.9700
C4—C5	1.384 (3)	C12—H12C	0.9700
С5—С6	1.388 (3)		
C2—N1—H1N	108.7 (15)	С5—С6—Н6	120.1
C2—N1—H2N	108.1 (17)	O3—C7—C8	118.29 (18)
H1N—N1—H2N	103 (2)	O3—C7—C6	122.25 (19)
C1	118.1 (2)	C8—C7—C6	119.46 (18)
С7—О3—НЗО	111 (2)	C7—C8—C9	120.0 (2)
O1—C1—O2	124.4 (2)	С7—С8—Н8	120.0
O1—C1—C2	124.3 (2)	С9—С8—Н8	120.0
O2—C1—C2	111.33 (18)	C4—C9—C8	121.8 (2)

		a. a	
N1—C2—C1	113.20 (17)	С4—С9—Н9	119.1
N1—C2—C3	107.33 (15)	С8—С9—Н9	119.1
C1—C2—C3	109.46 (17)	C12—C10—O2	109.0 (3)
N1—C2—H2	108.9	C12—C10—C11	112.4 (3)
C1—C2—H2	108.9	O2—C10—C11	107.1 (3)
С3—С2—Н2	108.9	C12-C10-H10	109.4
C4—C3—C2	115.55 (17)	O2—C10—H10	109.4
C4—C3—H3A	108.4	C11—C10—H10	109.4
С2—С3—НЗА	108.4	C10-C11-H11A	109.5
C4—C3—H3B	108.4	C10-C11-H11B	109.5
С2—С3—Н3В	108.4	H11A—C11—H11B	109.5
НЗА—СЗ—НЗВ	107.5	C10—C11—H11C	109.5
C9—C4—C5	117.29 (18)	H11A—C11—H11C	109.5
C9—C4—C3	121.7 (2)	H11B—C11—H11C	109.5
C5—C4—C3	121.0 (2)	C10-C12-H12A	109.5
C4—C5—C6	121.7 (2)	C10-C12-H12B	109.5
С4—С5—Н5	119.2	H12A—C12—H12B	109.5
С6—С5—Н5	119.2	C10-C12-H12C	109.5
C7—C6—C5	119.8 (2)	H12A—C12—H12C	109.5
С7—С6—Н6	120.1	H12B—C12—H12C	109.5
C10-O2-C1-O1	-6.8 (3)	C3—C4—C5—C6	179.2 (2)
C10—O2—C1—C2	171.22 (19)	C4—C5—C6—C7	-1.1 (4)
O1—C1—C2—N1	-37.6 (3)	C5—C6—C7—O3	-179.8 (2)
O2—C1—C2—N1	144.43 (18)	C5—C6—C7—C8	0.8 (3)
O1—C1—C2—C3	82.1 (3)	O3—C7—C8—C9	-179.7 (2)
O2—C1—C2—C3	-95.9 (2)	C6—C7—C8—C9	-0.2 (3)
N1-C2-C3-C4	-178.6 (2)	C5—C4—C9—C8	-0.3 (3)
C1—C2—C3—C4	58.2 (3)	C3—C4—C9—C8	-178.6 (2)
C2—C3—C4—C9	-123.6 (2)	C7—C8—C9—C4	0.0 (3)
C2—C3—C4—C5	58.2 (3)	C1	105.1 (3)
C9—C4—C5—C6	0.8 (3)	C1-O2-C10-C11	-133.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
O3—H3 <i>O</i> …N1 ⁱ	0.97 (4)	1.78 (4)	2.736 (3)	167 (3)	
N1—H1 <i>N</i> ···O3 ⁱⁱ	0.88 (2)	2.27 (2)	3.106 (2)	157 (2)	
N1—H2 <i>N</i> ···O3 ⁱⁱⁱ	0.89 (3)	2.46 (3)	3.336 (3)	171 (2)	
C2—H2···O1 ^{iv}	0.99	2.37	3.314 (3)	159	

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1/2, -y+1, z-1/2; (iii) -x, y+1/2, -z+1/2; (iv) x+1, y, z.