organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2-Hydroxy-5-methoxyphenyl)-3methylbut-2-en-1-one¹

Catherine Thomas Alexander, David Vargas, Frank R. Fronczek* and Steven F. Watkins

Department of Chemistry, Louisiana State University, Baton Rouge LA 70803-1804 USA

Correspondence e-mail: ffroncz@lsu.edu

Received 1 October 2012; accepted 8 October 2012

Key indicators: single-crystal X-ray study; T = 100 K, P = 0.0 kPa; mean σ (C–C) = 0.001 Å; R factor = 0.043; wR factor = 0.127; data-to-parameter ratio = 26.5.

The title compound, $C_{12}H_{14}O_3$, is a natural product derived from the medium-sized hawthorn *Crataegus persimilis* (*'pruniprunifolia'*). The mean plane of the butene moiety is twisted by 13.27 (7)° with respect to the that of the dioxobenzaldehyde moiety. There is an intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom.

Related literature

For isolation from plant material, see: Castro *et al.* (1989). For the synthesis, see: Camps *et al.* (1985). For photolysis to form 4-chromanones, see: Primo *et al.* (1982). For a related structure, see: Zeller *et al.* (2010).

Experimental

Crystal data

 $C_{12}H_{14}O_3$ $M_r = 206.23$ Monoclinic, $P2_1/c$ a = 14.027 (3) Å

b = 5.816 (1) Å
c = 12.829 (3) Å
$\beta = 91.409 \ (8)^{\circ}$
V = 1046.3 (4) Å ³

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*HKL SCALEPACK*; Otwinowski & Minor 1997) $T_{min} = 0.959, T_{max} = 0.979$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ H atoms treated by a mixture of
independent and constrained
refinementS = 1.04refinement3784 reflections $\Delta \rho_{max} = 0.43$ e Å⁻³143 parameters $\Delta \rho_{min} = -0.22$ e Å⁻³

Table 1		
Hydrogen-bond geometry	(Å, '	°).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2A···O3	0.87 (2)	1.74 (2)	2.523 (1)	149 (2)

T = 100 K

 $R_{\rm int} = 0.018$

 $0.45 \times 0.37 \times 0.23 \text{ mm}$

6425 measured reflections

3784 independent reflections

3179 reflections with $I > 2\sigma(I)$

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2405).

References

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Camps, F., Coll, J., Colomina, O. & Messeguer, A. (1985). *J. Heterocycl. Chem.* **22**, 363–368.
- Castro, V., Tamayo-Castillo, G. & Jakupovic, J. (1989). Phytochemistry, 28, 2415–2418.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Primo, J., Tormo, R. & Miranda, M. A. (1982). Heterocycles, 19, 1819–1822.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zeller, M., Sridharan, M., Rajendra Prasad, K. J. & Ngendahimana, A. (2010). Acta Cryst. E66, o297–o298.

¹ CAS Registry 84346–78–1.

supporting information

Acta Cryst. (2012). E68, o3126 [doi:10.1107/S1600536812042158]

1-(2-Hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one

Catherine Thomas Alexander, David Vargas, Frank R. Fronczek and Steven F. Watkins

S1. Comment

The structure of title compound I can be described in terms of four planar moieties as defined by their constituent nonhydrogen atoms. The phenyl ring and three atoms bonded to it define the main molecular plane, with mean deviation of the defining atoms of $\delta_{r.m.s.} = 0.0145$ (6) Å. With respect to this molecular plane, the mean plane of the carbonyl group (four atoms, $\delta_{r.m.s.} = 0.0044$ (4) Å) and the plane of the methoxy group (three atoms) have dihedral angles of 2.50 (6)° and 4.33 (6)° respectively, while the mean plane of the butene moiety (four atoms, $\delta_{r.m.s.} = 0.0018$ (4) Å) has dihedral angle 13.27 (7)°.

S2. Experimental

Compound I was isolated as a natural product (Castro *et al.*, 1989). It has also been synthesized (Camps *et al.*, 1985). Suitable crystals were formed by very slow evaporation of a hexane solution over a period of three years.

S3. Refinement

The positional and isotropic displacement parameters of hydroxyl atom H2A were refined independently. All other H atoms were placed in calculated positions, guided by difference maps, and refined as riding. Torsional parameters for the three methyl groups were refined, with C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, while H atoms attached to sp^2 C atoms have C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure of (I) with displacement ellipsoids at the 50% probability level.

1-(2-Hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one

Crystal data

C₁₂H₁₄O₃ $M_r = 206.23$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.027 (3) Å b = 5.816 (1) Å c = 12.829 (3) Å $\beta = 91.409$ (8)° V = 1046.3 (4) Å³ Z = 4

Data collection

Nonius KappaCCD
diffractometer
Radiation source: sealed tube
Horizonally mounted graphite crystal
monochromator
Detector resolution: 9 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor
1997)

F(000) = 440 $D_x = 1.309 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3442 reflections $\theta = 2.5-32.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KFragment, yellow $0.45 \times 0.37 \times 0.23 \text{ mm}$

 $T_{\min} = 0.959, T_{\max} = 0.979$ 6425 measured reflections 3784 independent reflections 3179 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{\max} = 32.6^{\circ}, \theta_{\min} = 3.2^{\circ}$ $h = -21 \rightarrow 21$ $k = -8 \rightarrow 7$ $l = -19 \rightarrow 19$ Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$ wR(F^2) = 0.127	Hydrogen site location: inferred from neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
143 parameters	and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0692P)^2 + 0.2297P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.43$ e Å ⁻³ $\Delta ho_{ m min} = -0.22$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.38220 (6)	1.03873 (14)	0.88580 (6)	0.01713 (16)	
C2	0.31710 (6)	0.89827 (14)	0.93398 (6)	0.01652 (15)	
H2	0.3003	0.9281	1.0040	0.020*	
C3	0.27530 (6)	0.71019 (14)	0.87973 (6)	0.01641 (15)	
C4	0.30238 (6)	0.66752 (15)	0.77617 (6)	0.01796 (16)	
C5	0.36779 (6)	0.81313 (15)	0.72851 (6)	0.01992 (17)	
H5	0.3853	0.7853	0.6586	0.024*	
C6	0.40689 (6)	0.99610 (16)	0.78231 (6)	0.01999 (17)	
H6	0.4509	1.0944	0.7491	0.024*	
C7	0.20366 (6)	0.55840 (14)	0.92711 (7)	0.01901 (16)	
C8	0.17084 (6)	0.60621 (15)	1.03279 (7)	0.01893 (16)	
H8	0.1897	0.7485	1.0632	0.023*	
C9	0.11620 (6)	0.46622 (15)	1.09083 (7)	0.01933 (16)	
C10	0.08404 (7)	0.54666 (17)	1.19537 (7)	0.02467 (19)	
H10A	0.1069	0.7037	1.2079	0.037*	
H10B	0.1100	0.4446	1.2498	0.037*	
H10C	0.0142	0.5442	1.1967	0.037*	
C11	0.08255 (7)	0.23100 (16)	1.05970 (8)	0.02593 (19)	
H11A	0.0197	0.2424	1.0251	0.039*	
H11B	0.0781	0.1342	1.1219	0.039*	
H11C	0.1279	0.1625	1.0117	0.039*	
C12	0.40983 (6)	1.26466 (15)	1.03865 (7)	0.02072 (17)	
H12A	0.3425	1.3041	1.0465	0.031*	
H12B	0.4497	1.3925	1.0637	0.031*	
H12C	0.4249	1.1263	1.0794	0.031*	
01	0.42786 (5)	1.22263 (11)	0.93148 (5)	0.02247 (15)	
O2	0.26717 (5)	0.49087 (12)	0.71825 (5)	0.02388 (15)	
H2A	0.2287 (12)	0.416 (3)	0.7580 (14)	0.052 (5)*	

supporting information

03	0.17042	(5) 0.	39337 (13)	0.87547 (6)	0.02755 (16)	
Atomic	Atomic displacement parameters (\mathring{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³	
C1	0.0188 (3)	0.0184 (3)	0.0143 (3)	-0.0008 (3)	0.0011 (3)	0.0000 (3)	
C2	0.0168 (3)	0.0186 (3)	0.0142 (3)	0.0004 (3)	0.0009 (3)	0.0004 (3)	
С3	0.0166 (3)	0.0175 (3)	0.0152 (3)	0.0007 (3)	0.0007 (3)	0.0006 (3)	
C4	0.0195 (3)	0.0188 (3)	0.0156 (3)	0.0018 (3)	-0.0008 (3)	-0.0011 (3)	
C5	0.0230 (4)	0.0234 (4)	0.0134 (3)	-0.0002(3)	0.0018 (3)	-0.0006 (3)	
C6	0.0226 (4)	0.0235 (4)	0.0140 (3)	-0.0026 (3)	0.0031 (3)	0.0010 (3)	
C7	0.0181 (3)	0.0192 (4)	0.0198 (4)	-0.0002 (3)	0.0004 (3)	0.0002 (3)	
C8	0.0179 (3)	0.0191 (3)	0.0199 (4)	-0.0006 (3)	0.0027 (3)	0.0002 (3)	
C9	0.0157 (3)	0.0199 (4)	0.0224 (4)	0.0013 (3)	0.0007 (3)	0.0035 (3)	
C10	0.0241 (4)	0.0267 (4)	0.0236 (4)	-0.0015 (3)	0.0071 (3)	0.0029 (3)	
C11	0.0265 (4)	0.0208 (4)	0.0305 (5)	-0.0040 (3)	0.0023 (4)	0.0039 (3)	
C12	0.0243 (4)	0.0223 (4)	0.0157 (3)	-0.0029 (3)	0.0026 (3)	-0.0027 (3)	
01	0.0286 (3)	0.0238 (3)	0.0153 (3)	-0.0094 (2)	0.0052 (2)	-0.0030 (2)	
O2	0.0301 (3)	0.0225 (3)	0.0190 (3)	-0.0042 (3)	0.0017 (3)	-0.0051 (2)	
O3	0.0317 (4)	0.0260 (3)	0.0251 (3)	-0.0101 (3)	0.0034 (3)	-0.0049 (3)	

Geometric parameters (Å, °)

C101	1.3708 (10)	C8—H8	0.05
		00 110	0.95
C1—C2	1.3824 (11)	C9—C11	1.4982 (13)
C1—C6	1.4023 (12)	C9—C10	1.5003 (13)
C2—C3	1.4159 (11)	C10—H10A	0.98
С2—Н2	0.95	C10—H10B	0.98
C3—C4	1.4127 (12)	C10—H10C	0.98
C3—C7	1.4795 (12)	C11—H11A	0.98
C4—O2	1.3540 (10)	C11—H11B	0.98
C4—C5	1.4002 (12)	C11—H11C	0.98
C5—C6	1.3751 (12)	C12—O1	1.4251 (11)
С5—Н5	0.95	C12—H12A	0.98
С6—Н6	0.95	C12—H12B	0.98
С7—ОЗ	1.2499 (11)	C12—H12C	0.98
С7—С8	1.4690 (12)	O2—H2A	0.870 (18)
C8—C9	1.3538 (12)		
01—C1—C2	125.22 (7)	C8—C9—C11	125.55 (8)
O1—C1—C6	114.77 (7)	C8—C9—C10	119.40 (8)
C2—C1—C6	120.00 (8)	C11—C9—C10	115.05 (8)
C1—C2—C3	120.46 (7)	C9—C10—H10A	109.5
C1—C2—H2	119.8	C9—C10—H10B	109.5
C3—C2—H2	119.8	H10A—C10—H10B	109.5
C4—C3—C2	118.71 (7)	C9—C10—H10C	109.5
C4—C3—C7	118.86 (7)	H10A—C10—H10C	109.5
C2—C3—C7	122.43 (7)	H10B—C10—H10C	109.5

O2—C4—C5	116.96 (8)	C9—C11—H11A	109.5
O2—C4—C3	123.13 (8)	C9—C11—H11B	109.5
C5—C4—C3	119.91 (8)	H11A—C11—H11B	109.5
C6—C5—C4	120.43 (8)	C9—C11—H11C	109.5
С6—С5—Н5	119.8	H11A—C11—H11C	109.5
С4—С5—Н5	119.8	H11B—C11—H11C	109.5
C5—C6—C1	120.48 (8)	O1—C12—H12A	109.5
С5—С6—Н6	119.8	O1—C12—H12B	109.5
С1—С6—Н6	119.8	H12A—C12—H12B	109.5
O3—C7—C8	120.88 (8)	O1—C12—H12C	109.5
O3—C7—C3	119.26 (8)	H12A—C12—H12C	109.5
C8—C7—C3	119.85 (7)	H12B—C12—H12C	109.5
C9—C8—C7	126.04 (8)	C1—O1—C12	117.01 (7)
С9—С8—Н8	117	C4—O2—H2A	106.4 (12)
С7—С8—Н8	117		
O1—C1—C2—C3	-178.95 (8)	C2—C1—C6—C5	-0.92 (13)
C6—C1—C2—C3	0.33 (13)	C4—C3—C7—O3	1.59 (12)
C1—C2—C3—C4	0.82 (12)	C2—C3—C7—O3	-179.06 (8)
C1—C2—C3—C7	-178.54 (8)	C4—C3—C7—C8	-176.96 (7)
C2—C3—C4—O2	179.35 (7)	C2—C3—C7—C8	2.39 (12)
C7—C3—C4—O2	-1.28 (12)	O3—C7—C8—C9	11.11 (14)
C2—C3—C4—C5	-1.39 (12)	C3—C7—C8—C9	-170.37 (8)
C7—C3—C4—C5	177.99 (8)	C7—C8—C9—C11	2.89 (14)
O2—C4—C5—C6	-179.87 (8)	C7—C8—C9—C10	-176.50 (8)
C3—C4—C5—C6	0.82 (13)	C2-C1-O1-C12	3.14 (12)
C4—C5—C6—C1	0.34 (13)	C6-C1-O1-C12	-176.18 (8)
O1—C1—C6—C5	178.43 (8)		

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
02—H2A···O3	0.87 (2)	1.74 (2)	2.523 (1)	149 (2)