

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dibromido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)cobalt(II) acetonitrile monosolvate

Sadif A. Shirvan,^a* Manouchehr Aghajeri,^a Sara Haydari Dezfuli,^a Fereydoon Khazali^a and Ali Borsalani^b

^aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and ^bDepartment of Petroleum Engineering, Omidieh Branch, Islamic Azad University, Omidieh, Iran

Correspondence e-mail: sadifchemist@hotmail.com

Received 8 October 2012; accepted 22 October 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.014 Å; *R* factor = 0.075; *wR* factor = 0.194; data-to-parameter ratio = 16.8.

In the title compound, $[CoBr_2(C_{14}H_{12}N_2)] \cdot CH_3CN$, the Co^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a chelating 2,9-dimethyl-1,10-phenan-throline ligand and two terminal Br atoms. In the crystal, $\pi - \pi$ contacts between the pyridine and benzene rings [centroid–centroid distances = 3.828 (5), 3.782 (5), 3.880 (5) and 3.646 (5) Å] stabilize the structure.

Related literature

For related structures, see: Akbarzadeh Torbati *et al.* (2010); Alizadeh *et al.* (2009); Ding *et al.* (2006); Fanizzi *et al.* (1991); Lemoine *et al.* (2003); Robinson & Sinn (1975).

Experimental

Crystal data $[CoBr_2(C_{14}H_{12}N_2)] \cdot C_2H_3N$ $M_r = 468.04$

Monoclinic, $P2_1/n$ a = 7.6380 (5) Å b = 12.7943 (6) Åc = 17.9545 (11) Å $\beta = 101.128 (5)^{\circ}$ $V = 1721.58 (18) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII CCD	8417 measured reflections
diffractometer	3366 independent reflections
Absorption correction: multi-scan	2345 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.101$
$T_{\min} = 0.259, T_{\max} = 0.459$	

Refinement

R

 $\frac{w}{S}$

33

$[F^2 > 2\sigma(F^2)] = 0.075$	200 parameters
$R(F^2) = 0.194$	H-atom parameters constrained
= 1.02	$\Delta \rho_{\rm max} = 1.11 \text{ e } \text{\AA}^{-3}$
366 reflections	$\Delta \rho_{\rm min} = -1.03 \text{ e} \text{ Å}^{-3}$

Table 1 Selected bond lengths (Å).

Co1-N1	2.051 (8)	Co1-Br1	2.3592 (14)
Co1-N2	2.036 (8)	Co1-Br2	2.3682 (14)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

We are grateful to the Omidieh Branch, Islamic Azad University, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2596).

References

- Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284.
- Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, C.-F., Miao, Y.-F., Tian, B.-Q., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m1062–m1063.
- Fanizzi, F. P., Intini, F. P., Maresca, L., Natile, G., Lanfranchi, M. & Tiripicchio, A. (1991). J. Chem. Soc. Dalton Trans. pp. 1007–1015.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Lemoine, P., Viossat, B. & Daran, J.-C. (2003). Acta Cryst. E59, m17–m19.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Robinson, W. T. & Sinn, E. (1975). J. Chem. Soc. Dalton Trans. pp. 726–731. Sheldrick, G. M. (2008). Acta Crist. A64, 112–122.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation

 $0.35 \times 0.20 \times 0.15 \text{ mm}$

 $\mu = 5.64 \text{ mm}^{-3}$

T = 120 K

supporting information

Acta Cryst. (2012). E68, m1407 [doi:10.1107/S160053681204367X]

Dibromido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$) cobalt(II) acetonitrile monosolvate

Sadif A. Shirvan, Manouchehr Aghajeri, Sara Haydari Dezfuli, Fereydoon Khazali and Ali Borsalani

S1. Comment

2,9-Dimethyl-1,10-phenanthroline (dmphen) is a good bidentate ligand, and numerous complexes with dmphen have been prepared, such as that of mercury (Alizadeh *et al.*, 2009), copper (Lemoine *et al.*, 2003), nickel (Ding *et al.*, 2006), gold (Robinson & Sinn, 1975), platinum (Fanizzi *et al.*, 1991) and cobalt (Akbarzadeh Torbati *et al.*, 2010). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the Co^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a chelating dmphen ligand and two terminal Br atoms. The Co—Br and Co—N bond lengths (Table 1) and angles are normal. In the crystal, π - π contacts between the pyridine and benzene rings (Fig. 2), Cg3··· $Cg3^i$, Cg3··· $Cg4^i$, Cg3··· $Cg4^{ii}$ and Cg4··· $Cg4^{ii}$ [symmetry codes: (i) -x, 1-y, 1-z; (ii) 1-x, 1-y, 1-z, Cg3 and Cg4 are the centroids of the N2, C8–C11, C13 ring and C5–C8, C13, C14 ring, respectively], with centroid–centroid distances of 3.828 (5), 3.782 (5), 3.880 (5) and 3.646 (5) Å, stabilize the structure.

S2. Experimental

For the preparation of the title compound, a solution of 2,9-dimethyl-1,10-phenanthroline (0.28 g, 1.33 mmol) in methanol (20 ml) was added to a solution of $CoBr_2$ (0.29 g, 1.33 mmol) in acetonitrile (15 ml) and the resulting blue solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, blue block crystals of the title compound were isolated (yield: 0.46 g, 73.9%).

S3. Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH₃) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$. The highest residual electron density was found 0.92 Å from Br2 the deepest hole 1.02 Å from Br1.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing diagram for the title compound.

Dibromido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N$,N')cobalt(II) acetonitrile monosolvate

Crystal data	
$[CoBr_{2}(C_{14}H_{12}N_{2})] \cdot C_{2}H_{3}N$ $M_{r} = 468.04$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 7.6380 (5) Å b = 12.7943 (6) Å c = 17.9545 (11) Å $\beta = 101.128$ (5)° V = 1721.58 (18) Å ³ Z = 4	F(000) = 916 $D_x = 1.806 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8417 reflections $\theta = 2.0-26.0^{\circ}$ $\mu = 5.64 \text{ mm}^{-1}$ T = 120 K Block, blue $0.35 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.259, T_{\max} = 0.459$	8417 measured reflections 3366 independent reflections 2345 reflections with $I > 2\sigma(I)$ $R_{int} = 0.101$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 13$ $l = -22 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.075$	Hydrogen site location: inferred from
$wR(F^2) = 0.194$	neighbouring sites
S = 1.02	H-atom parameters constrained
3366 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1187P)^2]$
200 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.11 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.15502 (14)	0.35537 (10)	0.33642 (7)	0.0162 (3)
Br1	0.31107 (12)	0.37421 (8)	0.23591 (6)	0.0249 (3)
Br2	-0.12001 (11)	0.26909 (8)	0.29292 (6)	0.0233 (3)
C1	0.3312 (15)	0.1227 (8)	0.3918 (6)	0.032 (2)
H1A	0.3906	0.1476	0.3528	0.038*
H1B	0.2067	0.1129	0.3711	0.038*
H1C	0.3828	0.0574	0.4112	0.038*
C2	0.3520 (11)	0.2011 (8)	0.4548 (5)	0.020 (2)
C3	0.4380 (12)	0.1773 (8)	0.5287 (6)	0.024 (2)
Н3	0.4825	0.1103	0.5397	0.029*
C4	0.4587 (10)	0.2517 (8)	0.5861 (5)	0.022 (2)
H4	0.5151	0.2350	0.6353	0.026*
C5	0.3920 (10)	0.3531 (8)	0.5678 (5)	0.0176 (19)
C6	0.4112 (11)	0.4362 (8)	0.6219 (6)	0.022 (2)
H6	0.4712	0.4237	0.6712	0.026*
C7	0.3452 (11)	0.5316 (8)	0.6035 (5)	0.022 (2)
H7	0.3570	0.5835	0.6404	0.026*
C8	0.2557 (10)	0.5549 (7)	0.5268 (5)	0.0178 (19)
C9	0.1829 (12)	0.6513 (8)	0.5024 (7)	0.026 (2)
Н9	0.1894	0.7065	0.5365	0.031*
C10	0.1008 (12)	0.6654 (8)	0.4275 (7)	0.028 (2)
H10	0.0564	0.7308	0.4107	0.033*
C11	0.0845 (10)	0.5820 (7)	0.3772 (5)	0.0166 (18)
C12	-0.0028 (13)	0.5960 (8)	0.2951 (6)	0.027 (2)
H12A	-0.1007	0.5481	0.2824	0.033*

H12B	0.0828	0.5825	0.2635	0.033*	
H12C	-0.0460	0.6664	0.2870	0.033*	
C13	0.2355 (10)	0.4741 (7)	0.4725 (5)	0.0165 (19)	
C14	0.3071 (10)	0.3727 (7)	0.4935 (6)	0.0182 (19)	
C15	0.1720 (12)	0.9623 (8)	0.5702 (6)	0.027 (2)	
C16	0.1350 (16)	1.0197 (10)	0.6364 (7)	0.039 (3)	
H16A	0.2341	1.0645	0.6560	0.059*	
H16B	0.1176	0.9710	0.6750	0.059*	
H16C	0.0293	1.0612	0.6216	0.059*	
N1	0.2885 (9)	0.2967 (6)	0.4379 (4)	0.0182 (16)	
N2	0.1506 (8)	0.4887 (6)	0.3979 (4)	0.0138 (15)	
N3	0.2013 (13)	0.9203 (8)	0.5206 (7)	0.043 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0134 (5)	0.0219 (7)	0.0121 (6)	-0.0001 (5)	-0.0010 (4)	-0.0009 (5)
Br1	0.0201 (4)	0.0384 (6)	0.0167 (5)	-0.0082 (4)	0.0050 (4)	-0.0041 (4)
Br2	0.0160 (4)	0.0306 (6)	0.0222 (5)	-0.0061 (4)	0.0014 (3)	-0.0057 (4)
C1	0.042 (6)	0.025 (6)	0.027 (6)	0.011 (5)	0.005 (5)	0.000 (5)
C2	0.016 (4)	0.028 (5)	0.017 (5)	0.007 (4)	0.002 (3)	0.002 (4)
C3	0.022 (4)	0.018 (5)	0.032 (6)	0.005 (4)	0.008 (4)	0.006 (4)
C4	0.011 (4)	0.041 (6)	0.011 (5)	0.006 (4)	-0.004 (3)	0.008 (4)
C5	0.006 (3)	0.032 (5)	0.015 (5)	-0.001 (3)	0.003 (3)	0.000 (4)
C6	0.013 (4)	0.037 (6)	0.015 (5)	-0.007 (4)	0.004 (3)	-0.002 (4)
C7	0.019 (4)	0.033 (6)	0.012 (5)	-0.005 (4)	0.002 (4)	-0.002 (4)
C8	0.011 (4)	0.026 (5)	0.015 (5)	-0.006 (3)	-0.001 (3)	-0.006 (4)
C9	0.016 (4)	0.022 (5)	0.041 (7)	-0.002 (4)	0.013 (4)	0.000 (5)
C10	0.018 (4)	0.027 (6)	0.040 (7)	0.003 (4)	0.010 (4)	0.003 (5)
C11	0.009 (4)	0.023 (5)	0.019 (5)	0.000 (3)	0.007 (3)	0.002 (4)
C12	0.025 (5)	0.024 (5)	0.034 (6)	0.000 (4)	0.006 (4)	0.008 (5)
C13	0.007 (4)	0.027 (5)	0.015 (5)	-0.005 (3)	0.003 (3)	0.002 (4)
C14	0.008 (4)	0.024 (5)	0.023 (5)	-0.004 (3)	0.002 (3)	-0.005 (4)
C15	0.023 (4)	0.030 (6)	0.027 (6)	0.005 (4)	0.002 (4)	0.005 (5)
C16	0.045 (6)	0.041 (7)	0.026 (6)	-0.007 (5)	-0.005 (5)	-0.003 (5)
N1	0.008 (3)	0.027 (4)	0.020 (4)	0.007 (3)	0.004 (3)	-0.001 (3)
N2	0.006 (3)	0.025 (4)	0.009 (4)	-0.003 (3)	-0.003 (3)	-0.001 (3)
N3	0.043(5)	0.042(6)	0.050(7)	0.019(5)	0.018(5)	0.001(5)

Geometric parameters (Å, °)

Co1—N1	2.051 (8)	C8—C9	1.390 (14)	
Co1—N2	2.036 (8)	C8—C13	1.409 (13)	
Col—Brl	2.3592 (14)	C9—C10	1.382 (16)	
Co1—Br2	2.3682 (14)	С9—Н9	0.9300	
C1—C2	1.497 (14)	C10—C11	1.387 (14)	
C1—H1A	0.9600	C10—H10	0.9300	
C1—H1B	0.9600	C11—N2	1.321 (12)	

C1—H1C 0.9600 C11—C12	1.507 (14)
C2—N1 1.329 (12) C12—H12A	0.9600
C2—C3 1.395 (14) C12—H12B	0.9600
C3—C4 1.389 (14) C12—H12C	0.9600
С3—Н3 0.9300 С13—N2	1.383 (11)
C4—C5 1.409 (14) C13—C14	1.429 (13)
C4—H4 0.9300 C14—N1	1.382 (12)
C5—C14 1.389 (13) C15—N3	1.099 (15)
C5—C6 1.428 (14) C15—C16	1.471 (16)
C6—C7 1.337 (14) C16—H16A	0.9600
С6—Н6 0.9300 С16—Н16В	0.9600
C7—C8 1.444 (13) C16—H16C	0.9600
С7—Н7 0.9300	
N2—Co1—N1 83.3 (3) C10—C9—H9	119.9
N2—Co1—Br1 113.1 (2) C8—C9—H9	119.9
N1—Co1—Br1 118.62 (19) C9—C10—C11	119.9 (9)
N2—Co1—Br2 117.58 (18) C9—C10—H10	120.0
N1—Co1—Br2 112.3 (2) C11—C10—H10	120.0
Br1—Co1—Br2 110.02 (6) N2—C11—C10	122.1 (9)
C2—C1—H1A 109.5 N2—C11—C12	117.1 (8)
C2—C1—H1B 109.5 C10—C11—C12	120.8 (9)
H1A—C1—H1B 109.5 C11—C12—H12A	109.5
C2—C1—H1C 109.5 C11—C12—H12B	109.5
H1A—C1—H1C 109.5 H12A—C12—H12B	109.5
H1B—C1—H1C 109.5 C11—C12—H12C	109.5
N1—C2—C3 120.1 (9) H12A—C12—H12C	109.5
N1—C2—C1 117.5 (8) H12B—C12—H12C	109.5
C3—C2—C1 122.3 (9) N2—C13—C8	122.6 (8)
C4—C3—C2 121.4 (9) N2—C13—C14	117.6 (8)
C4—C3—H3 119.3 C8—C13—C14	119.8 (8)
С2—С3—Н3 119.3 N1—С14—С5	122.0 (8)
C3—C4—C5 118.2 (9) N1—C14—C13	117.8 (8)
C3—C4—H4 120.9 C5—C14—C13	120.1 (8)
C5—C4—H4 120.9 N3—C15—C16	179.1 (13)
C14—C5—C4 118.1 (9) C15—C16—H16A	109.5
C14—C5—C6 119.0 (9) C15—C16—H16B	109.5
C4—C5—C6 122.9 (9) H16A—C16—H16B	109.5
C7—C6—C5 121.9 (9) C15—C16—H16C	109.5
С7—С6—Н6 119.1 Н16А—С16—Н16С	109.5
С5—С6—Н6 119.1 Н16В—С16—Н16С	109.5
C6—C7—C8 120.7 (9) C2—N1—C14	120.0 (8)
С6—С7—Н7 119.7 С2—N1—Со1	129.6 (7)
С8—С7—Н7 119.7 С14—N1—Со1	110.4 (6)
C9—C8—C13 116.7 (9) C11—N2—C13	118.5 (8)
C9—C8—C7 124.8 (9) C11—N2—Co1	130.6 (6)
$C_{13} C_{8} C_{7}$ 118 5 (9) $C_{13} N_{2} C_{01}$	110.9 (6)
110.5(7) $110.5(7)$ $013-102-001$	110.7(0)

N1—C2—C3—C4	0.4 (13)	C1—C2—N1—C14	-178.8 (8)
C1—C2—C3—C4	178.9 (9)	C3—C2—N1—Co1	-179.3 (6)
C2—C3—C4—C5	-0.7 (13)	C1-C2-N1-Co1	2.1 (12)
C3—C4—C5—C14	0.8 (11)	C5-C14-N1-C2	0.4 (12)
C3—C4—C5—C6	-177.9 (8)	C13—C14—N1—C2	-179.6 (7)
C14—C5—C6—C7	1.9 (12)	C5-C14-N1-Co1	179.6 (6)
C4—C5—C6—C7	-179.3 (8)	C13-C14-N1-Co1	-0.4 (8)
C5—C6—C7—C8	-1.8 (12)	N2—Co1—N1—C2	179.2 (7)
C6—C7—C8—C9	179.9 (8)	Br1—Co1—N1—C2	-68.1 (8)
C6—C7—C8—C13	1.6 (12)	Br2—Co1—N1—C2	62.1 (7)
C13—C8—C9—C10	-2.0 (12)	N2—Co1—N1—C14	0.0 (5)
C7—C8—C9—C10	179.6 (8)	Br1—Co1—N1—C14	112.7 (5)
C8—C9—C10—C11	2.6 (13)	Br2—Co1—N1—C14	-117.1 (5)
C9—C10—C11—N2	-2.2 (13)	C10-C11-N2-C13	1.2 (11)
C9—C10—C11—C12	-179.3 (8)	C12-C11-N2-C13	178.4 (7)
C9—C8—C13—N2	1.1 (11)	C10-C11-N2-Co1	-177.4 (6)
C7—C8—C13—N2	179.5 (7)	C12-C11-N2-Co1	-0.2 (10)
C9—C8—C13—C14	180.0 (7)	C8—C13—N2—C11	-0.7 (11)
C7—C8—C13—C14	-1.6 (11)	C14—C13—N2—C11	-179.6 (7)
C4—C5—C14—N1	-0.7 (11)	C8—C13—N2—Co1	178.2 (6)
C6—C5—C14—N1	178.1 (7)	C14-C13-N2-Co1	-0.7 (8)
C4—C5—C14—C13	179.3 (7)	N1—Co1—N2—C11	179.1 (7)
C6-C5-C14-C13	-1.9 (11)	Br1-Co1-N2-C11	60.8 (7)
N2-C13-C14-N1	0.7 (10)	Br2—Co1—N2—C11	-69.2 (7)
C8—C13—C14—N1	-178.2 (7)	N1—Co1—N2—C13	0.4 (5)
N2-C13-C14-C5	-179.3 (7)	Br1-Co1-N2-C13	-117.9 (5)
C8—C13—C14—C5	1.8 (11)	Br2—Co1—N2—C13	112.1 (5)
C3—C2—N1—C14	-0.2 (12)		