## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 1-[5-Acetyl-2,6-dimethyl-4-(5-phenyl-1*H*-pyrazol-3-yl)-1,4-dihydropyridin-3-yl]ethanone monohydrate

### Arun M. Islor,<sup>a</sup> Shridhar Malladi,<sup>a</sup> S. Sundershan,<sup>b</sup> Thomas Gerber,<sup>c</sup> Eric Hosten<sup>c</sup> and Richard Betz<sup>c</sup>\*

<sup>a</sup>National Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, <sup>b</sup>UAS Hebbal, Veterinary College, Department of Microbiology, Bangalore 24, India, and <sup>c</sup>Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa Correspondence e-mail: richard.betz@webmail.co.za

Received 10 October 2012; accepted 11 October 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.114; data-to-parameter ratio = 17.9.

In the title compound,  $C_{20}H_{21}N_3O_2 \cdot H_2O$ , the aza-substitued six-membered ring adopts a <sup>L4</sup>*B* conformation. In the crystal, classical N-H···O, N-H···N and O-H···O hydrogen bonds connect the entities into a three-dimensional network. Intramolecular C-H···O contacts are also observed.

### **Related literature**

For the pharmaceutical properties of 1,4-dihydropyridinederived drugs, see: Janis & Triggle (1983); Boecker & Guengerich (1986); Gordeev *et al.* (1996); Buhler & Kiowski (1987); Vo *et al.* (1995). For the conformational analysis of puckering factors of five- and six-membered rings, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995).



### Experimental

#### Crystal data

 $C_{20}H_{21}N_3O_2 \cdot H_2O$   $M_r = 353.41$ Monoclinic,  $P2_1/c$  a = 10.3516 (2) Å b = 12.4352 (3) Å c = 15.4101 (3) Å  $\beta = 112.798$  (1)°

### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) T<sub>min</sub> = 0.965, T<sub>max</sub> = 0.984

### Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.040$   $wR(F^2) = 0.114$  S = 1.044559 reflections 255 parameters

| Judrogen bond | geometry | (Å  | ٥) |
|---------------|----------|-----|----|
| Tyurogen-bonu | geometry | (л, |    |

| $D - H \cdot \cdot \cdot A$    | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------|------------|-------------------------|--------------|---------------------------|
| $N2-H2A\cdots O3^{i}$          | 0.938 (19) | 1.855 (19)              | 2.7822 (14)  | 169.1 (16)                |
| N3−H3···N1 <sup>ii</sup>       | 0.878(17)  | 2.075 (17)              | 2.9454 (13)  | 171.1 (15)                |
| $O3-H3B\cdots O2^{iii}$        | 0.86 (2)   | 1.92 (2)                | 2.7838 (13)  | 175.8 (17)                |
| $O3-H3C\cdots O1^{iv}$         | 0.87 (2)   | 1.88 (2)                | 2.7372 (14)  | 169.8 (18)                |
| $C6 - H6 \cdot \cdot \cdot O2$ | 0.95       | 2.44                    | 3.282 (2)    | 148                       |
| C10−H10···O2                   | 1.00       | 2.33                    | 2.7624 (13)  | 105                       |
|                                |            |                         |              |                           |

Symmetry codes: (i) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) -x,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii) x,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ ; (iv) x + 1,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the Government of India for a Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5260).

### References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.
Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3–S10.
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

 $V = 1828.68 (7) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.09 mm^{-1} T = 200 K 0.41 \times 0.34 \times 0.18 mm

17882 measured reflections 4559 independent reflections 3849 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.015$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$  Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.

- Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775-785.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E.
- & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.

## supporting information

Acta Cryst. (2012). E68, o3156-o3157 [doi:10.1107/S1600536812042614]

# 1-[5-Acetyl-2,6-dimethyl-4-(5-phenyl-1*H*-pyrazol-3-yl)-1,4-dihydropyridin-3-yl]ethanone monohydrate

### Arun M. Islor, Shridhar Malladi, S. Sundershan, Thomas Gerber, Eric Hosten and Richard Betz

### S1. Comment

In recent years, considerable attention has been paid to the synthesis of 1,4-dihydropyridines owing to their significant biological activity. 1,4-Dihydropyridine-containing drugs (1,4-DHPs), such as nifedipine, nicardipine, amlodipine, felodipine and others have been found to be useful as calcium channel blockers (Janis & Triggle 1983; Boecker & Guengerich 1986; Gordeev *et al.*, 1996) and are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski 1987). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo *et al.*, 1995). Prompted by the diverse activities of 1,4-Dihydropyridines, we have synthesized the title compound to study its crystal structure.

The molecule features a pyrazole core bearing a phenyl as well as a 1,4-dihydropyridine-derived substituent. The sixmembered ring of the latter adopts a <sup>L4</sup>*B* conformation according to a puckering analysis (Cremer & Pople, 1975). The least-squares planes defined by the respective intracyclic atoms of the phenyl group as well as the 1,4-dihydropyridine core enclose angles of 52.79 (8) ° and 88.10 (7) ° with the least-squares plane defined by the non-hydrogen atoms of the central pyrazole core (Fig. 1).

In the crystal, classical hydrogen bonds of the O–H···O, N–H···O and N–H···N type are apparent involving both ketonic oxygen atoms and the non-protonated nitrogen atom as acceptors. In addition, two intramolecular C–H···O contacts can be observed whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the atoms participating. The latter stem from a hydrogen atom on the phenyl group as well as the methine group and have the same ketonic oxygen atom as acceptor. In total, the entities of the title compound are connected to a three-dimensional network in the crystal structure. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for these contacts is  $S(5)S(9)DDDC^{1}(8)$  on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.7199 (10) Å and is apparent between the pyrazol and the phenyl moiety in neighbouring molecules (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

### **S2. Experimental**

3-phenyl-1*H*-pyrazole-4-carbaldehyde (0.172 g, 1.0 mmol), acetylacetone (0.2 g, 2.0 mmol) and ammonium acetate (0.092 g, 1.2 mmol) were suspended in ethanol (7 ml) and were refluxed for 5 h. After completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from a mixture of ethanol and water (v/v = 1:1), yield: 0.255 g (76.1%)

### **S3. Refinement**

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to  $1.2U_{eq}(C)$ . The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008), with U(H) set to  $1.5U_{eq}(C)$ . All nitrogen- and oxygen-bound H atoms were located on a difference Fourier map and refined freely.



### Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).



### Figure 2

Intermolecular contacts, viewed along [0 0 - 1]. For clarity, only a selection of contacts apparent in the crystal structure is depicted. Symmetry operators: i -x, y + 1/2, -z + 1/2; ii x, -y + 1/2, z + 1/2; ii x - 1, -y + 1/2, z + 1/2; iv -x, y - 1/2, -z + 1/2.



### Figure 3

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

### 1-[5-Acetyl-2,6-dimethyl-4-(5-phenyl-1*H*-pyrazol-3-yl)-1,4- dihydropyridin-3-yl]ethanone monohydrate

| Crystal data                    |                                                       |
|---------------------------------|-------------------------------------------------------|
| $C_{20}H_{21}N_3O_2 \cdot H_2O$ | V = 1828.68 (7) Å <sup>3</sup>                        |
| $M_r = 353.41$                  | Z = 4                                                 |
| Monoclinic, $P2_1/c$            | F(000) = 752                                          |
| Hall symbol: -P 2ybc            | $D_{\rm x} = 1.284 { m Mg} { m m}^{-3}$               |
| a = 10.3516 (2) Å               | Melting point = $428-430$ K                           |
| b = 12.4352 (3) Å               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| c = 15.4101 (3)  Å              | Cell parameters from 8726 reflections                 |
| $\beta = 112.798 \ (1)^{\circ}$ | $\theta = 2.7 - 28.3^{\circ}$                         |
|                                 |                                                       |

 $\mu = 0.09 \text{ mm}^{-1}$ T = 200 K

Data collection

| Bruker APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2008) | 17882 measured reflections<br>4559 independent reflections<br>3849 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.015$<br>$\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 2.1^{\circ}$<br>$h = -13 \rightarrow 13$<br>$k = -14 \rightarrow 16$<br>$l = -20 \rightarrow 20$ |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $T_{\min} = 0.965, T_{\max} = 0.984$                                                                                                                                                                              | $l = -20 \rightarrow 20$                                                                                                                                                                                                                                                     |  |  |
| Refinement                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |  |  |
| Refinement on $F^2$                                                                                                                                                                                               | Secondary atom site location: difference Fo                                                                                                                                                                                                                                  |  |  |
| Least-squares matrix: full                                                                                                                                                                                        | map                                                                                                                                                                                                                                                                          |  |  |
| $R[F^2 > 2\sigma(F^2)] = 0.040$                                                                                                                                                                                   | Hydrogen site location: inferred from                                                                                                                                                                                                                                        |  |  |
| $wR(F^2) = 0.114$                                                                                                                                                                                                 | neighbouring sites                                                                                                                                                                                                                                                           |  |  |
| S = 1.04                                                                                                                                                                                                          | H atoms treated by a mixture of independent                                                                                                                                                                                                                                  |  |  |
| 4559 reflections                                                                                                                                                                                                  | and constrained refinement                                                                                                                                                                                                                                                   |  |  |

255 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Block, yellow  $0.41 \times 0.34 \times 0.18 \text{ mm}$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0577P)^2 + 0.5735P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.30 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | X             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|---------------|--------------|--------------|-----------------------------|--|
| 01  | -0.05984 (10) | 0.17652 (9)  | 0.56849 (7)  | 0.0425 (2)                  |  |
| O2  | 0.51356 (9)   | 0.21848 (9)  | 0.56375 (7)  | 0.0427 (2)                  |  |
| O3  | 0.79358 (10)  | 0.22697 (7)  | 0.16165 (6)  | 0.0315 (2)                  |  |
| N1  | 0.08635 (11)  | 0.45919 (8)  | 0.30709 (7)  | 0.0313 (2)                  |  |
| N2  | 0.16757 (11)  | 0.51591 (8)  | 0.38313 (7)  | 0.0282 (2)                  |  |
| N3  | 0.08322 (10)  | 0.08888 (8)  | 0.35769 (6)  | 0.0246 (2)                  |  |
| C1  | 0.31972 (13)  | 0.50359 (9)  | 0.54994 (8)  | 0.0277 (2)                  |  |
| C2  | 0.26550 (17)  | 0.58840 (11) | 0.58442 (9)  | 0.0411 (3)                  |  |
| H2  | 0.1723        | 0.6121       | 0.5501       | 0.049*                      |  |
| C3  | 0.3462 (2)    | 0.63860 (12) | 0.66841 (10) | 0.0515 (4)                  |  |
| H3A | 0.3079        | 0.6960       | 0.6915       | 0.062*                      |  |
| C4  | 0.4812 (2)    | 0.60560 (14) | 0.71812 (10) | 0.0546 (4)                  |  |
| H4  | 0.5368        | 0.6403       | 0.7754       | 0.066*                      |  |
| C5  | 0.53562 (17)  | 0.52211 (18) | 0.68471 (11) | 0.0608 (5)                  |  |
| H5  | 0.6292        | 0.4994       | 0.7192       | 0.073*                      |  |
| C6  | 0.45549 (14)  | 0.47036 (14) | 0.60104 (10) | 0.0439 (3)                  |  |
| H6  | 0.4941        | 0.4122       | 0.5791       | 0.053*                      |  |
| C7  | 0.23241 (11)  | 0.45289 (9)  | 0.45943 (8)  | 0.0240 (2)                  |  |
| C8  | 0.19044 (11)  | 0.34797 (9)  | 0.43179 (7)  | 0.0216 (2)                  |  |
| C9  | 0.09862 (13)  | 0.35805 (9)  | 0.33685 (8)  | 0.0285 (2)                  |  |
| H9  | 0.0509        | 0.2992       | 0.2985       | 0.034*                      |  |
| C10 | 0.22607 (10)  | 0.24440 (8)  | 0.48768 (7)  | 0.0204 (2)                  |  |

| H10  | 0.2897        | 0.2617       | 0.5539       | 0.025*     |
|------|---------------|--------------|--------------|------------|
| C11  | 0.30207 (11)  | 0.16707 (9)  | 0.44653 (7)  | 0.0219 (2) |
| C12  | 0.22486 (11)  | 0.09714 (9)  | 0.37820 (7)  | 0.0233 (2) |
| C13  | 0.02198 (11)  | 0.12349 (9)  | 0.41735 (7)  | 0.0232 (2) |
| C14  | 0.09434 (11)  | 0.19160 (9)  | 0.48922 (7)  | 0.0221 (2) |
| C15  | 0.04407 (12)  | 0.21902 (9)  | 0.56260 (8)  | 0.0262 (2) |
| C16  | 0.12422 (15)  | 0.30098 (12) | 0.63511 (9)  | 0.0382 (3) |
| H16A | 0.1371        | 0.3661       | 0.6035       | 0.057*     |
| H16B | 0.2160        | 0.2715       | 0.6749       | 0.057*     |
| H16C | 0.0718        | 0.3188       | 0.6742       | 0.057*     |
| C17  | 0.45534 (12)  | 0.17368 (9)  | 0.48711 (8)  | 0.0275 (2) |
| C18  | 0.54636 (14)  | 0.12884 (13) | 0.43963 (10) | 0.0403 (3) |
| H18A | 0.5101        | 0.1522       | 0.3738       | 0.061*     |
| H18B | 0.5457        | 0.0501       | 0.4423       | 0.061*     |
| H18C | 0.6425        | 0.1550       | 0.4719       | 0.061*     |
| C19  | -0.12248 (12) | 0.07969 (11) | 0.39365 (9)  | 0.0327 (3) |
| H19A | -0.1567       | 0.0476       | 0.3307       | 0.049*     |
| H19B | -0.1853       | 0.1381       | 0.3949       | 0.049*     |
| H19C | -0.1199       | 0.0247       | 0.4399       | 0.049*     |
| C20  | 0.27302 (13)  | 0.02042 (10) | 0.32129 (9)  | 0.0320 (3) |
| H20A | 0.1915        | -0.0152      | 0.2742       | 0.048*     |
| H20B | 0.3352        | -0.0337      | 0.3631       | 0.048*     |
| H20C | 0.3237        | 0.0603       | 0.2895       | 0.048*     |
| H3   | 0.0349 (17)   | 0.0442 (14)  | 0.3127 (12)  | 0.041 (4)* |
| H2A  | 0.1834 (19)   | 0.5891 (15)  | 0.3761 (12)  | 0.052 (5)* |
| H3B  | 0.708 (2)     | 0.2444 (15)  | 0.1288 (13)  | 0.052 (5)* |
| H3C  | 0.8389 (19)   | 0.2649 (16)  | 0.1352 (12)  | 0.051 (5)* |
|      |               |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|-------------|-------------|------------|-------------|------------|-------------|
| 01  | 0.0411 (5)  | 0.0483 (6)  | 0.0488 (6) | -0.0131 (4) | 0.0291 (4) | -0.0137 (4) |
| O2  | 0.0226 (4)  | 0.0535 (6)  | 0.0444 (5) | 0.0012 (4)  | 0.0046 (4) | -0.0123 (5) |
| O3  | 0.0288 (4)  | 0.0270 (5)  | 0.0379 (5) | 0.0030 (3)  | 0.0118 (4) | 0.0019 (3)  |
| N1  | 0.0339 (5)  | 0.0258 (5)  | 0.0265 (5) | 0.0009 (4)  | 0.0034 (4) | 0.0030 (4)  |
| N2  | 0.0321 (5)  | 0.0202 (5)  | 0.0278 (5) | -0.0003(4)  | 0.0068 (4) | 0.0030 (4)  |
| N3  | 0.0256 (5)  | 0.0228 (5)  | 0.0229 (4) | -0.0016 (4) | 0.0066 (4) | -0.0041 (3) |
| C1  | 0.0336 (6)  | 0.0220 (5)  | 0.0258 (5) | -0.0059 (4) | 0.0098 (4) | 0.0007 (4)  |
| C2  | 0.0586 (9)  | 0.0276 (7)  | 0.0334 (6) | 0.0049 (6)  | 0.0137 (6) | -0.0011 (5) |
| C3  | 0.0906 (13) | 0.0282 (7)  | 0.0366 (7) | -0.0079 (7) | 0.0256 (8) | -0.0070 (6) |
| C4  | 0.0712 (11) | 0.0577 (10) | 0.0309 (6) | -0.0320 (9) | 0.0153 (7) | -0.0133 (7) |
| C5  | 0.0375 (8)  | 0.0912 (14) | 0.0410 (8) | -0.0132 (8) | 0.0014 (6) | -0.0141 (9) |
| C6  | 0.0315 (6)  | 0.0564 (9)  | 0.0376 (7) | -0.0012 (6) | 0.0065 (5) | -0.0101 (6) |
| C7  | 0.0239 (5)  | 0.0216 (5)  | 0.0254 (5) | 0.0004 (4)  | 0.0084 (4) | 0.0013 (4)  |
| C8  | 0.0214 (5)  | 0.0197 (5)  | 0.0227 (5) | 0.0011 (4)  | 0.0072 (4) | 0.0007 (4)  |
| C9  | 0.0317 (6)  | 0.0227 (6)  | 0.0250 (5) | 0.0000 (4)  | 0.0043 (4) | 0.0006 (4)  |
| C10 | 0.0202 (5)  | 0.0187 (5)  | 0.0204 (4) | 0.0003 (4)  | 0.0055 (4) | -0.0001 (4) |
| C11 | 0.0225 (5)  | 0.0197 (5)  | 0.0234 (5) | 0.0029 (4)  | 0.0087 (4) | 0.0029 (4)  |
|     |             |             |            |             |            |             |

# supporting information

| C12 | 0.0267 (5) | 0.0196 (5) | 0.0227 (5) | 0.0046 (4)  | 0.0087 (4) | 0.0034 (4)  |
|-----|------------|------------|------------|-------------|------------|-------------|
| C13 | 0.0230 (5) | 0.0207 (5) | 0.0247 (5) | 0.0006 (4)  | 0.0080 (4) | 0.0022 (4)  |
| C14 | 0.0223 (5) | 0.0205 (5) | 0.0228 (5) | 0.0008 (4)  | 0.0080 (4) | 0.0012 (4)  |
| C15 | 0.0273 (5) | 0.0251 (6) | 0.0271 (5) | 0.0015 (4)  | 0.0116 (4) | -0.0003 (4) |
| C16 | 0.0427 (7) | 0.0440 (8) | 0.0337 (6) | -0.0104 (6) | 0.0212 (5) | -0.0139 (5) |
| C17 | 0.0238 (5) | 0.0244 (6) | 0.0333 (6) | 0.0033 (4)  | 0.0101 (4) | 0.0046 (4)  |
| C18 | 0.0289 (6) | 0.0501 (8) | 0.0464 (7) | 0.0014 (6)  | 0.0195 (6) | -0.0014 (6) |
| C19 | 0.0261 (6) | 0.0351 (7) | 0.0352 (6) | -0.0075 (5) | 0.0100 (5) | -0.0066 (5) |
| C20 | 0.0347 (6) | 0.0287 (6) | 0.0321 (6) | 0.0065 (5)  | 0.0123 (5) | -0.0054 (5) |
|     |            |            |            |             |            |             |

Geometric parameters (Å, °)

| 01—C15     | 1.2329 (15) | C8—C10      | 1.5133 (14) |
|------------|-------------|-------------|-------------|
| O2—C17     | 1.2316 (15) | С9—Н9       | 0.9500      |
| O3—H3B     | 0.86 (2)    | C10—C14     | 1.5219 (14) |
| O3—H3C     | 0.87 (2)    | C10-C11     | 1.5272 (14) |
| N1—C9      | 1.3279 (16) | C10—H10     | 1.0000      |
| N1—N2      | 1.3468 (14) | C11—C12     | 1.3608 (15) |
| N2C7       | 1.3549 (14) | C11—C17     | 1.4649 (15) |
| N2—H2A     | 0.938 (19)  | C12—C20     | 1.5055 (15) |
| N3—C13     | 1.3726 (14) | C13—C14     | 1.3646 (15) |
| N3—C12     | 1.3788 (15) | C13—C19     | 1.4977 (15) |
| N3—H3      | 0.878 (17)  | C14—C15     | 1.4565 (15) |
| C1—C6      | 1.3814 (18) | C15—C16     | 1.5025 (16) |
| C1—C2      | 1.3931 (18) | C16—H16A    | 0.9800      |
| C1—C7      | 1.4775 (15) | C16—H16B    | 0.9800      |
| С2—С3      | 1.387 (2)   | C16—H16C    | 0.9800      |
| С2—Н2      | 0.9500      | C17—C18     | 1.5060 (17) |
| C3—C4      | 1.371 (3)   | C18—H18A    | 0.9800      |
| С3—НЗА     | 0.9500      | C18—H18B    | 0.9800      |
| C4—C5      | 1.373 (3)   | C18—H18C    | 0.9800      |
| C4—H4      | 0.9500      | C19—H19A    | 0.9800      |
| C5—C6      | 1.391 (2)   | C19—H19B    | 0.9800      |
| С5—Н5      | 0.9500      | C19—H19C    | 0.9800      |
| С6—Н6      | 0.9500      | C20—H20A    | 0.9800      |
| С7—С8      | 1.3888 (15) | C20—H20B    | 0.9800      |
| С8—С9      | 1.4079 (14) | C20—H20C    | 0.9800      |
| НЗВ—ОЗ—НЗС | 102.1 (16)  | C12—C11—C10 | 118.75 (9)  |
| C9—N1—N2   | 104.58 (9)  | C17—C11—C10 | 115.75 (9)  |
| N1—N2—C7   | 112.61 (10) | C11—C12—N3  | 118.60 (10) |
| N1—N2—H2A  | 119.0 (11)  | C11—C12—C20 | 128.90 (10) |
| C7—N2—H2A  | 127.7 (11)  | N3—C12—C20  | 112.46 (10) |
| C13—N3—C12 | 123.31 (9)  | C14—C13—N3  | 119.18 (10) |
| C13—N3—H3  | 117.2 (11)  | C14—C13—C19 | 127.29 (10) |
| C12—N3—H3  | 117.3 (11)  | N3—C13—C19  | 113.53 (10) |
| C6-C1-C2   | 118.71 (12) | C13—C14—C15 | 121.77 (10) |
| C6—C1—C7   | 121.70 (11) | C13—C14—C10 | 117.93 (9)  |

| C2—C1—C7    | 119.58 (11)  | C15—C14—C10     | 120.19 (9)   |
|-------------|--------------|-----------------|--------------|
| C3—C2—C1    | 120.69 (15)  | O1—C15—C14      | 122.76 (11)  |
| С3—С2—Н2    | 119.7        | O1—C15—C16      | 118.82 (10)  |
| C1—C2—H2    | 119.7        | C14—C15—C16     | 118.41 (10)  |
| C4—C3—C2    | 120.12 (15)  | C15—C16—H16A    | 109.5        |
| С4—С3—НЗА   | 119.9        | C15—C16—H16B    | 109.5        |
| С2—С3—НЗА   | 119.9        | H16A—C16—H16B   | 109.5        |
| C3—C4—C5    | 119.63 (13)  | C15—C16—H16C    | 109.5        |
| C3—C4—H4    | 120.2        | H16A—C16—H16C   | 109.5        |
| C5—C4—H4    | 120.2        | H16B—C16—H16C   | 109.5        |
| C4—C5—C6    | 120.89 (16)  | O2—C17—C11      | 118.77 (11)  |
| С4—С5—Н5    | 119.6        | O2—C17—C18      | 117.87 (11)  |
| С6—С5—Н5    | 119.6        | C11—C17—C18     | 123.36 (11)  |
| C1—C6—C5    | 119.96 (15)  | C17—C18—H18A    | 109.5        |
| С1—С6—Н6    | 120.0        | C17—C18—H18B    | 109.5        |
| С5—С6—Н6    | 120.0        | H18A—C18—H18B   | 109.5        |
| N2—C7—C8    | 106.64 (9)   | C17—C18—H18C    | 109.5        |
| N2—C7—C1    | 119.24 (10)  | H18A—C18—H18C   | 109.5        |
| C8—C7—C1    | 134.00 (10)  | H18B—C18—H18C   | 109.5        |
| C7—C8—C9    | 103.89 (9)   | С13—С19—Н19А    | 109.5        |
| C7—C8—C10   | 130.29 (9)   | C13—C19—H19B    | 109.5        |
| C9—C8—C10   | 125.78 (10)  | H19A—C19—H19B   | 109.5        |
| N1—C9—C8    | 112.27 (10)  | С13—С19—Н19С    | 109.5        |
| N1—C9—H9    | 123.9        | H19A—C19—H19C   | 109.5        |
| С8—С9—Н9    | 123.9        | H19B—C19—H19C   | 109.5        |
| C8—C10—C14  | 110.72 (8)   | С12—С20—Н20А    | 109.5        |
| C8—C10—C11  | 110.53 (8)   | С12—С20—Н20В    | 109.5        |
| C14—C10—C11 | 110.10 (8)   | H20A—C20—H20B   | 109.5        |
| C8—C10—H10  | 108.5        | С12—С20—Н20С    | 109.5        |
| C14—C10—H10 | 108.5        | H20A—C20—H20C   | 109.5        |
| C11—C10—H10 | 108.5        | H20B—C20—H20C   | 109.5        |
| C12—C11—C17 | 125.48 (10)  |                 |              |
|             |              |                 |              |
| C9—N1—N2—C7 | 1.05 (14)    | C14—C10—C11—C12 | 33.04 (13)   |
| C6—C1—C2—C3 | 0.0 (2)      | C8—C10—C11—C17  | 91.88 (11)   |
| C7—C1—C2—C3 | -178.86 (13) | C14—C10—C11—C17 | -145.49 (9)  |
| C1—C2—C3—C4 | 0.5 (2)      | C17—C11—C12—N3  | 169.86 (10)  |
| C2—C3—C4—C5 | -0.5 (2)     | C10-C11-C12-N3  | -8.51 (15)   |
| C3—C4—C5—C6 | -0.1 (3)     | C17—C11—C12—C20 | -7.34 (18)   |
| C2—C1—C6—C5 | -0.6 (2)     | C10-C11-C12-C20 | 174.29 (10)  |
| C7—C1—C6—C5 | 178.25 (14)  | C13—N3—C12—C11  | -18.40 (16)  |
| C4—C5—C6—C1 | 0.7 (3)      | C13—N3—C12—C20  | 159.25 (10)  |
| N1—N2—C7—C8 | -0.31 (13)   | C12—N3—C13—C14  | 16.24 (16)   |
| N1—N2—C7—C1 | -176.91 (10) | C12—N3—C13—C19  | -163.95 (10) |
| C6—C1—C7—N2 | -128.63 (13) | N3—C13—C14—C15  | -171.08 (10) |
| C2-C1-C7-N2 | 50.24 (16)   | C19—C13—C14—C15 | 9.13 (18)    |
| C6—C1—C7—C8 | 55.9 (2)     | N3—C13—C14—C10  | 12.63 (15)   |
| C2—C1—C7—C8 | -125.23 (15) | C19—C13—C14—C10 | -167.15 (11) |
|             | · · · · ·    |                 |              |

| N2—C7—C8—C9    | -0.53 (12)   | C8-C10-C14-C13  | 87.54 (12)   |
|----------------|--------------|-----------------|--------------|
| C1—C7—C8—C9    | 175.35 (13)  | C11—C10—C14—C13 | -34.99 (13)  |
| N2-C7-C8-C10   | -178.25 (10) | C8—C10—C14—C15  | -88.80 (11)  |
| C1C7C8C10      | -2.4 (2)     | C11—C10—C14—C15 | 148.67 (10)  |
| N2—N1—C9—C8    | -1.40 (14)   | C13—C14—C15—O1  | 5.77 (18)    |
| C7—C8—C9—N1    | 1.23 (14)    | C10-C14-C15-O1  | -178.02 (11) |
| C10-C8-C9-N1   | 179.10 (10)  | C13—C14—C15—C16 | -175.47 (11) |
| C7—C8—C10—C14  | 119.14 (12)  | C10-C14-C15-C16 | 0.73 (16)    |
| C9—C8—C10—C14  | -58.14 (14)  | C12—C11—C17—O2  | -160.83 (12) |
| C7—C8—C10—C11  | -118.59 (12) | C10-C11-C17-O2  | 17.58 (16)   |
| C9—C8—C10—C11  | 64.13 (14)   | C12—C11—C17—C18 | 19.51 (18)   |
| C8-C10-C11-C12 | -89.60 (11)  | C10-C11-C17-C18 | -162.08 (11) |
|                |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | Н…А        | $D \cdots A$ | D—H···A    |
|-------------------------------------|-------------|------------|--------------|------------|
| N2—H2A···O3 <sup>i</sup>            | 0.938 (19)  | 1.855 (19) | 2.7822 (14)  | 169.1 (16) |
| N3—H3···N1 <sup>ii</sup>            | 0.878 (17)  | 2.075 (17) | 2.9454 (13)  | 171.1 (15) |
| O3—H3 <i>B</i> ···O2 <sup>iii</sup> | 0.86 (2)    | 1.92 (2)   | 2.7838 (13)  | 175.8 (17) |
| O3— $H3C$ ···O1 <sup>iv</sup>       | 0.87 (2)    | 1.88 (2)   | 2.7372 (14)  | 169.8 (18) |
| С6—Н6…О2                            | 0.95        | 2.44       | 3.282 (2)    | 148        |
| C10—H10····O2                       | 1.00        | 2.33       | 2.7624 (13)  | 105        |

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2; (iii) x, -y+1/2, z-1/2; (iv) x+1, -y+1/2, z-1/2.